用户名: 密码: 验证码:
外汇期权定价的非参数几何Lévy模型与对冲策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外汇市场是全球交易量最大的金融市场,2010年12月的日均交易量达4万亿美元。布雷顿森林体系崩溃后,汇率波动加剧,国际经济活动面临巨大的汇率风险。在此背景下,外汇衍生产品应运而生并快速发展,其中外汇期权作为低成本的汇率风险管理工具更是受到投资者欢迎,产品结构不断完善。金融衍生产品创新过程中,产品定价与对冲策略设计是其中的重要环节。本文在非参数框架下,以Lévy过程为标的驱动过程,对外汇期权的定价与对冲策略进行了研究,涉及的问题包括Lévy过程的非参数估计、模型校正、外汇期权定价方法、隐含波动率特征和平方对冲策略等。
     Lévy过程的样本路径具有间断点,可以刻画金融资产价格运动中的跳跃行为,因而在金融建模中得到广泛应用。现有的Lévy模型均对跳跃行为作了分布假设。资产价格运动中的跳跃行为由几个分布参数刻画,对于复杂的金融系统来说,具有一定的局限性。本文提出的非参数几何Lévy模型,不需要对跳跃行为作分布假设,突破了这一局限。但非参数框架下的几何Lévy模型更难估计,模型更难校正,期权定价方法更复杂。本文围绕定价与校正这两个主题展开研究。
     首先采用非参数估计方法,从汇率的离散样本中估计出Lévy过程的特征三元组,其中Lévy测度由一个离散化的Lévy密度和跳跃强度表示。然后以此为先验知识,结合外汇期权市场价格数据中隐含的汇率运动信息,确定一个正则化的平方定价误差和,作为最优化问题的目标函数。采用大规模边界约束BFGS(LBFGSB)算法对此最优化问题进行寻优,获得模型参数。
     其次,借鉴期权定价的傅立叶分析方法,将一个经修正的外汇期权时间价值函数的傅立叶变换,表示为驱动Lévy过程特征函数的函数。然后通过离散傅立叶逆变换获得修正的外汇期权时间价值函数的数值解,从而得到外汇期权价格。
     最后研究了几何Lévy模型的平方对冲策略。平方对冲策略是对冲误差期望值最小化的结果,取期望的测度可为鞅测度或历史测度。鞅测度下,标的过程可分解为一个鞅部分和一个漂移部分;历史测度下,未定权益可表示为F(o|¨)llmer-Schweizer分解。利用这两种方法获得的平方对冲策略表达式还不能直接用于计算。本文对平方对冲策略在鞅测度和历史测度下的更直接表示进行了探讨,并分析了两者之间的关系。
     全文中,还多处分析了Lévy模型的隐含波动率表面的形状。结果表明,通过参数选择,可使Lévy模型的隐含波动率表面比Black-Scholes模型更平坦。作为补充,讨论了隐含Lévy波动率模型的外汇期权定价方法和模型估计方法。
     本文的创新之处在于提出一个非参数框架下的非参数几何Lévy模型,构造出相应的外汇期权定价方法和模型校正方法,并讨论了此模型下的平方对冲策略计算问题。非参数框架下,跳跃-扩散类模型不需要假定跳跃行为的分布,跳跃行为由一个离散化的Lévy密度表示,故现有跳跃-扩散类模型可推广为非参数几何Lévy模型。利用傅立叶变换推导出非参数几何Lévy模型下外汇期权的价格计算公式,并分析了数值实现方法的收敛速度和误差控制。模型校正问题涉及病态问题的良态化。本文利用相对熵作为正则函数,结合正则化方法和大规模边界约束BFGS算法,在MATLAB平台上实现非参数几何Lévy模型的校正。
Foreign exchange market is the largest financial market in the world, with an estimated $4 trillion average daily turnover. After the breakdown of the Bretton Woods System in 1970’s, exchange rate fluctuates widely and international economic activities carry a huge of risk. Under this background, foreign exchange derivatives were introduced and developed rapidly. Foreign exchange option, as a cheap tool of risk managing, receives a heated welcome from investors, and its product structure become completed more and more. While creating a new financial derivative, product pricing and devising a hedging strategy are two vital steps. Under a non-parametric framework, this dissertation studies these two problems of foreign exchange options with a Lévy process as the underlying driving process. Specifically speaking, it involves non-parametric estimation of a Lévy process, model calibration, method of option pricing, features of implied volatility surface, quadratic hedging strategy and so on.
     Lévy processes can capture the jump behavior in the price movement of financial assets because their sample paths may be discontinuous. So they are widely used in financial modeling. All of established Lévy models make a distributional hypothesis about the jump behavior of Lévy process. The jumps in the price movement of asset are characterized by a few of distributional parameters. But by doing so in a complex financial setting, there exist limitations more or less. To break the back of this problem, this dissertation proposes a non-parametric geometric Lévy model with no distributional hypothesis about jump behavior of Lévy process. But it is difficult to estimate or calibrate this model, and pricing an option is a hard task in the model too. In this dissertation, Studies are expanded along these two subjects.
     Firstly, to estimate a Lévy process’characteristic triplet from a discrete sample of exchange rate, whose Lévy measure is expressed in terms of a discrete Lévy density and a jump intensity parameter, a non-parametric estimation method is employed. Then as prior knowledge, the triplet estimated from historical data of exchange rate, is integrated the information of exchange movement implied in the dataset of market price of foreign exchange option into the objective function of a optimization problem, which is a sum of squared pricing errors. The optimization problem is solved by a large scale bound constrained BFGS (LBFGSB) algorithm. The resulting solution is also the model parameters.
     Secondly, borrowing the Fourier analysis method of option pricing, the characteristic function of a modified time value function of foreign exchange option, is represented as a function of the driving Lévy process’characteristic function. The modified time value function is numerically solved by the inverse Discrete Fourier Transform, so the foreign exchange option price can be obtained from it.
     Finally, the quadratic hedging strategy of geometric Lévy model is studied. A quadratic hedging strategy is the result of minimizing the expectation of hedging error. The measure with respect to which the expectation is taken may be a martingale measure or a historical measure. Under a martingale measure, the underlying process can be decomposed into a martingale part and a drift term, while under a historical measure, a contingent claim can represented as a F(o|¨)llmer-Schweizer decomposition. The formula of hedging ratio directly based on these two types of decompositions is not enough implicit for the purpose of computation. Two more implicit representations of quadratic hedging strategy under martingale measure and historical measure are investigated in this dissertation. The relations between the two representations are also analyzed.
     The shape of implied volatility surface is analyzed in several chapters of this dissertation. The results indicate that, the implied volatility surface of Lévy model can get flatter than that of Black-Scholes model by choosing suitable parameters. As a complement, this dissertation also discusses the methods of foreign exchange option pacing and model estimation in an implied Lévy volatility model.
     The main contributions of this dissertation lie in proposing a non-parametric geometric Lévy model under a non-parametric framework, developing relevant methods of foreign exchange option pricing and model calibration, and discussing the problem of computing the quadratic hedging strategy in this model. Under the non-parametric framework, the distributional hypothesis about jump behavior in a jump-diffusion model is not needed anymore, and the jumps are characterized by a discrete Lévy density. So all the jump-diffusion models can be generalized into the non-parametric geometric Lévy model. With the Fast Fourier Transform technique, the formula of computing foreign exchange option price in this model is derived, convergence rate and error control of this numerical methods are investigated. The problem of Model calibration involves well-posing an ill-posed problem. In this dissertation, the non-parametric geometric Lévy model is calibrated on the MALAB platform, using a LBFGSB algorithm and a regularization method whose penalized term is a relative entropy function together.
引文
[1] Sprenkle C M. Warrant prices as indicators of expectations and preferences[J]. Yale Economic Essays. 1961(1): 178-231.
    [2] Samuelson P A. Rational theory of warrant pricing[J]. Industrial Management Review. 1965(6): 13-32.
    [3] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy. 1973(81): 637-659.
    [4] Garman M B, Kohlhagen S W. Foreign Currency Option Values[J]. Journal of International Money and Finance. 1983(2): 231-237.
    [5] Grabbe J O. The Pricing of Call and Put Options on Foreign Exchange[J]. Journal of International Money and Finance. 1983, 2(3): 239-253.
    [6] Heston S L. A closed form solution for options with stochastic volatility with applications to bonds and currency options[J]. Review of Financial Studies. 1993, 6: 327-343.
    [7] Hull J C, White A. The pricing of options with stochastic volatility[J]. Journal of Finance. 1987(42): 211-300.
    [8] Bakshi, Gurdip, Cao C, et al. Empirical performance of alternative option pricing models[J]. Journal of Finance. 1997(52): 2003-2049.
    [9] Knoch H J. The Pricing of Foreign Currency Options with Stochastic Volatility[D]. University of Yale, 1992.
    [10] Kludeep S, Kishore T. Valuation of Foreign Currency Options: Some Empirical Tests[J]. Journal of Financial and Quantitative Analysis. 1986, 21(2): 145-160.
    [11] Bates D. Jumps and stochastic volatility: the exchange rate processes implied in Deutschemark options[J]. Rev. Studies. 1996(9): 69-107.
    [12] Ming-Hsien C, Yin-Feng G. Pricing Currency Options Under Stochastic Volatility[Z]. Taipei: National Taiwan University, 2004.
    [13] Peter C, Liuren W. Stochastic Skew for Currency Options[J]. Journal of Financial Economics. 2007(10): 23-71.
    [14] Wystup U. FX Volatility Smile Construction[R]. Frankfurt: Center for Practical Quantitative Finance, Frankfurt School of Finance & Management, 2009.
    [15] Madan D B, Seneta E. Chebyshev polynomial approximations and characteristic function estimation[J]. Journal of the Royal Statistical Society. 1987, B49(2): 163-169.
    [16] Madan D B, Seneta E. The VG model for share market returns[J]. Journal of Business. 1990(63): 511-524.
    [17] Eberlein E, Keller U. Hyperbolic distributions in finance[J]. Bernoulli. 1995, 1: 281-299.
    [18] Barndorff-Nielsen O E. Normal inverse Gaussian distributions and the modeling of stock returns[R]. Department of Theoretical Statistics, Aarhus University, 1995.
    [19] Eberlein E, Prause K. The generalized hyperbolic model: financial derivatives and risk measure[J]. Working paper. 1998.
    [20] Schoutens W. The Meixner process in finance[R]. Eindhoven: EURANDOM, 2001.
    [21] Carr P, Geman H, Madan D, et al. The fine structure of asset returns: An empirical investigation[J]. Journal of Business. 2002, 75(2): 305-332.
    [22] Geman H. Pure jump Lévy processes for asset price modelling[J]. Journal of Banking and Finance. 2002(26): 1297-1316.
    [23] Merton R. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics. 1976(3): 125-144.
    [24] Kou S. A jump-diffusion model for option pricing[J]. Management Science. 2002(48): 1086-1101.
    [25] Barndorff-Nielsen O E, Shephard N. Integrated OU Processes and non-Gaussian OU-based Stochastic Volatility Models[J]. Scandinavian Journal of Statistics. 2003, 30: 277-295.
    [26] Schoutens W. Exotic Options under Lévy Models: An Overview[J]. Journal of Computational and Applied Mathematics. 2006, 189(1-2): 526-538.
    [27] Applebaum D. Lévy Processes and Stochastic Calculus[M]. Cambridge: Cambridge University Press, 2004.
    [28] Sato K. Lévy Processes and Infinitely Divisble Distributions[M]. Cambridge: Cambridge University Press, 1999.
    [29] Eberlein E, Jacod J. On the range of options prices[J]. Finance and Stochastics. 1997(1): 131-140.
    [30] Gerber H U, Shiu E S W. Option pricing by Esscher-transforms[J]. Transactions of the Society of Actuaries. 1994, 1: 400-449.
    [31] Cont R, Tankov P. Financial modelling with jump processes[M]. Chapman & Hall/CRC, 2004.
    [32] Fujiwara T, Miyahara Y. The Minimal Entropy Martingale Measures for Geometric Lévy Processes[J]. FINANCE AND STOCHASTICS. 2003, 7(4): 509-531.
    [33] Katja K, Küchler U. Minimal Entropy Martingale Measure for Lévy Processes[J]. Working Paper. 2009.
    [34] Schoutens W. Lévy Processes: Pricing Financial Derivatives[M]. London: Wiley, 2003.
    [35] Schweizer M. On the minimal martingale measure and the F?llmer-Schweizer decomposition[J]. Stochastic Anal. Appl. 1995(13): 573-599.
    [36] Miyahara Y. Martingale measures for the geometric Lévy process models[Z]. Nagoya City University, 20051-14.
    [37] Cheridito P, Filipovic D, Yor M. Equivalent and absolutely continuous measure changes for jump-diffusion processes[J]. The Annals of Applied Probability. 2005, 15(3): 1713-1732.
    [38] Monoyios M. Esscher transforms and martingale measures in incomplete diffusion models[J]. model Statistics and Probability Letters. 2007(77): 1070-1076.
    [39] Hunt J. Equivalent local martingale measures and market incompleteness in a continuous time semi-Markov regime switching model[Z]. Universite Catholique de Louvain, 2009.
    [40] Kim Y S, Lee J H. The relative entropy in CGMY processes and its applications to finance[J]. Mathematics and Statistics. 2007, 66(2): 327-338.
    [41] Masatoshi F, Dewei Z. Evaluation of the MEMM, Parameter Estimation and Option Pricing for Geometric Lévy Processes[J]. BUSINESS AND ECONOMICS. 2009, 16(2): 111-139.
    [42] Akritas M G. Asymptotic inference in Lévy processes of the discontinuous type[J]. Ann. Statist. 1981, 9: 604-614.
    [43] Akritas M G. Asymptotic theory for estimating the parameters of a Lévy process [J]. Annals of the Institute of Statistical Mathematics. 1982, 34: 259-280.
    [44] Shimizu Y. Density Estimation of Lévy Measures for Discretely Observed Diffusion Processes with Jumps[J]. J. Japan Statist. Soc. 2006, 36(1): 37-62.
    [45] Figueroa-López J E. Nonparametric estimation of time-changed Lévy models under high-frequency data[J].Advances in Applied Probability. 2009, 41(4): 1161-1188.
    [46] Jongbloed, van der Meulen, van der Vaart. Nonparametric inference for Lévy-driven Ornstein–Uhlenbeck processes[J]. Bernoulli. 2005, 11(5): 759-791.
    [47] Van Es B, Gugushvili S, Spreij P. A kernel type nonparametric density estimator for decompounding[J]. Bernoulli. 2007(3): 672-694.
    [48] Neumann M H, ReiβM. Nonparametric estimation for Lévy processes from low-frequency observations[J]. Bernoulli. 2009, 15(1): 223-248.
    [49] Comte F, Genon-Catalot V. Nonparametric adaptive estimation for pure jump Lévy processes[J]. Ann. Inst. H. PoincaréProbab. Statist. 2010, 46(3): 595-617.
    [50] Hodges S D, Neuberger A. Option replication of contingent claims under transaction costs[J]. Rev. Fut. Mkts. 1989(8): 222-239.
    [51] Whalley A E, Wilmott P. An asymptotic analysis of an optimal hedging model for option pricing with transaction costs[J]. Mathematical Finance. 1997(7): 307-324.
    [52] Nualart D, Schoutens W. Chaotic and predictable representations for Lévy processes[J]. Stochastic Processes and their Applications. 2000(90): 109-122.
    [53] Jamshidian F. Chaotic expansion of powers and martingale representation[J]. Working Paper. 2005.
    [54] Protter P. Stochastic integration and differential equations[M]. Berlin: Springer, 2004.
    [55] Wilmott P. Hedging Option Portfolios in the Presence of Transaction Cost[J]. Advances in Futures and Operations Research. 1994(7): 21-35.
    [56] Leland H. Option pricing and replication with transaction costs[J]. Journal of Finance. 1985(40): 1283-1301.
    [57] Hoggard T, Whalley A E, Wilmott P. Hedging option portfolios in the presence of transaction costs[J]. Adv.Fut.Opt.Res. 1992, 5(3): 34-52.
    [58]刘凡永.外汇期权定价模型研究[D].华南理工大学, 2007.
    [59]陈旭.基于几何Lévy过程的期权定价[D].华中科技大学, 2007.
    [60]牛丽群.带跳的随机微分方程的极限定理及其在金融中的应用[D].北京师范大学, 2008.
    [61]刘宣会.标的资产服从跳-扩过程未定权益套期保值策略[J].西安电子科技大学学报(自然科学版). 2004, 31(1): 129-134.
    [62]刘宣会,薛贇,徐成贤.标的资产由分数维布朗运动驱动的亚式期权定价及套期保值[J].工程数学学报. 2009, 26(5): 811-818.
    [63]马成虎,汪先珍.中国股市价格的跳跃行为:基于上证综指高频数据的非参分析[J].工作论文. 2009.
    [64]王春峰,郝鹏,房振明.连续时间金融框架下证券市场跳跃模型研究[J].南开经济研究. 2009(5): 143-153.
    [65] Bis. 2010 Triennial Central Bank Survey of Foreign Exchange and Derivatives Market Activity2010.
    [66] Wystup U. FX Otions and Structured Products[M]. Chichester: John Wiley & Sons, Ltd., 2006.
    [67] Bis. Semiannual OTC derivatives statistics at end-December 2009[Z]. 2009.
    [68] Shani S. A Currency Options Primer[M]. Chichester: John Wiley & Sons, Ltd., 2004.
    [69]中国外汇交易中心.产品指引(外汇市场)2009.
    [70]张铁强,蔡键.境内外人民币汇率衍生产品发展比较研究[J].金融理论与实践. 2009(12): 31-36.
    [71] Clark I. Foreign Exchange Option Pricing: A Practitioner's Guide[M]. Chichester: John Wiley & Sons, Ltd., 2010.
    [72] Huang X, Tauchen, G. The Relative Contributions of Jumps to Total Variance[J]. Journal of FinancialEconometrics. 2005(3): 456-499.
    [73] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics. 2004(2): 1-48.
    [74] Andersen T G, Bollerslev T, Diebold F X. Roughing It Up: Including Jump Components in the Mmeasurement, Modeling, and Forecasting of Return Volatility[J]. The Review of Economics and Statistics. 2007(89): 701-720.
    [75] Barndorff-Nielsen O E, Shephard N. Realized power variation and stochastic volatility[J]. Bernoulli. 2003(9): 243-265.
    [76] Barndorff-Nielsen O E, Shephard N. Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics[J]. Econometrica. 2004(72): 885-925.
    [77] Barndorff-Nielsen O E, Shephard N. Impact of Jumps on Returns and Realised Variances: Econometric Analysis of Time-deformed Lévy Processes[J]. Journal of Econometrics. 2006(131): 217-252.
    [78] Bollerslev, Kretschmer, Pigorsch, et al. A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects[J]. Working paper. 2007.
    [79] Schoutens W, Teugels J L. Lévy processes, ploynomials and martingales[J]. Communications in Statistics:Stochastic Models. 1998(14): 335-349.
    [80] Grigelionis B. Processes of Meixner type[J]. Lithunaian Mathematics Journal. 1999, 39(1): 33-41.
    [81] Barndorff-Nielsen O E. Exponentially decreasing distributions for the logarithm particle size[J]. Proceedings of the Royal Society of London. 1977(353): 401-419.
    [82] Barndorff-Nielsen O E. Process of Normal Inverse Gaussian Type[J]. Finance and Stochastics. 1998(2): 41-68.
    [83] Madan D B, Carr P, Chang E C. The variance Gamma process and option pricing[J]. European Finance Review. 1998(2): 79-105.
    [84] T G, J K. Optimal portfolios for logarithmic utility[J]. Stochastic Process. 2000, 89: 31-48.
    [85] Basawa I V, Brockwell P J. Non-parametric estimation for non-decreasing Lévy processes[J]. J. R. Statist. Soc. 1982, 2(44): 262-269.
    [86] Figueroa-López J, HoudréC. Risk bounds for the nonparametric estimation of Lévy processes in High Dimensional Probability[J]. IMS Lecture Notes. 2006(51): 96-116.
    [87] Nishiyama Y. Nonparametric estimation and testing time-homogeneity for processes with independent increments[J]. Stoch. Proc. Appl. 2007(32): 32-69.
    [88] Grenander U. Abstract Inference[M]. New York: Wiley, 1981.
    [89] Barron A, BirgéL, Massart P. Risk bounds for model selection via penalization[J]. Probab. Theory. 1999(113): 301-413.
    [90] BirgéL, Massart P. From model selection to adaptive estimation[M]. Festschrift for Lucien Le Cam, New York:Springer, 1997, 55-87.
    [91] Berman M B. Generating Gamma distributed variates for computer simulation models[R]. Rand Corporation, 1971.
    [92] Gugushvili S. Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process[J]. J. Nonparametr. Stat. 2009(21): 321-343.
    [93] Davis K B. Mean square error properties of density estimates[J]. Ann. Statist. 1975(3): 1025-1030.
    [94] Davis K B. Mean integrated square error properties of density estimates[J]. Ann. Statist. 1977(7): 530-535.
    [95] Wand M P, C J J. Kernel Smoothing[M]. London: Chapman & Hall, 1995.
    [96] Terrell G R. The maximal smoothing principle in density estimation [J]. Journal of Amer. Statist. Assoc. 1990(85): 470-477.
    [97] Belomestny D, ReiβM. Spectral calibration for exponential Lévy models[J]. Finance Stoch. 2006(10): 449-474.
    [98] Silverman B W. Density Estimation for Statistics and Data Analysis[M]. London: Chapman and Hall, 1986.
    [99] Mandelbrot B. The variation of certain speculative prices[J]. Journal of Business. 1963(XXXVI): 392-417.
    [100] Kahn P M. An Introduction to Collective Risk Theory and its Application to Stop-Loss Reinsurance[J]. Transactions of the Society of Actuaries. 1962(14): 400-449.
    [101] Rouge R, Karoui N E. Pricing Via Utility Maximization and Entropy[J]. Mathematical Finance. 2000, 10: 259-276.
    [102] Bühlmann H, Delbaen F E P, Shiryaev A N. No-arbitrage, change of measure and conditional Esscher transforms[J]. CWI Quarterly. 1996, 4(9): 291-317.
    [103] Carr P, Madan D B. Option valuation using the fast fourier transform[J]. Journal of Computational Finance. 1998, 2: 61-73.
    [104] Cont R, Tankov P. Non-parametric calibration of jump-diffusion option pricing models[J]. Journal of Computational Finance. 2004(7): 1-49.
    [105] Tankov P. Levy Processes in Finance: Inverse Problems and Dependence Modelling[D]. France: Ecole Polytechnique, 2004.
    [106] Andersen L, Andreasen J. Jump diffusion models: volatility smile fitting and numerical methods for pricing[J]. Review of Derivatives Research. 2000, 4(3): 231-262.
    [107] Bates D S. Testing option pricing models[M]. Amsterdam:North-Holland, 1996, 127-140.
    [108] Engl H W, Hanke M, Neubauer A. Regularization of inverse problems[M]. Dordrecht: Kluwer Academic Publishers Group, 1996.
    [109] Byrd R H, Lu P, Nocedal J. A Limited memory algorithm for bound constrainted optimization[J]. SIAM Journal on Scientific and Statistical Computing. 1995(16): 1190-1208.
    [110] Corcuera J M, Guillaume F, Leoni P, et al. Implied Lévy volatility[J]. Journal of Quantitative Finance. 2009(9): 383-393.
    [111] Parzen E. On estimation o f a probability density function and mode[J]. The Annals of Mathematical Statistics. 1962(33): 1065-1076.
    [112] Hansen L P. Large sample properties of generalized method of moments estimators[J]. Econometrica. 1982(50): 1029-1054.
    [113] Lukacs E. Characteristic Functions[M]. New York: Griffin, 1970.
    [114] Tran K C. Estimating mixtures of normal distributions via empirical characteristic function[J]. Econometric Review. 1998(17): 167-183.
    [115] Feuerverger A, Mureika R A. The empirical characteristic function and its applications[J]. Ann. Statist. 1977(5): 88-97.
    [116] Carrasco M, Florens J. Generalization of GMM to a continuum of moment conditions[J]. Econometric Theory. 2000(16): 797-834.
    [117] Feuerverger A, Mcdunnough P. On some Fourier methods for inference[J]. J. Am. Statist. Assoc. 1981(76): 379-387.
    [118] Carrasco M, Florens J. Efficient GMM estimation using the empirical characteristic function[Z]. workingpaper: 2002.
    [119] Knight J L, Satchell S E. The cumulant generating function estimation method[J]. Econometric Theory. 1997(13): 170-184.
    [120] Jiang G, Knight J L. Estimation of continuous time processes via the empirical characteristic function[J]. J. Business Economic Statist. 2002(20): 198-212.
    [121] Powell M. An efficient method for finding the minimum of a function of several variables without calculating derivatives[J]. Computer Journal. 1964(7): 152-162.
    [122] F(o|¨)llmer H, Sondermann D. Hedging of non-redundant contingent claims[J]. Mathematical Economics. 1986(5): 205-223.
    [123] F(o|¨)llmer H, Schweizer M. Hedging of contintgent claims under incomplete information[J]. Applied Stochastic Analysis. 1991(1): 389-414.
    [124] Kunita H, Watanabe S. On square integrable martingales[J]. Nagoya Math. J. 1967(30): 209-245.
    [125] Bouleau N, Lamberton D. Residual risks and hedging strategies in Markovian markets[J]. Stochastic Process. Appl. 1989(33): 131-150.
    [126] Benth F E, Di Nunno G, L(?)kka A, et al. Explicit representation of the minimal variance portfolio in markets driven by Lévy processes[J]. Mathematical finance. 2003(13): 55-72.
    [127] F(o|¨)llmer H, Elliott R. Orthogonal martingale representation[M]. Stochastic Analysis, Boston:Academic Press, 1991, 139-152.
    [128] Jacod J, Méléard S, Protter P. Explicit form and robustness of martingale representations[J]. Annals of Probability. 2000(28): 1747-1780.
    [129] Hubalek F, Kallsen J, Krawczyk L. Variance-optimal hedging for processes with stationary independent increments[J]. The Annals of Applied Probability. 2006(16): 853-885.
    [130] Raible S. Lévy Processes in Finance: Theory, Numerics, and Empirical Facts[D]. Universit(a|¨)t Freiburg, 2000.
    [131] (?)erny A, Kallsen J. On the structure of general mean-variance hedging strategies[J]. The Annals of Probability. 2007(35): 1479-1531.
    [132] Schweizer M. Approximating random variables by stochastic integrals[J]. Annals of Probability. 1994(22): 1536-1575.
    [133] Denkl S, Goy M, Kallsen J, et al. On the Performance of Delta Hedging Strategies in Exponential Lévy Models[Z]. 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700