用户名: 密码: 验证码:
稀土—凹凸棒石催化剂直接分解NO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展和汽车数量的日益增加,大气污染已经成为一个日益严重的全球性问题。氮氧化物(NOx)作为大气主要污染物之一,它的过量排放,对人类健康和自然界的生态平衡构成了巨大威胁。因此,NOx的有效脱除(尤其是催化脱除),是当前大气污染控制领域的研究热点之一。
     本文以凹凸棒石和稀土化合物氧化钇、氧化镧、碳酸铈等为主要原料,采用共混法制备了系列稀土—凹凸棒石催化剂,并在固定床反应器中对其催化分解NO的活性进行了实验考察。
     实验筛选制备了La-Ce-Attapulgite和Ce-Y-Attapulgite催化剂,考察了稀土加入量、稀土配比、共混液pH值和活化煅烧温度等制备条件对其催化分解NO活性的影响。并在单因素试验的基础上,分别采用响应面法和正交法对其制备条件进行了优化。
     实验得出La-Ce-Attapulgite催化剂最佳制备条件为:共混液pH值6.5,稀土加入量3%,稀土质量配比LaxCe(1-x)(x=0.55),煅烧温度409℃。Ce-Y-Attapulgite催化剂最佳制备条件为:共混液pH值7,稀土质量配比CexY(1-x)(x=0.8),稀土加入量3%,煅烧温度375℃。在脱硝反应温度为400℃,空速5000h-1,氧含量5%,NO进口浓度0.08%的实验条件下,其脱硝率分别可达66.58%和69.89%。
     本文在考察了反应温度、空速、进口气体中NO和O2浓度等反应条件对脱硝过程影响的基础上,对其催化反应动力学进行了初步探讨。结果表明:该反应符合二级反应的特征,NO在活性位上的吸附是可逆的,两个被吸附的NO分子之间的表面反应为整个反应的速率控制步骤。
     实验采用X射线衍射仪、扫描电镜、红外光谱仪和热重分析仪等现代分析检测技术,对催化剂的组成、表面形态以及特征结构等进行考察和表征。
With the development of modern industry and the increasing of vehicles, air pollution has become a serious global problem. As the one of main atmosphere pollutants, Nitrogen oxide has huge threat to human health and ecological balance by its excessive emissions. Therefore, effectively elimination of nitrous oxide, especially the catalytic elimination, is present hot issue in environmental protection research area.
     In this study, attapulgite, yttrium oxide, the lanthanum oxide and the carbonated cerium were choosed as raw materials. A series of RE-Attapulgite catalysts for NO decomposition were prepared by chemical blending method and their catalytic performance was evaluated in a fixed bed flow reactor.
     La-Ce-Attapulgite and Ce-Y-Attapulgite catalysts were prepared in this study. Meanwhile, the effects of preparation conditions, including the rare earth content, ratio of La/Ce, pH value of the chemical blending, calcination treatment temperature of the catalysts, on catalytic activity of the catalysts for NO decomposition were investigated. After the single factor experiments, response surface experiment and orthogonal experiment methods were applied to optimize the preparation condition of La-Ce-Attapulgite and Ce-Y-the Attapulgite catalyst, respectively.
     The obtained results indicated that the optimal conditions of La-Ce-Attapulgite catalyst preparation were 2%, x=0.55, pH 7 and 400℃for the rare earth content, LaxCe(1-X), pH value of the chemical blending and alcination treatment temperature, respectively. And the denitration rate could be up to 66.58% under reaction conditions of 400℃, gas space velocity of 5000 h-1, the flue gas of 0.08% NO and 5.0% O2 balancing by N2. The optimal conditions of Ce-Y-Palygorskite catalyst preparation were 3%, x=0.8,7 and 375℃for the rare earth content, CexY(1-x), pH value of the chemical blending and calcination treatment temperature, respectively, and the denitration rate could be up to 69.89%.
     The effects of reaction temperature, airspeed, NO and O2 density of waste gas on NO catalytic decomposition were investigated. Based on the above experiments, the catalytic reaction dynamics were preliminary discussed. The results indicated that the react model has the second-level characteristic. NO adsorption on catalyst activeness bits is reversible; the surface reaction of two adsorbed NO molecules is the control speed step.
     X-ray diffractometer, scanning electron microscope, infrared spectrometer and thermogravimetric technology were used to analysis the elements, surface morphology and the characteristic structure of the catalysts, respectively.
引文
[1]Atkinson.R. Atmospheric chemistry of VOCs and NOx[J].Atmospheric Environment.2000, 34(12-14):2063-2101.
    [2]唐晓龙,李华,易红宏,等.过渡金属氧化物催化氧化NO实验研究[J].环境工程学,2010,4(3):639-641.
    [3]毛健雄,毛健全.煤的清洁燃烧[M].北京:科学出版社,2000.
    [4]张超群.超细煤粉的燃烧机理与表面化学研究[D].上海:上海交通大学,2007.
    [5]金永龙.烧结过程中NOx的生成机理解析[J].烧结球团,2004,29(5):6-9.
    [6]吴碧君.燃烧过程中氮氧化物的生成机理[J].电力环境保护,2003,19(4):9-12.
    [7]田耀鹏,嵇鹰.低NOx燃烧和排放控制技术的研究进展[J].2009,25(1):27-30.
    [8]周芸芸,钱枫,付颖.烟气脱硫脱硝技术进展[J].北京工商大学学报(自然科学版),2006,24(3):6-9.
    [9]姜秀民,刘辉.超细煤粉NOx和SO2排放特性与燃烧特性[J].化工学报,2004,55(5):784-786.
    [10]Derwent.R. G, Davies. T. J. Modelling the impact of NOx or hydrocarbon control on photochemical ozone in Europe [J].Atmospheric Environment,1994,28 (12):2039-2052.
    [11]姜辉,叶庆春.氮氧化物致病机制及净化技术原理研究[J].齐鲁医学杂志,2006,4(21):183-184.
    [12]任晓莉.常压湿法治理化学工业中氮氧化物废气的研究[D].天津:天津大学化工学院,2006.
    [13]任晓莉,张雪梅,张卫江,等.碱液吸收法治理含NOx工艺尾气实验研究[J].化学工程,2006,34(9):63-66.
    [14]Chu H, Chien TW, Li SY.Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions [J].The Science of the Total Environment,2001,275(3):127-135.
    [15]Jin DS,Deshwal BR, Park YS, et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution [J].J Hazard Mater,2006,135(3):412-417.
    [16]吴成志.化学吸收-生物还原处理烟气中氮氧化物Fe(II)EDTA-NO和Fe(III)EDTA的微生物还原特性[D].浙江:浙江大学,2006.
    [17]王睿,吴丹,赵大传等.实现NOx吸附分解的杂多化合物催化新体系研究[J].现代化工2006,26(2):120-125.
    [18]宋淑美,马涛,姚远,等.具有吸附-分解NOx功能的多酸催化新体系研究[J].燃料化学学报,2009,37(1):87-92.
    [19]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [20]Penetrante BM, Brusasco RM, Merritt BT, et al.Plasma-assisted catalytic reduction of NOx [C].Society of Automotive Engineers Fall Fuels and Lubricants Meeting.San Francisco, America,1998.
    [21]Singh G, Graves RL, Storey JM, et al.Emission control research to enable fuel efficiency:department of energy heavy vehicle technologies[C]. Government Industry Meeting.Washing ton, America,2000.
    [22]边靖.电晕放电-光催化法处理NOx的实验研究[D].西安:西安建筑科技大学,2007.
    [23]汪晶毅,聂勇,钟侃,等.水蒸气和CO2对等离子体-催化还原NOx的影响[J].高电压技术,2009,35(2):335-339.
    [24]黄立维,松田仁树.非热等离子体结合CuO催化剂或Ca(OH)2吸收剂去除氮氧化物[J].2006,27(10):1942-1945.
    [25]杨自军,陈明功,陈晶铃,等.稀土改性凹凸棒石协同等离子体净化硝酸尾气[J].安徽理工大学学报,2009,29(2):29-33.
    [26]王艳芳.低温等离子体协同催化净化废气的研究进展[J].现代商贸工业,2008,20(4):204-241.
    [27]沈伯雄,刘亭,韩勇富,等.选择性非催化还原脱除氮氧化物的影响因素分析[J].中国电机工程学报,2008,28(23):53-59.
    [28]曹庆喜,吴少华,刘辉,等.添加剂对选择性非催化还原脱硝及NH3氧化影响的实验研究[J].中国电机工程学报,2009,29(11):21-25.
    [29]Masaki H, Masui T, Imanaka N. Direct decomposition of nitric oxide into nitrogen and oxygen over C-type cubic Y2O3-ZrO2 solid solutions [J]. Journal of Alloys and Compounds, 2008,451(1-2):406-409.
    [30]Mickael R, Gabriele R, Silvia B, et al. Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Fe-zeolites[J]. Journal of Catalysis,2009,264(2):104-116.
    [31]Gerhard D. P, Marco L, Pijus K. R, et al. N2O decomposition over iron-containing zeolites prepared by different methods:a comparison of the reaction mechanism[J]. Journal of Catalysis,2004,224 (2):429-440.
    [32]吕君英,龚凡,郭亚平,等.选择性催化还原NOx的反应机理研究[J].工业催化,2006,14(1):40-45.
    [33]张志慧,牛金海,刘世华,等Co-ZSM-5催化剂上烃类选择性催化还原NOx机理研究进展[J].工业催化,2006,14(7):52-56.
    [34]李金虎.凹凸棒石负载锰氧化物低温选择性还原NO[D].合肥:合肥工业大学,2010.
    [35]Yeom YH, Li MJ, Sachtler WMH, et al.A study of the mechanism for NOx reduction with ethanol on-alumina supported silver[J].Journal of Catalysis,2006,238(1):100-110.
    [36]Sanchez BS, Querini CA, Miro EE.NOx adsorption and diesel soot combustion over La2O3 supported catalysts containing K, Rh and Pt[J].Appl Catal A:Gen.2009,366(1):166-175.
    [37]Qi GS, Yang RT.Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. Journal of Catalysis,2003,217(2):434-441.
    [38]李伟,林涛,张秋林,等.整体式MnOx-CeO2/ZrO2-TiO2催化剂用于NH3低温选择性催化还原NO[J].催化学报,2009,30(2):104-110.
    [39]Amiridis MD, Zhang TJ, Farrauto RJ.Selective catalytic reduction of nitric oxide by hydroc-arbons [J].Appl Catal B,1996,10(1-3):203-227.
    [40]Wu Q, Feng QC, He H.Disparate effects of SO2 on the selective catalytic reduction of NO by C2H5OH and IPA over Ag/Al2O3 [JJ.Catal Commun,2006,7 (9):657-661.
    [41]He H, Yu YB.Selective catalytic reduction of NOx over Ag/Al2O3 catalyst:from reaction mechanism to diesel engine test [J].Catal Today,2005,100(1-2):37-47.
    [42]宋小萍,张长斌,贺泓,等(Ag/Al2O3+Cu/Ce(x)/Al2O3)组合催化剂催化乙醇选择性还原NOx及其副产物的消除[J].催化学报,2008,29(6):524-530.
    [43]康守方,魏丽斯,李俊华,等Ag/Al2O3选择性还原整体式催化剂的制备[J].清华大学学报(自然科学版),2008,48(6):1004-1007.
    [44]李儒龙,帅石金,董红义,等.乙醇选择性催化还原NOx后处理系统在重型柴油机上的应用研究[J].内燃机工程,2007,28(1):1-5.
    [45]沈岳松,祝社民,丘泰,等Ti-Zr-V-0复合催化材料的制备及其选择性催化还原NO[J].无机材料学报,2009,24(3):457-462.
    [46]陶建忠,李国祥,佟德辉,等.基于V-W/Ti基催化剂的NH3选择性催化还原NOx的试验研究[J].内燃机工程,2008,29(2),22-25.
    [47]Cheng HK, Huang YQ, Wang AQ, et al.N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors[J].Applied Catalysis B:Environmental, 2009,89(3-4):391-397.
    [48]Li X, Zhang C, He H, et al.Promotion effect of residual K on the decomposition of N2O over cobalt-cerium mixed oxide catalyst[J].Catalysis Today,2007,126(3-4):449-455.
    [49]Stelmachowski P, Maniak G, Kotarba A, et al.Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants[J].Catalysis Communications,2009,10(7): 1062-1065.
    [50]吕莹.CaH2修饰的Mn-ZSM-5催化剂上C2H4选择还原NO活性研究[D].辽宁:辽宁师范大学,2006.
    [51]IlievaL, Pantaleo G.Gold catalysts supported on CeO2 and CeO2-Al2O3 for NOx reduction by CO[J].Appl Catal B,2006,65(10):101-105.
    [52]Wang Q, Sohn JH.Thermally stable Pt/K2Ti2O5 as high-temperature NOx storage and reduct-ion catalyst[J]. Appl Catal B,2009,89(3):97-103.
    [53]徐春保,吴胜利,苍大强,等,NO-CO-CO2-N2体系中若干金属氧化物对NO去除反应的催化作用[J].中国环境科学,1998,18(3):236-239.
    [54]Imagawa H, Tanaka TS, Takahashi NK.Synthesis and characterization of Al2O3 and ZrO2-TiO2 nano-composite as a support for NOx storage-reduction catalyst[J].Journal of Catalysis, 2007,251(6):315-320.
    [55]An HM, Kilroy C, McGinn PJ. Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion [J].Catalysis Today,2004,98(3):423-429.
    [56]王虹,赵震,徐春明,等.纳米La-Mn-O钙钛矿型氧化物催化剂上柴油机尾气碳颗粒催化燃烧性能的研究[J].科学通报,2005,50(4):336-339.
    [57]Wang H, Zhao Z, Xu C, et al.Nanometric La1-xKxMnO3 perovskite-type oxides-highly active catalysts for the combustion of diesel soot particle under loose contact conditions[J]. Catalysis Letters,2005,102(3/4):251-256.
    [58]王军利,王虹,孙志强,等La-K-Co-Mn-O钙钛矿型复合氧化物同时去除碳颗粒和NOx的性能[J].2008,30(12):40-46.
    [59]Kimihiro A, Chie O, Iwamoto S, et al.Potassium-doped Co3O4 catalyst for direct decomposi-tion of N2O[J]. Applied Catalysis B,2008,78(3-4):242-249.
    [60]Pasha N, Lingaiah N, Reddy P, et al.An investigation into the effect of Cs promotion on the catalytic activity of NiO in the direct decomposition of N2O[J].Catalysis Letters,2007, 118(1-2):64-68.
    [61]张婧婧.离子掺杂Cu-ZSM-5分子筛催化剂直接分解NO的实验研究[D].南京:南京理工大,2008.
    [62]王艳玲.NO直接分解Cu-ZSM-5/CaH2复合催化剂研究[D].辽宁:辽宁师范大学,2005.
    [63]栾敏杰.新型分子筛催化剂对氮氧化物的分解与还原[D].黑龙江:黑龙江大学,2006.
    [64]周杰.凹凸棒石黏土的显微结构特征[J].硅酸盐通报,1999(6):50-54.
    [65]陈天虎.苏皖凹凸棒石粘土纳米尺度矿物学及地球化学[D].安微:合肥工业大学资源与环境工程学院,2003.
    [66]Galan E.Properties and applications of palygorskite-sepiolite clays[J].ClayMiner,1996, 31(4):443-453.
    [67]陈天虎,王健,庆承松,等.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报,2006,34(11):1406-1410.
    [68]许干,杜卫刚,周伟,等.改性凹凸棒土净化含铬废水的研究[J].天津化工,2007,21(6):58-60.
    [69]熊飞,尹琳,蔡元峰,等.胶体级凹凸棒石粘土的生产工艺研究[J].矿产综合利用,2004,2:42-44.
    [70]杨自军,陈明功,陈晶铃,等.稀土改性凹凸棒石协同等离子体净化硝酸尾气[J].安徽理工大学学报(自然科学版),2009,29(2):29-33.
    [71]马睿明.凹凸棒石粘土湿法脱除氮氧化物的研究[D].南京:南京理工大学,2007.
    [72]张飞龙,周荣秀,李澜,等.改性凹凸棒粘土脱硫剂脱除SO2[J].环境污染与防治,2009,31(7):66-69.
    [73]Cao J L, Shao G S, Wang Y, et al. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation [J].Cdica Commun,2008,9(15):2555-2559.
    [74]张俊,赵跃智.复合纳米TiO2/凹凸棒土处理氨氮废水[J].中国非金属矿工业导刊,2007,(6):46-47.
    [75]王松.改性后凹凸棒石黏土处理含磷废水研究[J].广西轻工业,2009,(10):42-43.
    [76]Minami.K, Masui.T, Imanaka.N, et al. Redox behavior of CeO2-ZrO2-Bi2O3 and CeO2-ZrO2-Y2O3 solid solutions at moderate temperatures Original Research Article[J]. J Alloy Compd,2006,408-412:1132-1135.
    [77]Zhu JJ, Xiao DH, Li J, et al. Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1-xCexSrNiO4 (0≤x≤0.3)[J].Journal of Molecular Catalysis A:Chemical,2005,234(1-2):99-105.
    [78]Elena V, Frolova M, Ivanovskaya V, et al. Properties of Ce-Zr-La-O nano-system with ruthenium modified surface Original Research Article[J].Progress in Solid State Chemistry, 2005,33, (2-4):317-325.
    [79]范翠云.稀土元素对铜/海泡石催化性能影响的研究[D].北京:北京工业大学,2007.
    [80]Steudel A, Batenburg L F, Fischer H R, et al. Alteration of non-swelling clay minerals and magadiite by acid activation Original Research Article [J]. Applied Clay Science,2009, 44(1-2):95-104.
    [81]陈志刚,郭婷婷,李霞章,等.凹凸棒土负载CeO2催化氧化处理亚甲基蓝染料废水[J].功能材料,2009,10(40):1709-1712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700