用户名: 密码: 验证码:
基于几何代数的多维统一GIS数据模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支持复杂地理对象及连续地理现象的一体化表达、建模与模拟是GIS与地学分析研究的热点。GIS处理对象由二维向三维乃至高维扩展成为GIS发展的必然趋势。受制于地理对象与现象自身结构的复杂性、空间参照系统的多样性、维度扩展复杂性和不同维度运算不统一等因素,现有空间数据模型在多维对象的自适应表达、实体对象空间索引、多维统一的空间分析方法与算法构建框架以及多维统一的GIS系统实现与地学应用等方面仍显不足。基于严密的数学理论,对数据模型的底层理论基础及实现技术进行创新,突破现有GIS数据模型的上述局限性,建立多维统一表达和计算框架是现阶段GIS空间数据模型创新的可能途径。
     本论文引入以维度运算为基础的几何代数理论,借鉴其在相关学科的成功经验,构建基于多维统一框架下可支撑地理全景分析的新型空间数据模型;研究多维地理对象的自适应表达与一体化建模;探索相应的数据组织、存储与检索机制以及对应的多维空间分析统一计算模型,在此基础上构建相应的原型系统并进行应用示范。论文研究有助于推动GIS数据模型的理论和技术创新,为GIS应用提供维度可扩展与可制定的基础;为地理现象发展演化过程的表达、建模与模拟提供全新的技术支撑;也为拓展多维统一的空间分析方法体系提供新的思路。论文主要研究内容与主要成果如下:
     (1)利用共形几何代数(CGA)空间中Gras smann分级结构与几何对象维度分级结构的一致性,基于内积、外积和几何积实现了内蕴不同维度层次构建及度量关系的几何形体自适应表达,给出了常用几何对象在CGA中的内、外积表达,探讨了几何对象内外积表达间的对偶关系以及不同几何对象间基于几何意义的相互转化;建立了不同维度地理对象与对应的几何代数基本要素(Blades)间的映射关系;利用多重向量实现了不同维度几何对象的统一表达与存储,在代数空间中实现了对不同维度、不同类型地理对象的统一表达与运算;以此为基础,构建了基于共形几何代数的多维GIS空间数据模型的整体架构,探讨了数据的存储结构和编辑、更新机制;对多个基准几何对象及两个不同规模的三维场景进行建模的结果显示,本文所提的数据模型具有结构清晰、几何意义明确,占用空间小且可有效支撑数学运算等优势。
     (2)利用几何代数中球在表达形式上的简洁性、几何意义明确性、参数更新的动态性以及几何关系运算的便捷性,构建了边界约束的非相交离散球树(BRNO-ST)多维统一空间索引;探讨了三维空间中多维实体对象包含边界约束的非相交离散球实体填充与剖分算法,实现剖分粒度与表达精度的有效平衡;构建了包含球体积修正的批量Neural Gas层次聚类算法(Vol-BGNG-GA),实现对填充球快速、稳健以及相对均匀的分割,并以此为基础构建了索引树;探讨了基于BRNO-ST实体对象表面及其内部任意位置及区域的检索策略,并结合相关几何代数算子,实现了有限时间约束条件下多维实体对象最近邻距离的近似层次检索动态实体对象相交检测算法。
     (3)对几何代数相关算子进行梳理与扩展,构建了适用于GIS空间分析与地学分析的算子库与算法库;探讨了多维空间对象间几何度量、空间位置、空间拓扑关系的计算策略;利用几何代数对多维几何对象及其基本度量和空间关系的统一表达,构建了多维空间对象几何与拓扑关系的批量计算方法,实现了多维GIS几何和拓扑分析功能;针对多维对象的运动表达与分析问题,构建了基于Versor的空间变换与运动的统一表达;探讨了奇数阶Versor的指数表达及其几何意义,并构建了其运动过程线性插值方法;构建了面向多维GIS空间关系分析的统一计算框架,给出了适用于多维空间关系统一计算的算子库与算法库及实现的流程框架;基于三维小区数据的实例分析显示该框架在几何和拓扑关系运算上具有简明、高效等特点,具备支撑大规模多维GIS分析的潜力。
     (4)基于本论文所提出的数据模型、索引以及空间关系计算框架,构建了多维统一GIS空间分析原型系统;探讨了原型系统的整体架构、层次体系与主要功能模块;结合地学数据特征及几何代数运算需求,构建了几何代数核心计算引擎,并实现了其与常见GIS空间数据类型间的数据接口。基于插件机制实现多维空间分析模型构建与集成框架;对地理空间与几何代数空间的相互转换、数据I/0与数据管理以及运动场景模拟等主要功能模块进行了系统实现与功能展现;最后基于南极洲海-地-冰系统耦合演化过程进行综合性应用示范,实现了数据组织、存储、检索、算法构建、地学分析的有效整合。
     本论文研究显示,几何代数可用于进行多维地理对象的统一表达与分析,并可进行多维空间的不依赖于坐标的几何计算;本文所构建数据模型在结构上具有多维统一性与一致性,在表达上具有简明性与几何意义明确性,且可有效支撑坐标无关的多维统一几何计算。进而可针对特定的分析问题和分析需求,构建合适的数学空间,并基于基本算子进行算法抽象与构建,将可形成理论架构—数据模型—数据分析—数据表达有机融合的基本框架与应用平台,并促进以多维统一为特征的GIS分析技术的发展。
Supporting the intergrated expression, modeling and simulation of complex geometric phonemena is one of the hottest topics of GIS and geographical researches. It is clearly the trend that the GIS research dimensions will be extended from two dimensions to three dimensions and even to higher. Because the geographical phonemena itself are complex, existing data models should have various kinds of coordinations system and heterogenous computational framework, which will occur difficulties when the dimesions are extended. Commonly used data models are still limited in the area of adaptive expression of multidimensional objects, the spatial index of solid objects, the unified multidimensional spatial analysis methods and algorithms, the system implementation and application of multidimensional GIS systems. Make innovations on the theoretical foundations and implementation new technologies, based on new mathematical theories, will provide a potensial way to break through the above limitations of existed GIS spatial data models and construct unified multidimensional expression and computational framework.
     The Clifford Algebra is introduced to constructed new unified multidimensional spatial data model, referenced on its successfully application at mathematical and physical areas. The adaptive expression and intergrated modeling of multidimensional objects and according data managementare first researched. The storing and indexing mechanism, associated multidimensional unified computational model and protype software system based on the above results are also proposed. The above researches will benefit and innovate in the GIS spatial data model theory and technology, which provided new technogical supporting for the expression, modeling and simulation of geographical phonemena. The research also provdes new potentially ways to extend the unfied multidimensional spatial analysis methods. The main contents and results of this paper are summarized as follow:
     (1) The Grassmann structure is consisted with the dimensional structure of geometrical expression under conformal geometric algebra (CGA). Based on this, the adaptive geometric expression model by inner and outer product, which intergrates the dimensional construction level and metric relations, is proposed. The dual relations between the inner and outer product expression and the reciprocal transformation of different geometric objects based on their geometric meannings are discussed. Both inner and outer product expression of common geometric objects, the mapping relations between geographical objects of different dimensions and their associated basic elements of geometric algbra (Blades) and the unified expression and storage of multidimensional objects based on multivector data structures are given. Based on these, we constructed the main architecture of our multidimesion spatial data model based on geometric algebra. The storage structure, the editing and updating mechanism of multidimensional data are discussed. The application on several standard geometric objects and two 3D geographical sences of different scales suggest that our data model have simple structure and clear geometric meaning, which reduce the space occupation as well as support for mathematical analysis.
     (2) The sphere expression under geometric algebra has clear geometric meaning, dynamical updateable parameters and simple geometric relations calculation. Taking advantage of these, the Boundry restrictednon-overlap sphere tree spatial index (BRNO-ST) were proposed. The boundary restruction and the sphere filling algorithm based on non-overlaping spheres, which achieved the blance between granularity of subdivision and expression precision, are proposed. The volume adjusted adaptive batch Neural Gas herichical cluster algorithm (Vol-BGNG-GA), that can quickly, roubustly and relatively uniformly classify the filling sphere, and the level structure of the index trees are then constructed. The query mechanism of the any loction and ranges on and in the solid objects based on the BRNO-ST index are provided. With the help of geometric algebra operators, the hierarcal approximatical nearest linkage distance and dynamical overlapping query under limited time restrictions are also implemented.
     (3) Existing geometric algebra operators are filtered and extended to construct the operators and operations that suited for GIS spatial analysis and geographical analysis. The computational mechanism of geometric metric, spatial relations and spatial topology are also discussed. Take advantage of the unified expression of multidimensional geometric objects and metric & spatial relations, the batch multidimensional geometric and topological relations algorithms are proposed. The basic GIS geometric and topological analysis methods are also constructed. We also constructed the unified transformation and expression based on the versor equations for the motion expression and analysis. The motion interpolation algorithm are constructed based on the exponentional expression and their geometric meaning of the even grade versor. The unified multidimensional GIS spatial relation computation framework is proposed based on the unified operator and algorithm libraries and their implementation framework. The case studies on the three dimensional housing estate suggest the framework are simple and efficient in geometric and topology relation computations, which has the potential to support large scale GIS analysis.
     (4) The unified multidimensional GIS spatial analysis propo type system is constructed based on the data model, spatial index and spatial relations computation framework proposed above. The main architecture, layer structures and main function moduals are discussed. The core geometric algebra computation engine and the according data interface with other common GIS spatial data files are implementated to fulfill the characteristics of geographical data and the needs of geometric algebra computation. A pluging system is also constructed for implementing the constructionand intergration the multidimensional spatial analysis framework. Main functional moduals, such as the space transformation from geographicalspace in geometric algebra space, data I/O and data management, dynamical sence simulation etc. are impelemented and demonstrated. Finally, a comprehensive application based on the intergrated sea-land-ice coupled dynamical interaction and evolutionary process are proposed, which suggest that our approach can well intergrated the processes from data organization, storage, search and query, algorithem construction and the geographical analysis.
     The studies proposed in this paper suggest that geometric algebra can express geometric objects in different dimensions effectively, which also can support simply and effectively computation in multidimesioal space in a coordination free geometric computation. The data model constructed in this paper is simple and of clear geometric meaning, which can also support for unified multidimensional coordinate-free geometric computation. Based on specific problems and requires, we can constructed suited computational space and using basic operators to abstract ad construct the algorithms. Our work can form a basic framework and application platform that will intergrated the underline theories, data models, data analysis and expressions, which will imporove the new GIS analysis technology that are multidimensional unified.
引文
[1]Longley P A, Gooldchild M F, Maguire D J, et al. Geographic Information Systems And Science. Second Edition. New York:Wiley,2005
    [2]Molenaar M. Formal Data Structure for Three Dimensional Vector Maps, Special Issue ACM SIGGRAPH Computer Graphics.21 (6),1990,29 (3):257-265
    [3]Fritsch D.Three-Dimentional Geographic Information System:Status and Prospects. International Archives of Photogrammetry and Remote Sensing, Vienna, Austris:ⅩⅩⅪ(Part B3).1996,215-221
    [4]陈军,郭薇.基于剖分的三维拓扑ER模型研究.测绘学报,1998,27(4):308-317
    [5]吴立新,陈学习,车德福等.一种基于GTP的地下真3D集成表达的实体模型.武汉大学信息科学版,2007,32(4):331-334
    [6]龚建雅,夏宗国.矢量与栅格集成的三维数据模型.武汉测绘科技大学学报.1997,22(1):7-15
    [7]Pilouk M, Tempfli K, Molennar M. A Tetrahedron-Based 3D Vetor Data Model for Geoinformation [A].In:Advanced Geographic Data Modeling, Netherlands Geodetic Commission, Publications on Geodesy,1994, (40):129-140
    [8]ChenXiaoyong,Ikeda K.Raster Algorithms for Generating Delaunay Tetraheadal Tessellations.International Archives of Photogrammetry and Remote Sensing,Munich,Germany,1994a:124-131
    [9]李青元.三维矢量结构GIS拓扑关系研究.中国矿业大学出版社,1996
    [10]Brown I M, A Generic System for Integrated Modelling of Multi-Dimensional Spatial Data, Physics, Chemistry of Earth,1998,23 (3):285-287
    [11]程朋根,王承瑞,甘卫军等.基于多层DEM与Q TPV的混合数据模型及其在地质建模中的应用.吉林大学学报(地球科学版),2005,35(6):806-811
    [12]吴立新,陈学习,车德福,徐磊.一种基于GTP的地下真3D集成表达的实体模型.武汉大学学报(信息科学版),2007,32(4):331-335
    [13]贺金鑫,路来君,刘雅琴.一种新的四维地质信息系统架构(英文).科学技术与工程,2008,8(2):534-536
    [14]Egenhofer M F and Franzosa. Point Set Topological Spatial Relations,International Journal of Geographical Information Systems,1991,5(2): 161-174
    [15]Clementini E and Di Felice P.A Comparison of Methods for Representing Topological Relationships,Information Sciences80,1994:1-34
    [16]Zlatanova S..3D GIS for urban development.2000, Ph.D. Thesis, ITC.The Netherlands
    [17]张骏,秦小麟,包磊.一种支持空间拓扑分析的3维数据模型.中国图象图形学报,2006,11(7):990-997
    [18]Armstrong M P.,Temporality in Spatial databases.Proceeding:GIS/LIS'88,1988 (2):880-889
    [19]Langran G. Time in Geographic Information Systems[M]. London: Taylor&Francis Ltd.,1992
    [20]Hagerstrand T. What About People in Regional Science. Regional Science Association,1970
    [21]WorBoysMF. AModel for Spatio-Temporal Information[A].Proceedings of the 5th International Symposiumon Spatial DataHandling[C].Charleston, South Carolina, USA,1992:602-611.
    [22]龚健雅.GIS中面向对象时空数据模型.测绘学报,1997,26(4):289-298
    [23]曹志月,刘岳.一种面向对象的时空数据模型.测绘学报,2002,31(1):87-92
    [24]张山山,边馥苓.面向对象的3级结构时空数据模型.计算机应用,2003,23(11):29-35
    [25]彭霞,方裕,黄舟等.基于对象关系数据库的时空数据管理研究.地理与地理信息科学,2006,22(5):16-19
    [26]高勇,林星,刘瑜,等.基于对象关系数据库的时空数据模型研究.地理与地理信息科学,2006,22(3):26-29
    [27]余志文,张利田,邬永宏.基态修正时空数据模型的进一步扩展.中山大学学报,2003,42(1):100-103
    [28]张保钢,朱重光,王润生.改进的时空数据基态修正方法.测绘学报,2005,34(3):252-256
    [29]刘仁义,刘南,基态修正时空数据模型的扩展及在土地产权产籍系统中的实现,测绘学报,2001,30(2):168-172
    [30]程昌秀,周成虎,陆锋.对象关系型GIS中改进基态修正时空数据模型的实现.中国图像图形学报,2003,8(6):697-702
    [31]刘睿,周晓光.一种基于动态基态方法的时空数据模型扩展.测绘通报,2008,(6):50-53
    [32]马林兵,张新长.面向全时段查询的移动对象时空数据模型研究.测绘学 报,2008,(2):207-222
    [33]Peuquet D J and Duan N. An Event-based Spatiotemporal Data Model (ESTDM) for Temporal Analysis of Geographical Data. International Journal of Geographical Inforamtion Systems,1995,9 (1):7-24
    [34]Claramunt C and Theriault M. Toward semantics formodelling spatio-temporal processeswithin GIS [A].Proceedings of International Symposium on Spatial Data Handling (SDH'96) [C].Netherlands,1996
    [35]Allen E, Edwards G and Bedard Y. Qualitative causalmodeling in temporal GIS[A].AndrewU,Frank,WernerKuhn.Spatial Information Theory-A Theoretical basis for GIS[C].NewYork:Springer-Verlag,1995,397-417
    [36]Wachowicz M, Healey R G. Towards temporality in GIS[M]. London:Taylor & Francis,1994
    [37]孟令奎,赵春宇,林志勇等.基于地理事件时变序列的时空数据模型研究与实现.武汉大学学报(信息科学版),2003,28(2):202-207
    [38]蒋捷,陈军.基于事件的土地划拨时空数据库若干思考.测绘学报,2000,29(1):65-70
    [39]林广发,冯学智,王雷等.以事件为核心的面向对象时空数据模型.测绘学报,2002,31(1):71-76
    [40]罗年学.时空对象模型及其在地籍信息系统中的应用研究[D].武汉:武汉大学,2002.
    [41]陈秀万,吴欢,李小娟等.基于事件的土地利用时空数据模型研究.中国图像图形学报,2003,8(8):957-963
    [42]雷起宏,刘耀林,等.基于加权图的地籍时空数据描述模型研究.武汉大学学报(信息科学版),2006,31(7):26-30
    [43]尹章才,李霖,艾自兴.基于图论的时空数据模型研究.测绘学报,2003,32(2):168-172
    [44]陆锋,李小娟,周成虎等.基于特征的时空数据模型:研究进展与问题探讨.中国图像图形学报,2001,6A(9):830-835
    [45]崔伟宏,史文中,李小娟.基于特征时空数据模型研究及在土地利用变化动态监测中的应用.测绘学报,2004,33(2):138-145
    [46]张丰,刘仁义,刘南,齐同军.一种基于过程的动态时空数据模型.中山大学学报(自然科学版),2008,47(2):123-126
    [47]Galton, A.P.,2003, Desiderata for a spatio-temporal geo-ontology. In Spatial Information Theory:Foundations of Geographic Information Science, W. Kuhn, (Eds), pp.1-12, Lecture Notes in Computer Science Vol.2825 (Berlin:Springer)
    [48]Goodchild, M.F.,2008, Combining space and time:new potential for temporal GIS. In A.K. Knowles, editor, Placing History:How Maps, Spatial Data, and GIS Are Changing Historical Scholarship. Redlands, CA:ESRI Press,179-198
    [49]Liu. Y, Goodchild. M.F, Guo. Q et al.,2008, Towards a general field model and its order in GIS. International Journal of Geographical Information Science 22 (6):623-643.
    [50]李军,景宁,孙茂印.多比例尺下细节层次可视化的实现机制.软件学报,2002,13(10):2037-2043
    [51]宋扬,潘懋,朱雷3D GIS中的R树索引研究.计算机工程与应用,2004(14):9-10
    [52]朱庆,龚俊.一种改进的真三维R树空间索引方法.武汉大学学报(信息科学版),2006,31(4):340-343
    [53]宋晓宇,周新伟,王永会3D GIS中混合树空间索引结构的研究.2006,22(3):478-482
    [54]王国仁,黄健美,王斌,等.基于最大间隙空间映射的高维数据索引技术.软件学报,2007,27(6):346-349
    [55]郑坤,朱良峰,吴信才等3D GIS空间索引技术研究.地理与地理信息科学.2006,22(4):35-39
    [56]赵芳芳,张军.多尺度空间数据索引方法研究.测绘工程,2008,17(2):26-29
    [57]Nascimento M A, Silva J R O. Towards Historical R-Trees[C]. ACM Symposium on Applied Computing (ACM-SAC), Atlant,1998
    [58]卢炎生,唐波,秦川.一种双时态时空模型和索引机制.华中科技大学学报(自然科学版),2002,30(12):6-8
    [59]尹章才,李霖,王琤.基于HR-树扩展的时空索引机制研究.武汉大学学报(信息科学版),2007,(12):1131-1134
    [60]Xu X, Han J, Lu W. RT-Tree:an Improved R-Tree Index Structure for Spatiotemporal Databases[C]. The 4th International Symposium on Spatia Data Handling (SDH), Zurich,1990
    [61]Theodoridis Y, Vazirgiannis M, Sellis T. Spatial Temporal Indexing for Large Multimedia Applications[C]. ICMCS'96, Montreal, Quebec,1996
    [62]Tao Y, Papadias D. Efficient historical R-Tree[C].SSDBM International Conference on Scientific and Statical Database Management, Fairfax Virginia, 2001
    [63]郭菁,郭薇,胡志勇.大型GIS空间数据库的有效索引结构QR-树.武汉大学学报·信息科学版,2003,28(3):306-310
    [64]胡继华,谭建军.渐变空间中的动态索引[C].华南师范大学学报(自然科学版),2002(2):38-44
    [65]Gilberto G R, Gonzalo N, Andrea R T, et al. A Spatio-Temporal Access Method Based on Snapshots and Events[C]. ACM GIS'05, Bremen,2005
    [66]林星,高勇,张毅,余博,秦适,邬伦.对象关系数据库中的时空索引机制研究.地理与地理信息科学,2006(3):31-34
    [67]史文中,郭薇,彭奕彰.一种面向地理信息系统的空间索引方法.测绘学报,2001,30(2):156-16
    [68]Agarwal P. K,Arge L, Erickson J. Indexing Moving Points. Journal of Computer and System Sciences,2003,66:207-243
    [69]Hadjieleftheriou M,Kollios G,Tsotras V J, et.al..Efficient Indexing of Spatiotemporal Objects[A].Proceeding of the 8th International Conference on Extending Database Technology[C].Berlin:Springer,2002.251-268
    [70]FRENTZOS E.Indexing Objects Moving on Fixed Networks [A].SSTD 2003, Lecture Notes in Computer Science[C].Berlin:Springer,2003.289-305
    [71]马林兵,张新长.面向全时段查询的移动对象时空数据模型研究.测绘学报,2008,37(2):207-222
    [72]陈碧宇,陈晓玲,陈慧萍,吴玮.网络中移动对象的二维时空索引.武汉大学学报(信息科学版),2007,(10):919-923
    [73]詹平,郭菁,郭薇.基于时空索引结构的移动对象将来时刻位置预测.武汉大学学报(工学版),2007,40(3):103-108
    [74]李雪飞,傅佩红,刘经南.一种基于道路网络的时空索引.武汉大学学报(信息科学版),2006,(7):620-623
    [75]刘德刚,陈传波,曾文.P2P环境中的空间数据索引模型和生成算法研究.计算机工程与应用,2008,44(2):12-15
    [76]Clifford W K. Applications of Grassmann's extensive algebra.Amer.J.of Math,1878,1:350-358
    [77]Li Hongbo. Ordering in mechanical geometry theorem proving. Science in China Series A:Mathematics,1997,40 (3):225-233
    [78]Schreier, P.J., L.L. Scharf, and C.T. Mullis, Detection and estimation of improper complex random signals. IEEE Transactions on Information Theory,2005.51(1): 306-312
    [79]Bayro-Corrochano, E. and L.E. Falcon, Geometric algebra of points, lines, planes and spheres for computer vision and robotics. Robotica,2005.23 (6):755-770
    [80]Blackmore, T. and G.H. Norton. Bounds on the state complexity of geometric Goppa codes.2000. Serrento:Institute of Electrical and Electronics Engineers Inc
    [81]Karmakar, S. and B.S. Rajan. CTH10-4:High-rate, Double-Symbol-Decodable STBCs from Clifford Algebras. in Global Telecommunications Conference,2006. GLOBECOM'06. IEEE.2006
    [82]Klappenecker, A. and M. Rotteler, Beyond stabilizer codes II:Clifford codes. IEEE Transactions on Information Theory,2002.48 (8):2396-2399
    [83]Rajan, G.S. and B.S. Rajan. STBCs from Representation of Extended Clifford Algebras. in Information Theory,2007. ISIT 2007. IEEE International Symposium on.2007.
    [84]Gentile, A., et al. CliffoSor:A parallel embedded architecture for geometric algebra and computer graphics.2005. Palermo, Italy:Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855:1331, United States
    [85]谢维信,曹文明,蒙山.基于Clifford代数的混合型传感器网络覆盖理论分析.中国科学(E),2007,37(8):1018-1031
    [86]李岩山.基于几何代数的数字图像水印技术.电子学报.2008,36(5):852-855
    [87]Buchholz, S. and G. Sommer (2008). "On Clifford neurons and Clifford multi-layer perceptrons." Neural Networks 21 (7):925-935
    [88]Hestenes.D and Sobcyk.G, Clifford Algebra to Geometric Calculus, D. Reidel,Dordrecht,1984
    [89]Mullineux, G., Clifford algebra of three dimensional geometry. Robotica,2002. 20 (6):687-697.
    [90]李洪波.共形几何代数与几何不变量的代数运算.计算机辅助设计与图形学学报,2006a,18(7):902-911
    [91]李洪波.共形几何代数与运动和形状的刻画.计算机辅助设计与图形学学报,2006b,18(7):895-901
    [92]Gekhtman, M., M. Shapiro, et al. (2008). "On the properties of the exchange graph of a cluster algebra." Mathematical Research Letters 15 (2-3):321-330
    [93]Marchuk, N. G. and D. S. Shirokov (2008). "Unitary spaces on Clifford algebras." Advances in Applied Clifford Algebras 18 (2):237-254
    [94]Doran, C. Lasenby, A. Geometric Algebra for Physicists. Cambridge University. Press, Cambridge (2003):228-264
    [95]Trautman, A. (2008). "Connections and the Dirac operator on spinor bundles." Journal of Geometry and Physics 58 (2):238-252
    [96]Carroll, J.E., Complex signals can be real. European Journal of Physics,2007.28 (6):1151-1160
    [97]Pavsic M. Clifford space as a generalization of spacetime:Prospects for QFT of point particles and strings.Foundations of Physics 35 (2005) 1617-1642
    [98]Keller, J. and P. Angles (2008). "Representations of the Clifford Algebra Cl-(1,C1-4) and their relevance for Physics." Numerical Analysis and Applied Mathematics 1048:662-665
    [99]Sobczyk, G. (2008). "Geometric matrix algebra." Linear Algebra and Its Applications 429 (5-6):1163-1173
    [100]Gebken, C., C. Perwass, et al. (2008). "Parameter estimation from uncertain data in Geometric Algebra." Advances in Applied Clifford Algebras 18(3-4):647-664
    [101]Cameron, J. and J. Lasenby (2008). "Oriented conformal geometric algebra." Advances in Applied Clifford Algebras 18 (3-4):523-538
    [102]Pokorny, A., P. Herzig, and S.L. Altmann, On the generation of point groups in spaces of various dimensions. Spectrochimica Acta-Part A:Molecular and Biomolecular Spectroscopy,2001.57 (10):1931-1939
    [103]Etzel, K.R. and J.M. McCarthy, Interpolation of spatial displacements using the Clifford Algebra of E4. Journal of Mechanical Design, Transactions of the ASME, 1999.121 (1):p.39-44
    [104]Lasenby, J., et al., New geometric methods for computer vision:An application to structure and motion estimation. International Journal of Computer Vision,1998. 26 (3):191-213
    [105]Rieger, K., K. Schlacher, et al. (2008). "On the observability of discrete-time dynamic systems-A geometric approach." Automatica 44 (8):2057-2062
    [106]Rivera-Rovelo, J., S. Herold-Garcia, et al. (2008). "Geometric hand-eye calibration for an endoscopic neurosurgery system." 2008 Ieee International Conference on Robotics and Automation, Vols 1-9:1418-1423
    [107]Chys, P., Application of geometric algebra for the description of polymer conformations. Journal of Chemical Physics,2008.128 (10):p.104107
    [108]Besprosvany, J. Representations and interactions from field equations on an extended spin space.2003. Paris, France:Institute of Physics Publishing, Bristol, BS1 6BE, United Kingdom.
    [109]Ebling. J, Scheuermann. G, Template Matching on Vector Fields using Clifford Algebra. The International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering (IKM 2006), Weimar, 2006
    [110]李延芳,顾耀林.矢量场数据演示的快速Clifford傅立叶变换.计算机工程与设计,2007,(21):5177-5189
    [111]Brackx, F., N. De Schepper, et al. (2006). "The two-dimensional Clifford-Fourier transform." Journal of Mathematical Imaging and Vision 26 (1-2):5-18
    [112]Hitzer, E. M. S. and B. Mawardi (2008). "Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n=2 (mod 4) and n=3 (mod 4)." Advances in Applied Clifford Algebras 18 (3-4):715-736
    [113]Wietzke, L., O. Fleischmann, et al. (2008). "Signal Analysis by Generalized Hilbert Transforms on the Unit Sphere." Numerical Analysis and Applied Mathematics 1048:706-709
    [114]Wareham, R. and J. Lasenby (2008). "Mesh vertex pose and position interpolation using Geometric Algebra." Articulated Motion and Deformable Objects, Proceedings 5098:122-131
    [115]Scheuermann, G., et al., Visualizing nonlinear vector field topology. IEEE Transactions on Visualization and Computer Graphics,1998.4 (2):109-116
    [116]Reiter, C. A. (1993). "Fractals and generalized inner products." Chaos, Solitons and Fractals 3 (6):695-713
    [117]Dorst, L., D. Fontijne, and S. Mann, Geometric algebra for computer science. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, Elsevier, 2007
    [118]Jadczyk, A. (2007). "Quantum fractals on n-spheres. Clifford algebra approach." Advances in Applied Clifford Algebras 17 (2):201-240
    [119]Perwass C. Geometric Algebra With Applications In Engineering. Heidelberg: Springer-Verlag,2009
    [120]S. F. Gull, A. N. Lasenby and C. J. L. Doran. Imaginary Numbers are not Real-the Geometric Algebra of Spacetime. Found. Phys.23 (9),1175-1201 (1993)
    [121]D. Fontijne.Efficient Implementation of Geometric Algebra, Ph.D. Thesis, University of Amsterdam (2007)
    [122]Wareham R.Cameron J.Lasenby J Applications of conformal geometric algebrain computer vision and graphics 2004
    [123]Mishra, B. (2007) Investigation into a Floating Point Geometric Algebra Processor. PhD thesis, University of Southampton
    [124]Yu Zhao yuan, Yuan Linwang, Luo Wen. Clifford Algebra and GIS Spatial Analysis Algorithms-the Case Study of Geographical Network and Voronoi Analysis. Procedings of GraVisMa 2010, Vol.2, ISBN 978-80-86943-85-5, pages 155-158,2010
    [125]Vince, J.,2009. Geometric Algebra:An Algebraic System for Computer Games and Animation. New York:Springer-Verlag.
    [126]Perwass, C., Sommer, G.Numerical evaluation of versors with Clifford algebra. In L. Dorst, C. Doran and J. Lasenby, editors, Applications of Geometric Algebra in Computer Science and Engineering, pp.341-350. Proc. AGACSE 2001, Cambridge, UK, Birkhauser Boston,2002
    [127]Eduardo Bayro-Corrochano, Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action, Springer Verlag, London, April 2010
    [128]Hestenes D.Curvature calculations with spacetime algebra. International Journal of Theoretical Physics,2003,25:581-588
    [129]吴慧欣.三维GIS空间数据模型及可视化研究.西北工业大学博士论文,2007
    [130]Tao Yufei, Papadias Dimitris, Sun Jimeng. The TPR*-Tree:An Optimized Spatio-Temporal Access Method for Predictive Queries. Very Large Data Bases-VLDB, pp.790-801,2003
    [131]梅承力,周源华.高维数据空间索引的研究[J].红外与激光工程,2002,31(1):77-81.
    [132]BERCHTOLD S, KEIM D A, KRIEGEL H P. T he X-tree:An index st ructure f or high-dimensional data [A]. ACM SIGGRAPH. Proceedings of ACM 22nd Int ernat ional Conf erence on VLDB[C]. New York:ACM Press,1996.157-163
    [133]阎超德,赵学胜.GIS空间索引方法述评.地理与地理信息科学.2004,20(4):23-26+39
    [134]N. J. A. Sloane, (January 1984) "The Packing of Spheres", Scientific American, 250, pp.116-125
    [135]Birgin, E. G. and Sobral, F. N. C. (2008). Minimizing the object dimensions in circle and sphere packing problems. Computers & OR,35 (7):2357-2375.
    [136]Bradshaw, G. and O'Sullivan, C. (2004). Adaptive medial-axis approximation for sphere-tree construction. In ACM Transactions on Graphics, volume 23 (1), pages 1-26. ACM press.
    [137]Rene Weller and Gabriel Zachmann. Inner Sphere Trees and Their Application to Collision Detection. VIRTUAL REALITIES,2011,181-201, DOI: 10.1007/978-3-211-99178-710
    [138]Hammer, B., Hasenfuss, A., and Villmann, T. (2006). Magnification control for batch neural gas. In ESANN, pages 7-12
    [139]Morris, D. (2006). Algorithms and data structures for haptic rendering:Curve constraints, distance maps, and data logging.
    [140]Fontijne D, Dorst L.Performance and elegance of five models of 3D Euclidean geometry in a ray tracing application. CG&A March/April 2003,23 (2):68-78
    [141]D. Hildenbrand, E.S.M.Hitzer. Analysis of point clouds-using conformal geometric algebra.Proceedings of Third International Conference on Computer Graphics Theory and Applications, Funchal, Madeira-Portugal (2008)
    [142]Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-Based K Nearest Neighbor Search for Spatial Network Databases. Proceedings of the 30th VLDB Conference, Toronto, Canada,2004
    [143]Yuan Linwang, Yu Zhaoyuan, Chen Shaofei, et al. CAUSTA:Clifford Algebra based Unified Spatio-Temporal Analysis. Transactions in GIS,2010,14 (s1) 59-83
    [144]Yuan L W, Yu Z Y, Luo W, et al. A 3D GIS spatial data model based on conformal geometric algebra. Sci China Earth Sci,2011,54:101-112
    [145]Florian Worsdorfer, Florian Stock, Eduardo Bayro-Corrochano and Dietmar Hildenbrand. Optimizations and Performance of a Robotics Grasping Algorithm Described in Geometric Algebra. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS.Lecture Notes in Computer Science,2009, Volume 5856/2009,263-271
    [146]Hildenbrand, D., Pitt, J.,& Koch, A. (2010). Gaalop-High Performance Parallel Computing based on Conformal Geometric Algebra. Springer. URL: http://www.gaalop.de.
    [147]Dorst L. Tutorial:Structure Preserving Representation of Euclidean Motions through Conformal Geometric Algebra, in:Geometric Algebra Computing for Engineering and Computer Science, eds:E.Bayro-Corrochano, G.Scheuermann, Springer 2010, pp.35-52
    [148]Needham T. Visual Complex Analysis. Oxford University Press, New York. Reprinted 2003.
    [149]杨之江,扈震,常晓婕.基于插件技术的GIS Server架构模型的设计.地球科学—中国地质大学学报,2010,35(3):475-479
    [150]DeConto, R. and Pollard, D., Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature,2003,421,245-249
    [151]Lu, D., et al.2004. Change detection techniques. International Journal of Remote Sensing,25 (12):2365-2401
    [152]Petit, C.C. and Lambin, E.F.,2001.Integration of multi-source remote sensing data for land cover change detection. International Journal of Geographical Information Science,15 (8):785-803
    [153]Aplin, P.,2009. Image Analysis, Classification and Change Detection in Remote Sensing, with algorithms for ENVI/IDL. International Journal of Geographical Information Science,23 (1):129-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700