用户名: 密码: 验证码:
面向非合作目标的自主空间飞行器图像信息处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间技术的发展,交会对接、卫星服务和卫星捕获等空间飞行器近场操作活动的需求越来越多,其发展趋势是研制面向非合作目标的、不依赖外部导航设备的自主空间飞行器,因此需要研究非合作目标飞行器运动和结构信息获取技术。以此为背景,研究了面向非合作目标的、基于图像特征的信息处理方法,按信息处理任务的不同分为远距离图像信息处理和近距离图像信息处理两部分,对其中的关键技术进行了研究,提出了解决方法并设计了部分硬件电路。
     远距离图像信息处理任务是进行目标飞行器的检测、识别和跟踪,研究的关键技术是弱小目标检测和面目标提取。设计了基于能量积累和轨迹关联的弱小目标检测方法,通过对能量积累后的图像进行非最大值抑制提高了检测性能;提出了基于图像灰度熵的面目标提取方法,能够完整准确地提取出图像中的目标区域。
     近距离图像信息处理任务是估计非合作目标飞行器的相对运动参数和结构参数,关键技术是图像特征的提取和对应、运动与结构参数的估计。提出了Harris算子实现的硬件加速技术和改进的预存储权值矩阵Hough变换,实现了角点和直线的快速提取,设计的图像灰度直方图统计电路模块和邻域提取电路模块可以用于许多图像处理算法;提出了基于光流预测的角点和直线对应算法,通过光流预测提高了建立特征初始对应的计算效率,通过相似度判决能够得到可靠的对应;针对近距离绕飞情况,系统地提出了利用直线估计运动和结构参数的算法,包括直接线性变换算法、鲁棒性算法和光束法平差等,利用目标飞行器丰富的直线特征得到了高精度的、可靠的相对运动参数和目标结构参数。
     研究成果除用于自主空间飞行器近场操作目标信息获取问题外,还可以用于其他基于角点和直线估计运动和结构参数的场合,如建筑物模型重建、移动机器人定位与导航、虚拟现实等。
With the development of space technology, proximity operations have become more and more important in many space-related applications, such as Rendezvous and Docking, Satellite Servicing, Satellite Capture, etc. The tendency is to develop autonomous spacecrafts that are independent of navigation equipments outside and targeting at non-cooperative spacecrafts. So it is necessary to study the technology of acquiring the motion and structure of non-cooperative spacecraft. Under the background, we research a method of information processing based on image features, which is targeting at non-cooperative spacecraft and has two parts for different tasks, namely far-field image information processing and near-field image information processing. Key technologies in the method are discussed and the solutions are proposed. The logic circuits of some solutions are designed and implemented.
     The task of image information processing in far field is to detect, recognize and track target spacecraft. The key technologies studied in this phase are dim-small object detection and block object extraction. A detector of dim-small object is designed, which is based on energy accumulation and track association. Performance of the detector is improved through non-maximal suppression after energy accumulating. A block object detector is proposed which is based on gray entropy of image and can extract the area of the target integrally and accurately.
     The task of image information processing in near field is to estimate the motion and structure of non-cooperative target spacecraft. The key technologies in this phase are features extraction, features match and structure from motion (SFM). Firstly, the logic circuits for Harris detector are demonstrated and a fast method for Hough Transform based on pre-storage weighted matrix is established. The modules of gray histography statistics and neighborhood extraction have the potential to find wide applications in various algorithms of image processing. Secondly, the algorithms of features matching based on prediction by optical flow are proposed. The efficiency of initialing correspondences is higher through motion estimation and the reliable correspondences are determined by the measures of similarity which are constructed using properties of features. Thirdly, the algorithms based on lines for SFM are proposed systematically, including directly linear transformation, robust estimation and bundle adjustment. Therefore, rich and stable line features in the target are used to estimate structure and motion with high precision and robustness while the chase spacecraft circles the non-cooperative target.
     The algorithms presented in this dissertation not only have applications in proximity operations, but also show great potential in many other fields such as model reconstruction of buildings, ego-motion of robots, virtual reality, etc.
引文
[1] J. Lewis. Autonomous proximity operations: a coming collision in orbit [Z]. Univ. of Maryland, March 11, 2004.
    [2] J. R. Wertz, R. Bell, Autonomous rendezvous and docking technologies: status and prospects [C]. SPIE 5088: 20-30, 2003.
    [3] P. Jasiobedzki, M. Greenspan, G. Roth, et al. Video-based system for satellite proximity operations [C]. In 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, ESTEC, Noordwijk, The Netherlands, Nov. 19-21, 2002.
    [4] P. Jasiobedzki, M. Greenspan, and G. Roth, Pose Determination and Tracking for Autonomous Satellite Capture [C]. In 6th Inter. Symp. on Artificial Intelligence and Robotics & Automation in Space, Canadian Space Agency, Quebec, Canada, June 18-22, 2001.
    [5] J. C. Diaz, M. Abderrahim. Visual inspection system for automonous robotic on-orbit satellite servicing [C]. In 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, ESTEC, Noordwijk, The Netherlands, Nov. 28-30, 2006.
    [6]解永春,张昊,石磊,孙承启.交会对接光学成像敏感器设计中的关键问题[J].航天控制, 2006, 24(5): 35-40.
    [7] NASA Headquarters Facilities and Logistics Management [R], NASA Pocket Statis., Washington, D. C., 1997, B-100 - B-102.
    [8] MIR 1 SPACE STATION: A Technical Overview [R], NPO Energia LTD, Alexandria, VA, 1995.
    [9] V. P. Legostayev and B. V. Raushenbakh, Automatic Rendezvous in Space [R], Foreign Technology Division, FTD-HT-23-21346-68, December 1968.
    [10] D. Wilde, L. Kerstein, Y. Frumkin, et al. Inspector [C]. In 49th IAF Congress, Melbourne, Australia, 1998.
    [11] M. Steckling, W. Hill. MICROSim [C]. In IAC-02-A.3.02, 34th COSPAR Sci- entific Assembly, The Second World Space Congress, Houston, TX, USA, 2002.
    [12] R. Guy, I. U. Craig, S. Jerome. In-orbit results from the SNAP-1 nanosatellite and its future potential [C]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2003, 361(1802): 199-203.
    [13] Y. Hashida, W. H. Steyn. In-Orbit attitude performance of the 3-Axis stabilised SNAP-1 nanosatellite [C]. In SSC01-V-1, 15th Annual AIAA/USU Conference on Small Satellites, Itah State University, Logan Utah USA, 2001.
    [14] T. M. Davis, M. David, XSS-10 microsatellite flight demonstration program results, Spacecraft Platforms and Infrastructure [C]. Edited by Tchoryk, Peter, Jr.; Wright, Melissa. Proceedings of the SPIE, 2004, 5419: 16-25.
    [15] I. T. Mitchell, Gorton, T. B., Taskov, K., et al, GN&C Development of the XSS-11 Micro-Satellite for Autonomous Rendezvous and Proximity Operations [C], In 29th Annual AAS Guidance and Control Conference, Breckenridge, CO, 2006.
    [16] T. E. Rumford, Demonstration of automous rendezvous technology (DART) project summary [C]. SPIE’s Space Systems Technology and Operations Conference, Orlando FL, April 24, 2003.
    [17] J. Singer, Critics Worry There May Be More to MiTEx than Meets the Eye, Space News (5 July 2006), online: http://www.space.com/spacenews/archive06/ Mitex_070306.html, date accessed: 9 February 2007.
    [18] R. Caron, CDI Factsheet: MiTEx (Micro-satellite Technology Experiment), 14 Jul. 2006, www.cdi.org/friendlyversion/ printversion.cfm?documentID=3591, date accessed: 9 February 2007.
    [19] B. S. Keller, S. K. Sivakumara Tadikonda and J. Mapar. Autonomous acquisition, rendezvous & docking using a video guidance sensor: experimental testbed results [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 5-8 August 2002.
    [20] J. G. Macke, P. M. David, A. S. Michael, et al. Deployable inspector spacecraft for distributed field measurements [C]. In AIAA ISSSC Conference, 2004.
    [21] M. Swartwout Deployable inspacecraft: technology development and future applications with solar sails [C]. In Technology Applications Conference. Greenbelt, MD, 2004.
    [22] S. R. Granade. Advanced video guidance sensor and next-generation autonomous docking sensors [C], Proc. SPIE, 2004, 5418: 38-49.
    [23] I. Kawano, Mokuno, M., Kasai, T., and Suzuki, T., Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite-VII [J], Journal of Spacecraft and Rockets, 2001, 38(1): 105-111.
    [24] M. Mokuno, Kawano, I., Engineering Test Satellite VII Rendezvous Docking Optical Sensor System [C], AIAA 3689, 1994, 1314-1322.
    [25] A. Mestreau, Moussu, C., Blarre, L., and Perrimon, N., Videometer: a new rendezvous sensor [J], Advances in the Astronautical Sciences, 2003.
    [26] M. Pochard, Blarre, L., Moussu, C., Perrimon, N., and Jacob, P. Qualification of Videometer, an Optical Rendezvous Sensor [C], In 54th International Astronautical Congress, 2003.
    [27] J. Zhang, Wang, L., Optical-Electronic System for Automatic Docking of Spatial Vehicles [C], In 14th World Congress of IFAC, Beijing, 1999, 361-364.
    [28] T. Weismuller, M. Leinz. GN&C Technology Demonstrated by the Orbital Exp- ress Autonomous Rendezvous and Capture Sensor System [C]. In 29th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, Feb. 2006.
    [29] M. Andersson, P. Nordlund and J. O. Eklundh. Modeling, Matching and Tracking for the Stereovision II project: State-of-the-Art Review [R]. Technical Report TRITA-NA-P9321, Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology, June 1993.
    [30] P. Jasiobedzki, M. Greenspan, and G. Roth, Pose determination and tracking for autonomous satellite capture [C], In 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space, (2001).
    [31] M. Greenspan. The sample tree: A sequential hypothesis testing approach to 3d object recognition [C]. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 772-779, 1998.
    [32] E. M. Arkin, J. S. Mitchell, H. Meijer, et al. Decision trees for geometric models [J]. International Journal of Computational Geometry and Applications, 8(3): 343-363, 1998.
    [33] P. Besl, N. Mckay. A method for registration of 3-D shapes [J]. IEEE Trans- actions on Pattern Analysis and Machine Intellience, 1992, 14(2): 239-256.
    [34] R. C. Gonzalez, Woods R E.数字图像处理[M].第2版.北京:电子工业出版社, 2002.
    [35] A. Shiozaki. Edge extraction using entropy operator [J]. Computer Vision, Gra- phics, and Image Processing. 1986, 36(1): 1~9.
    [36] D. Marr, Vision– a computational investigation into the human representation and processing of visual information [M]. San Francisco: Freeman, 1982.
    [37] J. E. W. Mayhew, Frisby, J. P., Psychophysical ans computational studies towares a theory of human stereopsis [J], AI, 1981, 17: 349-385.
    [38] Q. T. Luong and Faugeras, O. The Fundamental matrix: theory, algorithms, and stability analysis [J]. Int. J. of Computer Vision, 1996, 17(1): 43-76.
    [39] A. Shashua and Werman, M. Trilinearity of three perspective views and its associated tensor [C]. In Int. Conf. on Computer Vision (ICCV), 1995, 920-925.
    [40] U. R. Dhond and Aggarwal J. K. Structure from Stereo-A Review [J]. IEEE Trans- actions on Systems, Man, and Cybernetics, 1989, 19(6): 1489-1510.
    [41] M. Felsberg and G. Sommer. The monogenic signal [J]. IEEE Transactions on Signal Processing, December 2001, 49(12): 3136-3144.
    [42] H. Baird, Model-Based Image Matching Using Location [M]. MIT Press, 1985.
    [43] N. Ayache, O. Faugeras, Hyper: A new approach for the representation and positioning of two-dimensional objects [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986, 8(1): 44-54.
    [44] W. Grimson and Lozano-Pérez, T. Localizing Overlapping Parts by Searching the Interpretation Tree [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1987, 9(4): 469-482.
    [45] C. Schmid, A. Zisserman. Automatic line matching across views [C]. In Pro- cceding of the Conference on Computer Vision and Pattern Recognition, Puerlo Rico, UAS, 1997, 666-671.
    [46] S. Noronha, R. Nevatia. Detection and modeling of buildings from multiple aerial imges [C]. In IEEE International Conference on Computer Vision and Pattern Recognition, San Juan, Puerto 1997, 588-594.
    [47]席学强,王润生.基于直线特征的图像模型匹配算法[J].国防科技大学学报, 2000, 22(6): 70-74.
    [48]崔巍,强文义,陈兴林.基于直线间结构信息的立体视觉图像动态匹配方法[J].控制与决策, 2003, 18(5): 633-635.
    [49]黄良明,彭立中.利用几何代数进行线段模型匹配和运动估计[J].中国图象图形学报. 2001, 6(3): 270-274.
    [50] Y. Q. Cheng,E. M. Riseman, X. Q. Wang, et al. Three-dimensional recon- struction of points and lines with unknown correspondence across images [J]. International Journal of Computer Vision, 2001, 45(2): 129-156.
    [51]季健,昂海松,王旭刚等.序列图像中直线边缘快速提取和匹配[J].南京航空航天大学学报, 2005, 37(2): 227-231.
    [52] K. P. Behzad. Line matching: solutions and unsolved problems [C]. In Pro- ceedings of International Conference on Image Processing, Naval Res. Lab, Washington D. C., USA, 2001, 905-908.
    [53] R. I. Hartley, A. Zisserman Multiple View Geometry in Computer Vision [M]. 2nd ed. Cambridge: Cambridge University Press, 2003.
    [54] H Li, Zheng Chengyong, Gao Jingli. Detecting small moving object based on wavelet multi2scale image registration [J]. Infrared and Laser Engineering, 2003, 32(3): 268-270.
    [55] W. Sheng, Deng bin, Liu Jian. Multi2resolution distance map based small target detection in infrared image [J]. Acta Electronica Sinica, 2002, 30(1): 42-45.
    [56] Y. Barniv, Dynamic programming solution for detection dim moving targets [J]. IEEE Trans AES, 1985, 21(1): 144-155.
    [57] S. D. Blostein, Huang T S. Detection of small moving objects in image sequences using multistage hypothesis testing [J]. IEEE ICASSP, 1988, 1068-1071.
    [58] S. D. Blostein and Huang T. S. Detecting Small Moving Objects in Image Sequences Using Sequential Hypothesis Testing [J]. IEEE Trans. On Signal Processing, 1991, 39(7): 1611-1629.
    [59] I. S. Reed, Gagliardi R M. Optical moving target detection with 32D matchedfiltering [J]. IEEE Trans on AES, 1998, 24: 327-336.
    [60] J. Xu, Zhou Xiang, Liang Changhong. Algorithm of small target detection in IR image sequences [J]. Infrared and Laser Engineering, 2003, 32(4): 390-393.
    [61] P. L. Chu. Projection for Multidimensional Signal Detection [J]. IEEE Trans ASSP, 1988, 36(5).
    [62] A. E. Cowart, W E Snyder and W H Ruedger. The detection of unresolved targets using the Hough Transform [J]. CVGIP. Feb. 1983, 222-238.
    [63] D. G. Falconer. Target tracking with the Hough transform [C]. In Proc of Asilomar Conf. on Circuits, Systems and Computers, Nov. 1977, 249-252.
    [64] M. W. Roth, Neural networks for extraction of weak targets in high clutter environments [J]. IEEE Trans. Systems, Man and Cybernetics, 1989, SMC-19: 763-782.
    [65]张兵.多波段光学末制导信息处理机中的目标检测与识别算法研究[D].长沙:国防科学技术大学研究生院博士学位论文. 2005.
    [66]卢焕章,肖山竹,张永亮,等.弱小目标实时检测方法[P].国防专利: ZL 200710080664.3, 2008.
    [67]陈尚锋,基于加权动态规划的小目标检测算法研究[D].长沙:国防科学技术大学研究生院硕士学位论文, 2003.
    [68]李吉成,红外起伏背景条件下的小目标检测技术研究[D].长沙:国防科学技术大学研究生院博士学位论文, 1998.
    [69] **集成处理器技术研究2007年度技术总结报告[R].中国国防科学技术报告,长沙:国防科学技术大学, 2008.
    [70]王淼,红外图像实时小目标检测器的设计与实现[D].长沙:国防科学技术大学研究生院硕士学位论文, 2004.
    [71] C. Shannon, A Mathematical Theory of Communication [J]. The Bell System Technical Journal, 1948, 27: 379-423.
    [72] J. N. Kapur, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, 1985, (29): 273-285.
    [73] P. K. Sahoo, Soltani S, Wong A K C. A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing, 1988, (41):233-260.
    [74] N. R. Pal, Pal S K. Entropic thresholding. Signal Processing, 1989, 16(2):97-108.
    [75] J. Serra. Image analysis and mathematical morphology [M], vol. 2, New York: Academic Press, 1988.
    [76] S. Beucher, Meyer F. Morphological segmentation [J]. Journal of Visual Commu. and Image Representation, 1990, 1(1): 21-46.
    [77] S. Beucher, Meyer F. The morphological approach of segmentation : thewatershed transformation [C]. In Mathematical Morphology in Image Processing, New York: Marcel Dekker, 1992, 433-481.
    [78] S. Beucher, Bilodeau M, Yu X. Road tracking, Lane segmentation and obstacle recognition by Mathematical Morphology [C]. In Proceedings of Intelligent Vehicles Symposium. Detroit, USA, 1992, 166-172.
    [79] C. Schmid, R. Mohr and C. Bauckhage. Evaluation of Interest Point Detectors [J]. International Journal of Computer Vision, 2000, 37(2): 151-172.
    [80] C. Schmid, R. Mohr, and C. Bauckhage. Comparing and evaluating interest points [Z]. Extended Version, 1997.
    [81] F. Mokhtarian and F. Mohanna. Performance evaluation of corner detectors using consistency and accuracy measures [J]. Computer Vision and Image Understanding, April 2006, 102(1): 81-94.
    [82] K. Rohr. Recognizing Corners by Fitting Parametric Models [J]. Intern. Jour. of Computer Vision, 1992, 9(3): 213-230.
    [83] L. Kitchen, A. Rosenfeld. Gray level corner detection [J]. Pattern Recognition Letters, 1982: 95-102.
    [84] F. Mokhtarian, R. Suomela. Robust image corner detection through curvature scale space [J]. IEEE Transactions on Pattern Analysis and Machine Intellience, 1998, 20(12): 1376-1381.
    [85] C. Harris, M. Stephens. A combined corner and edge detector [C]. In Proceedings of 4th Alvey Vision Conference, 1988, 147-151.
    [86] S. M. Smith, J. M. Brady. SUSAN: New Approach to Low Level Image Proce- ssing [J]. International Journal of Computer Vision, May 1997, 23(1): 45-78.
    [87] J. Shi and C. Tomasi, Good features to track [C], In Proceedings of the IEEE Conference of Computer Vision and Pattern Recognition (CVPR’94), Seattle, June 1994.
    [88] C. Tomasi, T. Kanade, Detection and Tracking of Point Features [R], Carnegie Mellon University, Tech. Report CMU-CS-91-132, April 1991.
    [89] B. Robbins and R. Owens, 2D feature detection via local energy [J], Image and Vision Computing, 1997, 15: 353-368.
    [90] H. P. Moravec. Towards automatic visual obstacle avoidance [C]. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, Massachusetts, USA, page 584, 1977.
    [91] P. J. Phillips and K. W. Bowyer. Introduction to the special section on empirical evaluation of computer vision algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4): 289-290.
    [92] P. Rockett. Performance assessment of feature detection algorithms: a metho- dology and case study on corner detectors [J]. IEEE Transactions on Image Processing, December 2003, 12(12): 1668-1676.
    [93] P. Brand and R. Mohr. Accuracy in image measure [C]. In S. F. El-Hakim, editor, Proceedings of the SPIE Conference on VideometricsⅢ, Boston, Massachusetts, USA, 1994, 2350: 218-228.
    [94] M. C. Shin, D. Goldgof, and K. Bowyer. Comparison of edge detectors using an object recognition task [C]. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA, 1999, 360-365.
    [95] P. Tissainayagam and D. Suter. Assessing the performance of corner detectors for point feature tracking applications [J]. Image and Vision Computing, 2004, 22: 663-679.
    [96] M. C. Shin, D. Goldgof, and K. Bowyer. An objective comparison methodology of edge detection algorithms using a structure from motion task [C]. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Santa Barbara, California, USA, 1998, 190-195.
    [97] A. Noble. Descriptions of Image Surfaces [D]. PhD thesis, Dep. of Engineering Science, Oxford University, p45, 1989.
    [98] N. Otsu, A Threshold Selection Method from gray level histogram [J]. IEEE Trans. Syst. Man. Cybern., 1979, SMC-8: 62-66.
    [99] P. K. Sahoo, A Survey of Theshold Techniques [J], Computer Vision Graphics. Image Processing, 1988, 41: 233-260.
    [100]盛骤,谢式千,潘承毅.概率论与数理统计[M].高等教育出版社, 1994.
    [101]王程,王润生. SAR图像直线提取[J].电子学报, 2003, 31(6): 816-820.
    [102] N. Merlet, J. Zerubia. New prospects in line detection by dynamic programming [J]. IEEE Trans. Pattern. Anal. Machine. Intell., 1996, 18(4): 426 - 431.
    [103] D. Geman, B. Jedynak. An active testing model for tracking roads in satellite images [J]. IEEE Trans. Pattern. Anal. Machine. Intell., 1996, 18(5):1 - 14.
    [104] F. Tupin. Detection of linear features in SAR images: application to road network extraction [J]. IEEE Trans on Geoscience and Remote Sensing, 1998, 36(2): 434 - 453.
    [105] J. Canny. A computational approach to edge detection [J]. IEEE Trans. on Pattern Analysis Machine Intelligence, 1986, 8(11): 679 - 698.
    [106] M. Boldt, R. Weiss and E. Riseman. Token Based extraction of straightlines [J]. IEEE Transactions on System.Man. Cybernetles, 1989, 19(7): 1881 - 1594.
    [107] B. Burns. Extracting straight lines [J]. IEEE Trans. Patt. Anal. Machine. Intell., 1986, PAMI-8(4): 425 - 455.
    [108]张祖勋,吴军,张剑清.一种基于线空间的直线抽取算法研究[J].武汉大学学报(信息科学版), 2004.
    [109] P. V. C. Hough, A method nod means for recognizing complex patterns [P], US Patent 3.069.654, 1962.
    [110] H. Li. Fast Hough transform for multidimensional signal processing [C]. IEEE Inter. Conference on Acoustics, Speech, and Signal Processing, Anchorage: IEEE Press, 1986, 2063-2066.
    [111] J. Illingworth, J. Kittler. The adaptive Hough transform [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5):690-698.
    [112] L. Xu and E. Oja, Randomized Hough transform (rht): Basic mechanisms, algorithms, and computational complexities [J], CVGIP, 1993, 57(2): 131-154.
    [113] R. Soodamani, Z. Q. Liu. A Novel Fuzzy Hough Transform for Shape Re- pre- sentation [C]. In Proceedings of the IEEE International Conference on Fuzzy System. Anchorage: IEEE Press, 1998, 1605-1608.
    [114] M. Atiquzzaman. Multi-resolution Hough Transform: An Efficient Method of Detecting Patterns in images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(11): 1090-1095.
    [115]高隽,李成.预存储权值矩阵的快速Hough变换[J].计算机工程, 2000, 26(6): 1-3.
    [116]徐胜华,朱庆,刘纪平等.基于预存储权值矩阵的多尺度Hough变换直线提取算法[J].测绘学报, 2008, 27(1): 83-88.
    [117] R. N. Bracewell, Two-Dimensional Imaging [M]. Englewood Cliffs, NJ: Prentice Hall, 1995, 505-537.
    [118] D. Kincaid, W. Cheney. Numerical Analysis Mathematics of Scientific Computing [M]. Third Edition, Thomson, Chapter 3 Section 2, 2003.
    [119] P. Beardsley, Torr, P., and Zisserman, A. 3D model acquisition from extended image sequences [C]. In Eur. Conf. on Computer Vision (ECCV), 1996, II:683-695.
    [120] P. Torr and Zisserman, A. Robust computation and parametrization of multiple view relations [C]. In Int. Conf. on Computer Vision (ICCV), 1998, 485-491.
    [121] P. Torr and Murray, D. The development and comparison of robust methods for estimating the fundamental matrix [J]. Int. J. of Computer Vision, 1997, 24(3): 271-300.
    [122] P. Torr and Murray, D. Outlier detection and motion segmentation [C]. In Proceedings SPIE Sensor Fusion Conference. 1993, 432-443.
    [123] R. Bolles and Fischler, M. A RANSAC-based approach to model fitting and its application to finding cylinders in range data [C]. In 7th International Joint Conference on Artificial Intelligence, Vancouver, British Colombia, Canada, 1981, 637-643.
    [124] J. Zhang and Katsaggelos, A. Image recovery using the EM algorithm [M]. DSP Handbook. CRC Press/IEEE Press. 1996.
    [125] R. Deriche and O. Faugeras, Tracking line segments [C]. In: Proceedings ofECCV’90, 1990, 259-268.
    [126] N. Ayache and B. Faverjon, Efficient registration of stereo images by matching graph descriptions of edge segments [J], International Journal of Computer Vision, 1987, 107-131.
    [127] D. G. Lowe, The Viewpoint Consistency Constraint [J], International Journal of Computer Vision, 1987, 1: 55-72.
    [128] J. Crowley, P. Sterlmaszyk, T. Skordas, and P. Puget, Measurement and Inte- gration of 3-D Structure by Tracking Edge Lines [J], International Journal of Computer Vision, 1992, 8(1): 29-52.
    [129] B. Lucas, T. Kanade. An Iterative Image Registration Technique with an App- lication to Stereo Vision [C]. In DARPA Image Understanding Workshop, 1981, 121-130.
    [130] C. Poelman, T. Kanade. The paraperspective and projective factorization methods for recovering shape and motion [R]. Technical Report CMU-CS-95-173, Carnegie Mellon University, 1995.
    [131] N. Chiba, T. Kanade. A Tracker for broken and closely-spaced lines [C]. Inter- nationals Archives of Photogrammetry and Remote Sensing, 1997, Vol.XXXII, Part5, 676-681.
    [132] C. Tomasi, T. Kanade, Detection and Tracking of Point Features [R], Carnegie Mellon University, Tech. Report CMU-CS-91-132, April 1991.
    [133] M. Felsberg and G. Sommer. A New Extension of Linear Signal Processing for Estimating Local Properties and Detecting Features [C]. DAGM Symposium 2000, Kiel.
    [134] M. Felsberg and G. Sommer. The monogenic signal [J]. IEEE Transactions on Signal Processing, 49(12): 3136-3144, December 2001.
    [135] J. Crowley, P. Sterlmaszyk, T. Skordas, and P. Puget, Measurement and Inte- gration of 3-D Structure by Tracking Edge Lines [J], International Journal of Computer Vision, 1992, 8(1): 29-52.
    [136] O. Faugeras and Luong, Q. The geometry of multiple images [M]. MIT Press, 2001.
    [137] S. Ullman. The interpretation of visual motion [M]. MIT Press, Cambridge, MA. 1979.
    [138] H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections [J]. Nature, 1981, 293: 133-135.
    [139] R. Tsai, Huang, T. Uniqueness and estimation of three-dimensional motion para- meters of rigid objects with curved surfaces [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6(1): 13-27.
    [140] A. Bartoli and P. Sturm. Structure from motion using lines: representation, triangulartion and bundle adjustment [J], CVIU, dec 2005, 100(3): 416-441.
    [141] D. Morris and Kanade, T. A unified factorization algorithm for points, line segments and planes with uncertainty models [C]. In Int. Conf. on Computer Vision (ICCV), 1998, 696-702.
    [142] C. Poelman and Kanade, T. A paraperspective factorization method for shape and motion recovery [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(3): 206-218.
    [143] C. Tomasi and Kanade, T. Shape and motion from image streams under ortho- graphy: a factorization method [J]. Int. J. of Computer Vision, 1992, 9(2): 137-154.
    [144] B. Triggs, Factorization methods for projective structure and motion [C]. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 1996, 845-851.
    [145] D. Jacobs. Linear fitting with missing data: applications to structure from motion and to characterizing intensity images [C]. In Proceedings of CVPR, 1997, 206-212.
    [146] C. Taylor, D. Kriegman. Structure and motion from line segments in multiple images [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17(11): 1021-1032.
    [147] B. Triggs, McLauchlan, P., Hartley, R., and Fitzgibbon, A. Bundle adjustment– a modern synthesis [C]. In Vision Algorithms 99, Corfu, Greece. 1999.
    [148] S. B. Kang and Szeliski, R. 3D scene data recovery using omnidirectional multi- baseline stereo [J]. Int. J. of Computer Vision, 1997, 25(2):167-183.
    [149] M. Cooper and Robson, S. Theory of close range photogrammetry [C]. In Atkinson, K., editor, Close range photogrammetry and machine vision, chapter 1, Whittles Publishing, 1996, 9-51.
    [150] R. Hartley, Euclidean reconstruction from uncalibrated views [C]. In Application of Invariance in Computer Vision, 1994, 237-256.
    [151] J. Weng, Ahuja, N., and Huang, T. Optimal motion and structure estimation [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993, 15:864-884.
    [152] R. Szeliski and Kang, S. Recovering 3D shape and motion from image streams using non-linear least squares [R]. Technical Report CRL 93/3, DEC Cambridge Research Lab. 1993.
    [153] M. Spetsakis and Aloimonos, Y. A multi-frame approach to visual motion per- ception [J]. Int. J. of Computer Vision, 1991, 6(3):245-255.
    [154] F. Dellaert. Monte Carlo EM for Data-Association and its Applications in Com- puter Vision [D], 21st September 2001,CMU-CS-01-153, School of Computer Science Carnegie Mellon University.
    [155] A. Cross and Hancock, E. Graph matching with a dual-step EM algorithm [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(11):1236-1253.
    [156] S. Gold, Rangarajan, A., Lu, C., Pappu, S., and Mjolsness, E. New algorithms for 2D and 3D point matching [J]. Pattern Recognition, 1998, 31(8):1019-1031.
    [157] A. Rangarajan, Mjolsness, E., Pappu, S., and Davachi, L. A robust point matching algorithm for autoradiograph alignment [J]. Medical Image Analysis, 1997, 4(1):379-398.
    [158] C. Lu and E. Mjolsness, Two-dimensional object localization by coarse-to-fine correlation matching [C]. In Cowan, J., Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems (NIPS), Morgan Kaufmann Publishers, Inc. 1994, 6: 985–992.
    [159] A. Habib, Motion parameter estimation by tracking stationary three-dimensional straight lines in image sequences [C], Internat. Arch. Photogramm. Remote Sensing 53, 1998.
    [160] Y. Seo, Hong K.S. Sequential reconstruction of lines in projective space [C]. In Proc. 13th Internat. Conf. on Pattern Recognition, Vienna, Austria, 1996, 503-507.
    [161] H. Pottmann, M. Hofer, B. Odehnal, et al. Line geometry for 3D shape understanding and reconstruction [C]. In Proc. Eur. Conf. on Computer Vision, 2004.
    [162] J. Weng, T. S. Huang and N. Ahuja. Motion and structure from line corres- pondences: closed-form solution, uniqueness, and optimization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(3): 318-336.
    [163] C. J. Taylor, D. J. Kriegman. Structure and motion from line segments in multiple images [J]. IEEE Trans. Pattern Anal. Mach. Intelligence, 1995, 17(11): 1021-1032.
    [164] A. Tommaselli, J. Lugnani, An alternative mathematical model to collinearity equations using straight features [C], Internat. Arch. Photogramm. Remote Sensing, 1998, 27: 765-774.
    [165] M. Spetsakis, Aloimonos J. Structure from motion using line correspondences. Internat [J]. J. Computer Vision, 1990, 4: 171-183.
    [166] R. I. Hartley. Projective reconstruction from line correspondences [J]. CVPR, 1994.
    [167] J. Denavit, Hartenberg R S. A kinematic notation for lower pair mechanisms based on matrices [J]. ASME J. Appl. Mech., 1955, 22: 215-221.
    [168] A. Bartoli, Sturm P. The 3D line motion matrix and alignment of line recon- structions [J]. Internat. J. Computer Vision, 2004, 57(3).
    [169] K. Roberts. A new representation for a line [C]. In Proc. Conf. on Computer Vision and Pattern Recognition. San Diego, California, USA, 1988, 635-640.
    [170] B. Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle Adjustment - A Modern Synthesis [C]. Vision Algorithms: Theory & Practice, B. Triggs, A. Zisserman & R. Szeliski (Eds.), Springer-Verlag LNCS 1883, 2000.
    [171] H. D. Mittelmann. The least squares problem. http://plato.asu.edu/topics/problems, 2004.
    [172] J. E. Dennis. Nonlinear least-squares [C]. In D. Jacobs, editor, State of the Art in Numerical Analysis, 269-312. Academic Press, 1977.
    [173] Z. Zhang and Y. Shan. Incremental motion estimation through local bundle adjustment [R]. Technical Report MSR-TR-01-54, Microsoft Research, 2001.
    [174] R. I. Hartley. Euclidean reconstruction from uncalibrated views [C]. In J. Mundy and A. Zisserman, editors, Applications of Invariance in Computer Vision, volume 825 of Lecture Notes in Computer Science, Springer-Verlag, 1993, 237-256.
    [175] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, et al. Visual modeling with a hand-held camera [J]. IJCV, 2004, 59(3): 207-232.
    [176] P. Beardsley, P. H. S. Torr and A. Zisserman. 3D model acquisition from extended image sequences [C]. In Proc. of ECCV’96, 1996, 683-695.
    [177] A. W. Fitzgibbon, A. Zisserman. Automatic camera recovery for closed or open image sequences [C]. In Eur. Conf. on Computer Vision, 1998, 311-326.
    [178] K. L. Hiebert. An evaluation of mathematical software that solves nonlinear least squares problems [J]. ACM Trans. On Math. Software, 1981, 7(1): 1-16.
    [179] P. J. Rousseeuw, A. M. Leroy, Robust Regression and Outlier Detection [M], John Wiley & Sons Inc. New York, 1987.
    [180] D. Liebowitz and A. Zisserman Metric Rectification for Perspective Images of Planes [C]. In Proceedings of International Conference on Computer Vision and Pattern Recognition, Santa Barbara: IEEE. 1998.
    [181] D. Liebowitz, A. Criminisi, and A. Zisserman, Creating architectural models from images [C], In Proc. EuroGraphics, September 1999, 18: 39–50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700