用户名: 密码: 验证码:
农田防护林带分维疏透度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上农田防护林建设规模最大的国家之一,农田防护林对于维护农业生态系统的生态平衡、保障其生产力水平的持续稳定具有重要的意义。
     农田防护林结构与防护效应一直是农田防护林研究的焦点与核心。构建合理、科学、经济的结构体系,以最小占地面积实现最大、最有效的防护作用一直是防护林学研究和实践领域追求的目标。将其结构和功能研究相统一、实现防护效应随结构变化的动态监测,对于农田防护林的设计、经营管理均有着重要的实用价值。分形几何学的发展,为利用计算机手段实现这一过程的数值化模拟提供了有效的理论和方法。
     本文以分形几何学理论为指导,以辽宁省昌图县双井镇小钻杨类防护林带为研究对象,根据树冠分数维度测算的基本思想,采用双数量法,在树体结构分析基础上,对林带分维结构特征进行了研究,并对其空气动力学特征进行了探讨。结果表明:
     小钻杨树体分枝在各方位上均匀分布,具有辐射对称性,侧枝仰角在各角度级中遵从正态分布;各器官生物量可用胸径和树高表示的复合因子幂函数w=a(D_(1.3)~2H)~b来表达。2-16年生的小钻杨树冠,有叶期树冠分数维度值为2.07-2.77,用枝生物量代替叶生物量,计算得小钻杨无叶期树冠分数维度值为2.00-2.46。
     将林带视为由单株树木按一定配置方式填充而成的多孔介质,证实其质量和体积在林带内分配具有分形特征。定义其最大外部边缘轮廓构成的长方形为林带的最大空间,极限维度为3。以单株林木为分形单元,定义林带的分数维度D_f为D_f=f(n,s,h,D_(1.3),H,P,L,A_f),是林带易测因子胸径D_(1.3)、树高H、株距s_1、行距s_2、行数n、林木保存率P、最大冠宽A_f、林带长L的函数,其表征了林木以其干、枝、叶等生物组分在林带“实体”中的填充程度;为使林带分数维度更适合用于研究林带空气动力学特征,将其转化为表征林带空隙状态的指标,提出了林带分维疏透度的概念,并将其定义为β_f=3-D_f,表征了林带中空隙所填充的程度,林带分维疏透度的期望值介于0-1之间,最佳取值范围介于0.53-0.75之间。
     无叶期林带分维疏透度是依林带枝和干总质量和对应体积作为计量单位测定,模型为:β_(f0)=f(n,s,h,D~(1.3),H,P,L,A_f)=3-3×(?)
     有叶期林带分维疏透度是依地上部分干、枝、叶总质量和体积作为计量单位测定,模型为:β_(f1)=f(n,s,h,D~(1.3),H,P,L,A_f)=3-D_(f1)=3-3×(?)
     有叶期林带分维疏透度与最小相对风速的关系为η=1-0.157(3-Φ)~(1.638);与25H范围内0.6H以下平均风速降低的关系为E_(25)=0.037×(3-β_1)~(2.304) exp(0.4513β_1);与90%防护效应的关系为S_(90)=2.4834×(2.7-β_1)~(1.671) exp(0.209β_1),0≤β_1<2.7;S_(90)=0,2.7≤β_1<3;与70%有效防护距离的关系为d_(ep70)=7.8412×(2.46-β_1)~(0.881) exp(0.01β_1),0<β_1<2.46;d_(ep70)=0,2.46≤β_1<3。
     林带分维疏透度模型和林带内空气动力特征间函数的建立,为利用分形手段实现林带结构和功能的数值模拟提供了实现的途径。
Windbreaks or shelterbelts are of great significance in maintaining the eco-balance and sustainable productivity of agro-ecosystem as well as reducing wind speed. China is one of the countries that have built the large-scale shelterbelts. The goal of research and practice about shelterbelts is to maximize the protective effect while the smallest area is occupied. In order to attain these aims in shelterbelts design, operation and management, it is important to monitor the dynamic response relation between their structure and function. The development of fractal geometry validated that a tree has a typical fractal dimensional structure. Shelterbelts were supposed as a porous object filled with individual tree based on certain mechanism. Therefore, we assert that the fractal geometry provides efficient theories and methods for the numerical simulations of architecture building and the response relation between structure and function by computer technique.Thus, in this paper, based on the fractal geometry, the fractal structure characteristics of tree and shelterbelt were analyzed.
     The research site locates in Chungtu County, Liaoning Province. Populus×xiaozuanica is the main tree species for shelterbelts in the Southeast China. As an example, the structure of shelterbelts composed of this species were described on two scales of tree and shelterbelt.The main results were shown as follows:
     The tree structural characteristics of of P. xiaozuanica was expressed that branching pattern was radial symmetry in different direction, the number distribution of branches in branching angle group was normal distribution. Its biomasses in trunk, branches and leaves can be expressed by the regression model w=a(D_(1.3)~2H)~b which included diameter (D_(1.3)/cm) and height (H/m). According to fractal theory,the self-similar structure characteristics of tree canopy were described.Then, the fractal structural characteristics of shelterbelt composed of this species were validated by using the relation between foliage mass of branches and the volume they occupied, this method was named as the Number-Number method. Fractal dimensions of tree crown calculated with age from 2 to 16 were from 2.0 to 2.7 in leaf period; In defoliation period their fractal dimensions were from 2.0 to 2.4.
     Based on the Number-Number method, self-similarity of shelterbelts were validated. Then fractal dimension of shelterbelt were calculated using the relationship between leaf mass or branch mass and volume they occupied.Comparing the different calculated methods of the volume of shelterbelt and individual trees, the shelterbelt volume method of the 1/4 maximum crown breath in outmost row as the width of trunk cylinder was more feasible, and the individual trees volume method of the 1/4 maximum crown breath as the radius of trunk volume was more feasible.
     In order to describe fractal characteristics of shelterbelts, the model for fractal dimension of vegetative materials inside a shelterbelt (fractal geometry dimension, as D_f) was developed, it was expressed asβ_(f0)=f(n,s,h,D_(1.3),H,P,L,A_f)=3-3×(?).The fractal geometry porosity (asβ_f) wasdefined asβ_f=3-D_f,it expressed that the degree of void spaces through shelterbelts air flows. Thesum of fractal geometry dimension and fractal geometry porosity is equal to three (fractal dimension of solid body, as 3). Fractal geometry porosity was a synthetical function of row numbers (n), length ofbelt L, distance between trees(s_1), distance between rows(s_2), remained rate(P), diameter in the height of 1.3m(D_(1.3)), belt height(H) and clear hole height (h), maximum crown breath(A_f). Its valuewas predicted to be between 0-1, and the optimal range of value was from 0.53 to 0.75.
     The fractal geometry porosity during the defoliation period were measured by the relation between the sum mass of the branches and trunks and their volumes of shelterbelts filled. Its model was:
     The fractal geometry porosity during the leaf period were measured by the relation between the total mass of the trunks,branches and leaves and their volumes of shelterbelts filled. Its model followed:
     The relationship between the fractal porosity during the period of defoliation and the wind speed was expressed asη_m=1-0.157(3-Φ)~(1.638); the relationship between the fractal porosity during the period of defoliation and the decline of average wind speed under 0.6H in the spectrum of 25H was expressed as E_(25)=0.037×(3-β_1)~(2.304) exp(0.4513β_1); the relationship between the fractal porosity during the period of defoliation and the protective effect of 90% was expressed as S_(90)=2.4834×(2.7-β_1)~(1.671) exp(0.209β_1),0≤β_1<2.7 ; the relationship between the fractal porosity during the period of defoliation and the protective distance of 70% was expressed as
     The model of fractal geometry porosity of shelterbelts and the function between it and the aerodynamic characteristics of the shelterbelts were built, which will provide an access for the numerical simulation of the shelterbelts' structures and functions using the fractal methods by computer.
引文
1.毕晓丽,蓝斌.黄山松林不同树种树冠分形特征研究[J].福建林学院学报,2001,21(4):347-350.
    2.曹新孙主编.农田防护林学[M].北京:中国林业出版社,1983.
    3.曹新孙,雷启迪,姜凤岐.防护林最适疏透度和横断面形状探讨[J].中国科学院林业土壤研究所集刊,1981,(5):9-20.
    4.陈军,李春平,关文彬,等.林带小钻杨树冠分维结构[J].林业科学,2006,42(12):6-12.
    5.陈军,李春平,关文彬,等.以管道理论为基础的林带小钻杨树体结构分析[J].中国水土保持科学,2006,4(5):92-98.
    6.常杰主编.植物形态的分形特征及模拟[M].杭州大学出版社,1995
    7.范志平,姜凤岐,曾德慧,等.农田防护林可持续集约模型的应用[J].应用生态学报,2001,12(5):811-814.
    8.方志伟,马燕.自然界中的分维模型研究[J].浙江师大学报(自然科学版).1994,14(1):42-48
    9.傅梦华,姜凤岐,杨瑞英.杨树林带疏透度的研究及其在林带结构调控中的应用[C].姜凤岐主编.防护林带经营技术与理论基础.北京:中国林业出版社,1992.
    10.高峻,张劲松,孟平.分形理论及其在林业科学中的应用[J].世界林业研究,2004,17(6):11-16.
    11.关德新,朱廷曜.树冠结构参数及附近风场特征的风洞模拟研究[J].应用生态学报,2000,11(2):202-204.
    12.关德新,朱廷曜,邢云鹏.辽北平原防护林体系的区地性防风效应的地转偏差分析[J].应用生态学报,2001,12(1):23-26.
    13.关德新,朱廷曜.林带结构与抗风能力关系的理论分析[J].北京林业大学学报,1998,20(4):119-121.
    14.关文彬,李春平,李世峰,等.林带疏透度数字化测度方法的改进及应用研究[J].应用生态学报,2002,13(6):651-657.
    15.郭群,康立新,倪竞德,等.用透明模片查算照片疏透度的方法探讨[J].江苏林业科技,1987,30(2):22-34.
    16.黄月琼,陈士银,吴小凤.尾叶桉各器官生物量估测模型的研究[J].安徽农业大学学报,2001,28(1):44-48.
    17.姜凤岐,周新华,付梦华,等.林带疏透度模型及其应用[J].应用生态学报,1994a,5(3):251-255.
    18.姜凤岐,朱教君,周新华,等.林带的防护成熟与更新[J].应用生态学报,1994b,5(4):337-341.
    19.姜凤岐,徐吉炎,傅梦华,等.应用数字图像处理法测定林带疏透度[C].姜凤岐主编.防护林带经营技术与理论基础,北京:中国林业出版社,1992.
    20.姜凤岐.“三北”地区农田防护林永续利用和更新方式的研究[C].姜凤岐主编,防护林带经营技术与理论基础.北京:中国林业出版社,1992:1-25.
    21.姜凤岐,朱教君.农田防护林永续经营模型的研究[C].姜凤岐主编,现有防护林合理经营与改造技术研究,北京:中国林业出版社,1996.
    22.姜凤岐,朱教君,周新华.农田防护林管理的连续性经济生态效益模型及应用研究[J].林业科学,1999,35(1):9-14.
    23.康文星,赵仲辉,邓湘雯.杉木林冠层的动力效应及动能传递规律的研究[J].中南林业科技大学学报,2007,27(2):1-6.
    24.李春平,关文彬,范志平,等.农田防护林生态系统结构研究进展[J].应用生态学报.2003,14(11):2037-2043.
    25.李后强,汪富泉.分形理论及其发展历程[J].自然辩证法研究,1992(11):20-23.
    26.李火根,黄敏仁.分形理论及其在植物研究中的应用[J].植物学通报.2001,18(6):684-690.
    27.李火根,潘惠新,严相进,等.杨树树冠分维数与生长的相关关系[J].南京林业大学学报(自然科学版),2005,29(2):43-48
    28.李火根,阮锡根,王友箐,等.林木复杂性状分维数软件(FDC1.0)的研发与应用[J].南京林业大学学报(自然科学版),2004,28(3):5-8.
    29.梁士楚,王伯荪.红树植物木榄种群高度结构的分形特征[J].植物生态学报,2002,26(4):408-412.
    30.刘兆刚,刘继明,李风日,等.樟子松人工林树冠结构的分形分析[J].植物研究,2005,25[4]:465-470.
    31.刘盛,刘成.长白落叶松水分输导模式及叶生物量估测方法[J].东北林业大学学报,2005,33(5):35-37
    32.马克明,张喜军,陈继红,等.东北羊草草原群落格局的分维数(Fractal)理论研究[C].辛厚文等主编.分形理论及其应用.合肥:中国科技大学出版社,1993.
    33.马克明,祖元刚,倪红伟.兴安落叶松种群格局的分形特征-关联维数[J].生态学报,1999,19(3):353-358.
    34.马克明,祖元刚,刘志刚,等.植被格局的分形特征[J].植物生态学报2000,24(1)111-117.
    35.马钦彦,刘盛.华北落叶松单木管道模型[J].北京林业大学学报,1992,14(2):11-16.
    36.马钦彦,刘胜,刘志刚.树形管道模型原理[J].北京林业大学学报,1989,13(3):84-91.
    37.齐东旭.分形及其计算机生成[M].北京:科学出版社,1994
    38.沈步明,常子文译(高安秀树著).分数维度[M].北京:地震出版社,1994.
    39.唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(增刊):19-27.
    40.王立刚,赵岭,赵凌泉,等.不同树种的农田防护林疏透度的季相变化研究[J].吉林林业科技,1999,(6):6-15.
    41.王志刚,杨东慧.林带冬季相立木疏透度及其设计方法的研究[J].中国沙漠,1998,18(1):87-90.
    42.Wang H.,Takle E.S.,Shen J.M..防护林带:湍流的数学模型与计算机模拟[J].力学进展,2003,33(1):119-137.
    43.卫林,江爱良,张翼.防护林有效防护距离研究[J].科学通报.1987,32(9):605-609.
    44.文科军,陈志弘,邵学明,等.林带防护特征与疏透度关系的研究[J].水土保持学报,1990,4(3):87-91.
    45.向开馥主编.东北西部内蒙古东部防护林研究[M].哈尔滨:东北林业大学出版社,1989.
    46.阎树文主编.农田防护林学[M].北京:中国林业出版社,1993.
    47.叶万辉,关文彬.树体结构研究的历史发展和现状——兼论树体三态结构划分及其意义[J].世界林业研究,1995,8(4):22-27.
    48.叶万辉.三大硬阔树体结构研究[M].哈尔滨:黑龙江科学技术出版社,1995.
    49.曾文曲,刘世耀译(肯尼思·法尔科内著).分形几何学——数学基础及其应用[M].沈阳:东北工学院出版社出版,1989.
    50.张纪林,康立新,季永华.沿海林网10种模式的区域性防风效果评价[J].南京大学学 报,1997,33(1):151-155.
    51.张纪林,吕祥生.杨树护田林带疏透度模型及应用[J].生态学杂志,1993,12(3):56-60.
    52.张颖清.生物结构的三定律[M].呼和浩特:内蒙古人民出版社,1982.
    53.周新华,姜凤岐,付梦华.林带疏透度模型及其应用[J].应用生态学报,1994,5(3):251-255.
    54.周新华,姜凤岐,杨瑞英,等.林带疏透度变化规律及其在抚育间伐中的应用[C].姜凤岐主编.林带经营技术与理论基础,北京:中国林业出版社,1992.
    55.周新华,姜凤岐,朱教君.数字图像处理法确定林带疏透度随机误差分析[J].应用生态学报,1990,2(3):193-200.
    56.朱教君.透光分层疏透度测定及其在次生林结构研究中的应用[J].应用生态学报.2003,14(8):1229-1233.
    57.朱劲伟,朱廷耀.应用数量化理论I分析林带防风作用[J].林业科学,1980,(6).
    58.朱廷曜.林带防风作用的风洞实验研究[C].中国科学院林业土壤研究所集刊,第五集,1981:29-46.
    59.朱廷曜,关德新.林带附近气流结构特征的风洞模拟研究[C].朱廷耀主编.防护林体系生态效益及边界层物理特征的研究.北京:气象出版社,1992,27-35.
    60.朱廷耀,张惠玉,孙纪政.林带防风作用和疏透度的特征[C].中国北方农田防护林学术讨论会,1964.
    61.朱廷耀主编.防护林体系生态效益及边界层物理特征的研究[M].北京:气象出版社,1992.
    62.祖元刚,马克明.分形理论与生态学.李博,等.现代生态学讲座.北京:科学出版社,1995
    63.祖元刚,马克明,张喜军.植被空间异质性的分形分析方法[J].生态学报,1997,17(3):333-337.
    64. Alados C.L.,Escos J.,Emlen J.M.,et al.. Characterization of branch complexity by fractal analyses. In:Special issue:Development,function and evolution of symmetry in plants[J]. Inter.J Plant Sci, 1999,160(6): 147-155.
    65. Alkhalil A.,Litvina I.V.,Takle E.S.,Schmidt R.A.,et al.Determination of drag properties of a shelterbelt from measurements and a numerical model.Eleventh Symposium on Boundary Layer and Turbulence[M].Charlotte.Amer.Meteor.Soc,1995,511-512.
    66. Bai Y.Q., Hao W.K., Jiang Y.,et al..Forest Mensuration[M].Publishing House of Northeast Forestry University, 1987:364.
    67. Baines W.D.,Peterson E.G.An investigation of flow through screens s[J].Trans. of the ASME,1951,73:467-480.
    68. Bartlett M.S..Fitting a straight line when both variables are subject to error[J]. Biomertrics, 1949,5:207-212.
    69. Batchelor G.K.,Townsend A.A..Decay of vorticity in isotropic turbulence.Proceedings of the Royal Society of London[J].Series A,1947,Vol.190,pp.534.
    70. Bates C.G.The windbreak as a farm asset USDA[J].Farmers Bulletin,1944,No.1405.21.
    71. Bean A., Alperi R.W., Federer C.A.. A method for categorizing shelterbelt porosity [J]. Agric. Meteorol,1975,14:417-429.
    72. Berezavskava F.S.,Karev GP.,Kisliuk O.S.,et al..A fractal approach to computer analytical modeling of tree crowns [J].Tree:Structure and function,1997,11(6):323-327.
    73. Bilbro J.D.,Stout J.E..Wind velocity patterns as modified by plastic pipe windbarries [J]. Journal of Soil & Water Conservation, 1999,54(3):551-556.
    74. Borrelli J.,Gregory J.M.,Abtew W..Wind barriers:A reevaluation of height,spacing ,and porosity[J].Trans.ASAE,1989,32(6):2023-2027.
    75. Bradley E.F., Mulhearn P.J..Development of velocity and shear distributions in the wake of a porous shelter fence[J].Journal of Wind Engineering and Industrial Aerodynamics, 1983, 15:145-156.
    76. BrandleJ.R..How windbreaks work. University of Nebraska, Lincoln and Sherman Finch [J/OL]. Soil Conservation Service,University of Nebraska Extension 2002,EC91-1763-B. http: //www.unl.edu/nac/brochures/ecl763/ecl763.pdf
    77. Brown K.W., Rosenberg N.J..Turbulence transport and energy balance as affected by a windbreak in an irrigated sugar beet (Beta vulgaris) field[J]. Agronomy Journal, 1971,63(3):351-355.
    78. Caborn J.M..The dependence of the shelter effect of shelterbelts on their structure[C].World Forestry Congress, International Institute of Agriculture,Proceedings, Fifth World Forestry Congress, 1960,3:1662-1664.
    79. Castro I. P.. Wake characteristics of two-dimensional perforated plate normal to an air-stream. [J].Fluid Mech,1971,46:599-609.
    80. Chiba Y.. Plant form based on the pipe model theory Ⅱ Quantitative analysis of ramification in morpholofgy[J].Ecol Res.1991 ,(6):21 -28.
    81. Cleugh H.A..Effects of windbreaks on airflow, microclimates and crop yields[J].Agroforestry Systems, 1998,41:55-84.
    82. Critten D.L..Fractal dimension relationships and values associated with certain plant canopies[J].J Agric Engineering Research.l997,67(1):61-72.
    83. Davies C.E., Benecke U..Fluidized bed coating conifer needles with glass beads for determination of leaf surface area [J].Forest. Sci,1980,26(1):29-32.
    84. Denuyl,D..The zone of effective windbreak influence[J].Journal of Forestry, 1936, 34:689-693.
    85. Dyunin A. K..The analytic determination of the surface wind velocity behind open snow fences[M].United State Office of Technical Services:Washington,D.C. ,1964:17.
    86. Eric C, Herve S.. A method for describing the canopy architecture of coppice poplar with allometric relationships [J].Tree Physiology 2003,23:1153-1170.
    87. Falconer K..Fractal geometry: mathematical foundations and applications[M], John Wiley & Sons Ltd,England
    88. Finney E.A..Snow control on the highways[J]. Michigan Stage Eng.Expt.Sta.Bull.1934,57: 62.
    89. Finnigan J.J., Bradley E.F..The turbulent kinetic energy budget behind a porous barrier:an analysis in streamline co-ordinates[J].Journal of Wind Engineering Industrial Aerodynamics, 1983,15:157-168.
    90. Frenkiel F.N..The decay of isotropic turbulence [J].Trans.ASME,1948,70:311.
    91. Frontier S.. Applications of fractal theory to ecology[C]. In:Developments in Numerical Ecology (Legendre P & Legendre L.eds.) .Springer-Verlag,1987,335-380.
    92. Fryrear D.W..Annual crops as wind barriers [J]. Trans.of the ASAE.1963,6:340-342,352.
    93. Gandemer J.,Wind shelters [J]. Journal of Industrial aerodynamics, 1979,4:371-389.
    94. Gloyne R.W..Some effects of shelterbelts upon local and micro climate[J]. Forestry, 1954,27:85-95.
    95. Good M.C., Joubert P.N..The form drag of two-dimensional bluff-plates immersed in turbulent bounbary dayers[J]. J.Fluid Mech.,1968,31(3):547-582.
    96. Gross G.A numerical study of the air flow within and around a single tree[J].Boundary-Layer Meteorol,1987,40:311-327.
    97. Gunnarsson B..Fractal dimension of plants and body size distribution in spidersfJ].Function Ecology,1992,6:636-641.
    98. Hagen L.J.,Skidmore E.L.,Miller P.L.,et al..Simulation of effect of wind barriers on airflow[J].Trans.ASAE,1981,24(4):1002-1008.
    99.Hagen L.J.,Skidmore E.L.,Miller P.L.,et al..Simulation of effect of wind barriers on airflow[J].Trans.ASAE,1981,24(4):1002-1008.
    100.Hagen L.J.,Skidmore E.L..Turbulent velocity fluctuations and vertical flow as a affected by windbreak porosity[J].Trans.ASAE,1971 a,14:634-637.
    101.Hagen L.J.,Skidmore,E.L..Windbreak drag as influenced by porosity[J].Trans.ASAE,1971b,14(3):464-465.
    102.Harper J.L.,White J..The demography of plant[J].Ann Rev Ecol Syst.1974,5:419-463.
    103.Heisler G.M?DeWalle D.R..Effects of windbreak structure on wind flow[J].Agriculture,Ecosystems and Environment.1988,22/23:41-69.
    104.Hiroyuki T.,Hajime S..Relationship between shelterbelt structure and mean wind reduction[J].Agricultural and Forest Meteorology 2007,145:186-194
    105.Hogg W.H..A Shelter belt study-relative shelter,effective winds and maximum efficiency[J].Agric.Meteorol,1965,2:307-315.
    106.H6rner S.F..Fluid-Dynamic Drag:Practical Information on Aerodynamic Drag and Hydrodynamic Resistance[C].Library on Congress Catalog Card Number,1965,64-19666.
    107.Husch B.,Miller C.I.,Beers T.W..Forest mensuration[M].John Wiley & Sons,New York,1982:402.
    108.Huxley J.S..Constant differential growth-rations and their significance [J].Nature.1924,114:895-896.
    109.Huxley J.S..Problem of Relative Growth[M].The Dial Press,New York.1932:276.
    110.Huxley J.S..Terminology of relative growth[J].Nature.1936,137:780-781.
    111.Jacobs A.F.G.The flow around a thin closed fence[J].Boundary-Layer Meteorol,1984a,28:317-328.
    112.Jacobs A.F.G.Wind reduction near the surface behind a thin solid fence[J].Agric.For Meteorol.,1984b,33:157-162.
    113.Jensen M..Shelter Effect.Investigations into the Aerodynamics of Shelter and its Effects on Climate and Crops[M].The Danish Technical Press.Copenhagen,1954,264.
    114.Judd M.J.,Raupach M.R.,Finnigan J.J..A wind tunnel study of turbulent flow around single and multiple windbreaks,part I:vclocity fields[J].Boundary-Layer Meteorol,1996,80:127-165.
    115.Kobayashi S.,Kitamara M..Allometry and tree form[C].In:Mensuration,Growth and Yield.(Burlhart,H.E.eds.)IUFRO,Conference Montreal.1990.
    116.Kaimal J.C.,Finnigan J.J..Atmospheric Boundary Layer Flows:their Structure and Measurement [M].Oxford University Press.New York,1994:289.
    117.Kenny W.A..A method for estimating windbreak porosity using digitized photographic silhouettes[J].Agric For Meteorol,1987,39:91-94.
    118.Konstantinov A.R..Evaporation in Nature[M].Translated from Russian by Israel program for Scientific Translations.Natl.Sci.Found.,Washington DC,1966,523.
    119.Koop H..Forest Dynamics[M].Spring-Verlag,Berlin,1989.
    120.Laws E.M.,Livesey J.L..Flow through screens[J].Ann.Rev.Fluid Mech,1978,10:247-266.
    121.Lea F.M.,Nurse R.W..Permeability methods of fineness measurement[J].Trans.of the Institution of Chemical Engineering,1947,25:47-56.
    122.Lee X..Turbulence spectra and eddy diffusivity over forests[J]Journal of Applied Meteorol,1996,35:1307-1318.
    123.Ledue D.J..A comparative anylasis of the reduced major axis technique of fitting lines to bivariate data[J].CanJ.for Res.1987,17:133-138.
    124. Lieth H.,Whittaker R.H..Primary productivity of the biosphete[J].Spring-Verlag,1975.
    125. Loeffler A.E., Gordon A.M.,Gillespie T.J..Optical porosity and windspeed reduction by coniferous windbreaks in Southern Ontario[J].Agroforesty System ,1992,17:119-133.
    126. Lorimer N.D.,Haight R.G, Leary R.A..The Fractal Forest: Fractal Geometry and Apllication in Forest Sience. USDA, Forest Service[M].North Central Forest Experiment station, Gen Tech.Rep,1994,170:43.
    127. McAneney K.J. Judd M. J.. Multiple windbreaks:an aeolean ensemble[J].Boundary Layer Meteorol.. 1991,54:129-146.
    128. McNaughton K.G. Effects of windbreaks on turbulent transport and microclimate[J]. Agriculture, Ecosystems and Environment, 1988, 22/23:17-39.
    129. Maki T..Studies on the windbreak nets(2)micrometeorological modification ff a cool weather damage of paddy rice displayed by two kinds of windbreak nets[J].J.Agr.Met,1980,36(3): 161-172.
    130. Maki T..Studies on the windbreak nets(3)Horizontal and vertical turbulent characteristics influenced by two kinds of windbreak nets in a paddy rice field [J]. J. Agric.Met,1981,37(3):197-210.
    131. Maki T..Micrometeorological improvement of paddy fields by using windbreak nets [J]. JARQ, 1985,19(2):98-102.
    132. Mandelbrot B.B.. The fractal geometry of nature [M].San Francisco:Freeman,1983.
    133. Mikihiro K..Estimation of stem-volume increment by using sunny crown-surface area and stem-surface area [J].J. Jap. For. Soc. 1985,67(12):501-505.
    134. Mikihiro K..Vertical distribution model of stem volume increment and its application for mutual conversion between basal area increment and stem volume increment [J].J. Jpn. For. Soc,1986,68(8):338-342.
    135. Miller D.R., Roseberg N. J.,Bagley W.T.Wind reduction by a highly permeable tree shelterbelt[J].Agric.Meterorol. 1975,14:321-333
    136. Mizoue N.. Masutani T..Application of fractal dimension to quantifying form of tree crowns[C]. In advancement in forest inventory and forest management sciences.Proceedings of the IUFRO Seoul Conference, 1993.
    137. Morse D.R.,Lawton J.H.,Dodson M.M.,Williamson M.H.Fractal dimension of vegetation and the distribution of arthropod body lengths[J].Nature(Lond.). 1985,314:731-733
    138. Nord M..Shelter effects of vegetation belts-results of field measurements[J].Boundary Layer Meteorol., 1991,54:363-385.
    139. Ogawa Y. Diosey P.G.Surface roughness and thermal stratification effects on the flow behind a two-dimensional fence-Ⅰ :field study[J].Atmos.Environ.1980,14:1301-1308.
    140. Olhata S.,Shinozaki K.. A static model of plant form further analysis of the pipe model theory[J].Jap J Ecol, 1979,29:23-35.
    141.Patton E.G, Shaw R.H.,Judd M.J.,et al..Large-eddy simulation of windbreak flow[J]. Boundary-Layer Meteorol, 1998,87:275-306.
    142. Perera M.D.A.E.S..Shelter behind two-dimensional solid and porous fences [J].Journal of Wind Engineering and Industrial Aerodynamics,1981,8:93-104.
    143. Pfeifer P.,Avnir D..Chemistry in noninteger dimensions between two and three.I. Fractal theory of heterogeneous surfaces[J].Journal Chemistry Physics, 1983,79:3558-3564.
    144. Pinker R.A.,Herbert M.V..Pressure .oss associated with compressible flow through square- mesh wire gauzes[J].J.Mech.Eng.Sci,1967,9(1)11-23.
    145. Plate E.J..Aerodynamics characteristics of atomospheric boundary layers.AEC Critical Review Series[J].U.S.Atomic Energy Commission Division of Technical Information,1971a:190.
    146.Plate E.J.The aerodynamics of shelter belts.Agric[J].Meteorol.1971,8:203-222.
    147.Radke J.K.,Hagstrom R.T..Wind turbulence in a soybean field sheltered by four types of winf\d barriers[J].Agronomy Journal,1974,66:273-278.
    148.Raine J.K.,Stevenson D.C.Wind protection by model fences in simulated atmospheric boundary layer[J].Journal of Industrial Aerodynamics,1977,2:159-180.
    149.Reynold A.J..Flow deflection by gauze screens[J].J.Mech.Eng.Sci.,1969,11(3):290-294.
    150.Ricker W.E..Computation and uses of central central trend lines [J].Can.J.Zool,1984,62:1897-1905.
    151.Rider N.E..The effect of a hedge on the flow of air[J].Quart.Journal R.Met.Soc,1952,78(335):97-101.
    152.Scheidegger A.E..The physics of flow through porous media.3~(rd)edition[M].University of Toronto Press,1974,353pp
    153.Schmidt R.A.,Jairell R.L.,Brandle E.S.,et aL.Windbreak shelter as a function of wind direction[C].Ninth Symposium on Meteorological Observation & Instrumentation,Amer.Meteorol.Soc.Boston,MA,1995:269-274.
    154.Schwartz R.C.,Fryrear D.W.,Harris B.L.,et al..Mean flow and shear stress distributions as influenced by vegetative windbreak structure[J].Agric.For.Meteorol,1995,75:1-22.
    155.Seginer I..Windbreak drag calculated from the horizontal velocity fiedld[J].Layer meteorol.1975a,(8):383-400.
    156.Seginer L.Flow around a windbreak in olique wind[J].Boundary layer meteorol.1975b,9:133-141.
    157.Shinozaki..A quantitative analysis of plant form—the pipe model theory Ⅰ.Basic analysis [J].Jap J Ecol,1964a,14(3):97-105.
    158.Shinozaki..A quantitative analysis of plant form—the pipe model theory Ⅱ.Further evidence of the theory and its application in forest ecology [J]Jap J Ecol,1964b,14(4):123-139.
    159.Sinnot E.W..A developmental analysis of inherited shape difference in Cucurbit fruits[J].The American Naturalist.1936,70:245-254.
    160.Skidmore E W..Hagen L J..Evaporation in sheltered areas as influenced by windbreak porosity.Agric.meteorol.,1970,7:363-374.
    161.Sprent P.,Dolby GR..Rhe geometric mean function relationshape [J].Biometriics,1980,36:547-550.
    162.Stewart I..Irregular tricks of the trade[J].Nature.1988,336:289.
    163.Strand LXrown density and fractal dimension.Medd.Nor.Inst.Skogforsk.1990,43(6):1-11.
    164.Sturrock J.W..Aerodynamic studies of shelterbelts in New Zealand-1:low to medium height shelterbelts in Mid-Canter-bury[J].New Zealand J.Sci.1969,12:754-776.
    165.Sturrock J.W..Aerodynamic studies of shelterbelts in New Zealand-2:medium-height to tall shelterbelts in Mid-Canterbury[J].New Zealand Journal Science,1972,15(2):113-140.
    166.Sturrock J.W..Aerodynamic studies of shelterbelts in New Zealand-1:low to medium height shelterbelts in Mid-Canter-bury[J].New Zealand J.Sci,1969,12:754-776.
    167.Takahashi H..Wind tunnel test on the effect of width of windbreaks on the wind speed distribution in leeward[J].J.Agr.Met,1978,33(4):183-187.
    168.Tani N..On the wind tunnel test of the model shelter-hedge[J].Bulletin of the National Institute of Agricultural Sciences,1958,Series A(6):1-80.
    169.Tabler R.D.,Veal D.L..Effect of snow fence height on wind speed.Bulletin of the International Association of Scientific Hydrology XVI,1971,4:49-56.
    170. Van Eimern,J.,Karschon R.,Razumova.,et al..Windbreaks and Shelterbelts[J].World Meteorological Organization. 1964,147,70:188.
    171. Wang H., Takle E.S..On three-dimensionality of shelterbelt structure and its influences on shelter effects[J]. Boundary-Layer-Meteorol,1996,79(12):83-105.
    172. Wang H.,Takle E.S..Model-simulated influence of shelterbelt shape on wind-sheltering efficiency[J].Journal of Applied Meteorol, 1997,36:695-704.
    173.Wang H.,Takle S..Model-simulated influence of shelterbelt shape on wind-sheltering efficiency[J].Journal of Applied Meteorol,2001,36:695-704.
    174. Wang H.,Takle E.S..A numerical simulation of boundary-layer flows near shelterbelts [J]. Boundary-Layer Meteorol., 1995a,75:141 -173.
    175. Wang H.,Takle E.S..Boundary-layer flow and turbulence near porous obstacles:I. Derivation of a general equation set for a porous medium[J].Boundary-Layer Meteorol. 1995b,74:73-88.
    176. Wang H.,Takle E.S..Numerical simulations of shelterbelt effects on wind direction[J].JournaI of Applied Meteorology, 1995c,34:2206-2219.
    177. Wang H.,Takle E.S..On three-dimensionality of shelterbelt structure and its influences on shelter effects[J].Boundary-Layer Meteorol. 1996a,79:83-105.
    178. Wang H.,Takle E.S..On shelter efficiency of shelterbelts in oblique wind. [J].Agric. For. Meteorol. 1996b,81:95-117.
    179. Wilson J.D.. Oblique, stratisfied winds about a shelter fence.Part Ⅰ: measurements. J. Appl. Meteorol,2004a ,43,1149-1167.
    180. Wilson J.D..Oblique, stratisfied winds about ashelter fence. Part Ⅱ: measurements with numerical models. J. Appl. Meteorol,2004b,43,1392-1409.
    181. West GB., Brown J.H.,Enquist B.J..The fourth dimension of life:fractal geometry and allometric scaling of organisms.Science, 1999a,284:1677-1679.
    182. West GB., Brown J.H., Enquist B.J.. A General model for structure and allometry of plant vascular systems. Nature(London),1999b,400: 664-667.
    183. White J..Plant metamerism. In: Perspective on Plant Population Ecology.(Dirzo,R. and J. Sarukhan eds.) [J].Sinauer Associates Inc. Publishers, 1984.
    184. Wilson J.D..Numerical studies of flow through a windbreak[J].Journal of Wind Engineering Industrial Aerodynamics, 1985,21:119-154.
    185. Wilson J.D..On the choice of a windbreak porosity profile[J].Boundary-Layer Meteorol, 1987,38:37-49.
    186. Wilson N.R.,Shaw R.H..A higher order closure model for canopy flow[J].Journal of Applied Meteorol.. 1977,16:1197-1205.
    187. Woodruff N.P.,Fryeear D.W.,Lyles L..Reducing wind velocity with field shelterbelts[J]. Agricultural Experiment Station, Kansas State University of Agriculture and Applied Science,Agriculture Research Service,Manhattan,Kansas,Tech.Bull..1963,131:1-26.
    188. Woodruff N.P.,Read R.A.,Chepil W.S..Influence of a field windbreak on summer wind movement and air temperature[J].Agricultural Experiment Station, Kansas State University of Agriculture and Applied Science,Manhattan, Kansas,Tech.Bull.l959,100:1-24.
    189. Woodruff N.P.,Zingg A.W..Wind tunnel studies of fundamental problems related to windbreaks.Soil Conservation Service[J].USDA,SCS-TP.1952,l12:1-25.
    190. Woodruff N.P.,Zingg A.W..Wind tunnel studies of shelterbelt models[J].Journal of Forestry.l953,51:173-178.
    191.Zeide B.P., Feifet..A method for estimation of fractal dimension of tree crowns[J].Forest Science.1991,37(5):1253-1265.
    192.Zeide B..Fractal analysis of foliage distribution in loblolly pine crowns[J].Canadan Journal Forest Research,1998,28 (1):106-114.
    193.Zeide B.,Greshan C.A..Fractal dimensions of tree crowns of in three loblolly pine plantations of coastal south Carolina[J].Can J For Res.1992,21:1208-1212.
    194.Zeide B..Primary unit of the tree crown[J].Ecology.1993,74:1598-1602.
    195.Zeide B..Fractal analysis of crown structure [M].In:Proc.IUFRO Mensuratim.Growth and Yield (Burkhart HE.eds.)Virginia State Univ Press,1990,232-241.
    196.Zeide B..Fractal geometry in forestry applications[J].For.Ecol.and Manag.1991,46:179-188.
    197.Zhang H.,Brandle J.R.,Meyer GE.,et al..A model to evaluate the windbreak protection efficiency.Opportunities for agroforestry in the temperate zone.Selected papers from the Third North American Agroforestry Conference[J].Agroforestry-Systems.1995b,293-.191-200.
    198.Zhang H.,Brandle J.R.,Meyer GE.,et aLThe relationship between open windspeed and windspeed reduction on shelter[J].Agroforestry Syetems.1995,32:297-311.
    199.Zhou X.H.,Brandle J.R.,Mize C.W.,et al..Three-dimensional aerodynamic structure of a tree shelterbelt:Definition,characterization and working models[J].Agroforestry Systems 2004,63:133-147.
    200.Zhou X.H.,Brandle J.R.,Take E.S.,et al..Estimation of the three-dimensional aerodynamic structure of a green ash shelterbelt[J].Agric and Forest Meteorol.2002,111:93-108.
    201.Zhou X.H..On the three dimensional aerodynalmic structure of shelterbelts.Doctor dissertation,1997.
    202.Zhu J.J.,Matsuzaki T.,Gonda Y.,et al..Estimation of optical stratification porosity(OSP)in a pine coastal forest with different thinning intensities using hemispherical photographic silhouettes[J].Bulletin of Faculty of Agriculture,Niigata University,2000,53:55-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700