用户名: 密码: 验证码:
旋流板在钠碱烟气脱硫中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以钠碱烟气脱硫为背景,通过理论模型模拟与实验相结合的方法,考察了不同因素对旋流板脱硫率,单板效率,除尘效率以及旋流板流体力学行为的影响。
     通过计算流体力学软件FLUENT,对旋流板塔内的流场行了数字实验模拟,发现旋流板叶片中间的气速最大,从此处向叶片两端气速分别递减,盲板附近的气速较小,塔板上压强由盲板向壁面从低到高变化。
     建立了钠碱溶液二氧化硫吸收平衡曲线的数学模型方程,通过数值计算发现有无活度系数修正对二氧化硫吸收相平衡曲线有较大影响,这种影响大小随溶液条件而异;在脱硫率单因子实验中,脱硫率随钠离子的浓度增大而先增后减,钠离子浓度分界点为0.8mol/L;脱硫率随pH增加而增大,在pH=6.7~7.9之间脱硫率增长不明显;脱硫率随液气比(L/V)的增加而增大,基本呈线性变化;脱硫率随口烟气浓度的增加先增大后减小,在一定条件下存在着吸收极限。旋流板的单板效率随钠离子浓度的增加而下降,随pH的升高而降低。
     在压降实验中发现,该旋流板在实验条件下其压降较小,湿板压降在一定的液气比范围可以保持基本不变。通过对旋流板除尘效率的考察,发现旋流板在较小的液气比下除尘效率能达到60%以上,同时随烟灰浓度的加大除尘效率变化不大。
     通过上述理论与实验研究结果充分说明了旋流板脱硫效率好、负荷高、压降低、操作弹性宽、除尘性能良好的特点,在烟气脱硫中更适于实现脱硫、除尘一体化。
Considering the application of Rotating-stream-tray(RST) scrubber in fuel gas desulphurization by natrium-alkali, this thesis has investigated the effects of different factors on the efficiency of fuel gas desulphurization, plate efficiency, dust removing efficiency and fluid mechanics characteristics of RST.
     Numerical experiments were carried out to simulate the flow field in RST scrubber by computational fluid dynamics (CFD) software FLUENT. The calculated results showed that the gas velocity at the middle of RST was largest, but the gas velocity from this point to two tips of RST gradually declined, moreover, the gas velocity near to blanking plate was small, at the same time, the static pressure was lower at blanking plate, but higher near to tower wall.
     A mathematic model for sulfur dioxide absorption equilibrium in sodium alkali aqueous solution was established. The results indicated the modification of activity coefficient would influence equilibrium curves; furthermore, the conditions of alkali-adsorption solution affected the trend of the absorption equilibrium curves. Desulphurization experiments showed the SO_2 removal efficiency increased first, then decreased with the increase of sodium ion concentration, and the critical sodium ion concentration was about 0.8mol/L; SO_2 removal efficiency as well increased with pH, but almost kept at the same level when pH at 6.7~7.9; Obviously, SO_2 removal efficiency increased with the ratio of liquid/gas in a linear mode; in addition, SO_2 removal efficiency increased with the increase of the inlet SO_2 concentration as SO_2 concentration was low, and reduced when the SO_2 concentration was higher than a certain value, this proved that it existed a optimum SO_2 concentration for RST on a certain experimental conditions. The plate efficiency for RST decreased with sodium ion concentration and pH increasing.
     From the measurement of pressure drop, it was found that the pressure drop of wet plate at experimental conditions was low, and changed little at certain range of liquid/gas ratio. The dust removal experiments showed that the efficiency of dust removal could reach to 60% even at a smaller ratio of liquid /gas, and almost kept at the same level with the variation of dust concentration in lab conditions.
     The experiments and theory analyses above confirm that RST has many advantages such as higher desulphurization efficiency, more load, lower pressure drop, wider range of operation and better dust removal efficiency, which is qualified to simultaneously realize the two objects of desulphurization and dust removal in FGD industry.
引文
[1]杨飏,二氧化硫减排技术与烟气脱硫工程,冶金工业出版社,2004
    [2]舒惠芬,燃煤电厂的SO2控制,电力设备,2003,4(4):4~8
    [3]国家环境保护总局,国家质量监督检验检疫总局,GB13233-2003,中华人民共和国国家标准,火电厂大气污染物排放标准,北京:环境科学出版社,2003-12-30
    [4]S K Gangwal, R Gupta, W J McMichael, Hot-gas cleanupHot-sulfur recovery technical, environmental, and economic issues, Heat Recovery Systems & CHP 1995, 15(2): 205~214
    [5]Jun Cheng, Junhu Zhou, Jianzhong Liu et al, Sulfur removal at high temper- ature during coal combustion in furnaces: a review, Progress in Energy and Combustion Science, 2003, 29: 381~405
    [6]肖文德,吴志泉,二氧化硫脱除与回收,北京:化学工业出版社,2001
    [7]吴忠标,实用环境工程手册,大气污染控制工程,北京:化学工业出版社,2001
    [8]Colley J D, Optimization of LGSPE’s CANE Run 6 Dual Alkali FGD System, EPR I, SO2 Control Symposium, Session2, 1995
    [9]张新生,李长春,李光霞,燃煤烟气脱硫,中国地质大学出版社,1991
    [10]赵鹏高,我国燃煤电厂烟气脱硫技术与设备国产化展、问题及建议,电力环境保护,2004,20(2):1~3
    [11]Tang Z G, Zhou C C, Chen C, Studies on flue gas desulfurization by chemical adsorption using an ethylenediamine-phosphoric acid solution, Ind Eng Chem Res, 2004, 43(21): 6714~6722
    [12]Miller Michael J Retrofit, SO2 and NOx control technologies for coal-fired power plants, Environmental Progress , 1986, 5(3): 171~177
    [13]Amedeo Lancia, Dino Musmarra, Marina Prisciandaro et al, Catalytic oxidation of calcium bisulfite in the wet limestone-gypsum flue gas desulfurization process, Chemical Engineering Science, 1999, 54 (15/16): 3019~3026
    [14]Melkap B C, Kundu G Biswas M N, Modeling of a novel multi-stage bubble column scrubber for flue gas desulfurization, Chemical Engineering Journal, 2002, 86(3): 331~342
    [15]Li Y Sadak ATA M, Study of gypsum formation for appropriate dry desulfurization process of flue gas , Fuel ,1999, 78(9): 1089~1095
    [16]Dam Johansen K, ?stergaard K, High-temperature reaction between sulphur dioxide and limestone I Comparison of limestone in two laboratory reactions and a pilot plant, Chem Eng Sci, 1991, 46(3): 827~837
    [17]Fabrizio Scala, Michele D’Ascenzo, Amedeo Labcia, Modeling flue gas desulfurization by spray-dry absorption, Separation and Purification Technology, 2004, 34(1~3): 143~153
    [18]郝吉明,王书肖,陆永琪,燃煤二氧化硫污染控制技术手册,北京:化学工业出版社,2001
    [19]王志轩,潘荔,火电厂烟气脱硫现状与对策,中国电力企业管理,2004,(10):51~53
    [20]杨志忠,沈坚勇,李毅,石灰石/石灰烟气脱硫工艺在我国火电厂的应用现状,东方锅炉,2003,(1):20~26
    [21]邢连中,应用国家政策推动火电厂烟气脱硫工作的全面实施,华东电力,2004,32(6):11~13
    [22]杨旭中,燃煤电厂脱硫装置,北京:中国电力出版社,2006
    [23]赛俊聪,吴少华,汪洪涛等,中国烟气脱琉技术现状及国产化问题,电站系统工程,2003,19(1):53~54
    [24]曾东瑜,陈凡植,郭洁茹等,国产化是我国未来烟气脱硫的发展方向,广东电力,2004,27(1):10~14
    [25]雷仲存,工业脱硫技术,北京:化工工业出版社,2001
    [26]阎世辉,我国燃煤电厂二氧化硫减排技术经济分析,环境保护,2003,(4):46~48
    [27]徐旭常,陈昌和,祁海鹰等,我国燃煤污染控制技术与对策的研究,苏州科技学院学报(工程技术版),2003,16(1):8~15
    [28]兰州石油机械研究所主编,现代塔器技术,北京:中国石化出版社,2005
    [29]Chen Jianmeng, Tan Tian’en, Experimental and Theoretical Inverstigation of Gas Flowfield on a Rotating Stream Tray, Chemical Engineering Communications, 1998, 168: 243~257
    [30]陈建孟,柴骏,旋流板上液滴的粒径分布和运动模型,浙江工业大学学报,1996,24(2):131~137
    [31]陈建孟,谭天恩,史小农,旋流塔板的板效率模型,化工学报,2003,54(12):1755~1760
    [32]顾永祥,谭天恩,旋流板气液接触状态及塔板压降,高校化学工程学报,1990,4(1):39~49
    [33]陈建孟,旋流塔板上的气液运动,(学位论文),浙江大学,1992
    [34]史惠祥,旋流塔板上气液运动及板效率模型研究,(学位论文),浙江大学,1994
    [35]晏乃强,施耀,吴忠标等,双碱法旋流板塔烟气脱硫工艺,环境科学,1998,19(5):72~74
    [36]吴忠标,刘越,谭天恩,双碱法烟气脱硫工艺的研究,环境科学学报,2001,21(5):534~537
    [37]孙文寿,昊忠标,谭天恩,旋流板塔镁强化石灰脱硫过程研究,环境科学,2001,22(3):104~107
    [38]孙文寿,吴忠标,李悦等,旋流板塔钠强化石灰石湿式烟气脱硫研究,环境科学,2002,23(5):105~108
    [39]张志刚,李玉平,张国光,旋流塔板叶片仰角对湿钙法烟气脱硫过程的影响,环境污染治理技术与设备,2003,4(12):90~92
    [40]饶应福,陈云,白冰,旋流板塔脱硫除尘系统结构性能的中试研究,电力环境保护,2003,19(3):24~30
    [41]吴之瑜,李滔朱,朱可锵,旋流板塔高效脱硫除尘技术应用,环境工程,2004,22(3):46~48
    [42]魏兆灿,李宽宏,塔设备设计,上海:上海科学技术出版社,1988
    [43]浙江大学化工原理教研组,旋流板塔的试验和设计,化学工程,1975,3:17~19
    [44]朱自强等,应用计算流体力学,北京:北京航空航天大学出版社,1998
    [45]张涵信,沈孟育,计算流体力学差分方法的原理和应用,北京:国防工业出版社,2003
    [46]张涵信,无波动、无自由参数的耗散差分格式,空气动力学学报,1984,1:112~19
    [47]方坤,计算流体力学的几种常用软件,煤炭技术,2006,25(12)
    [48]绍雄飞,旋流板塔内两相流场的CFD模拟与分析,(学位论文),浙江大学,2004
    [49]张明星,陈海焱,颜翠平等,FLUENT软件在除尘领域中的应用,济南大学学报,2006,2(20):160~163
    [50]李勇,刘志友,安亦然,介绍流体力学通用软件-Fluent,水动力研究展,2001,16(2):254~258
    [51]崔泽艳,陈大宏,CFX4中常用模型在复杂流动中适用性分析,武汉大学学报(工学版),2004,37(5):18~19
    [52]丁凌云,冯,刘孝光等,CFX-BladeGen在涡轮叶片造型中的应用,工程设计学报,2005,12(2):109~112
    [53]刘应中,缪国平,高等流体力学,上海:上海交通大学出版社,2000
    [54]Roe P L, Approximate Riemann solvers parameter vectors and difference schemes, J. of Comp. Phys., 1981, 43: 357~372
    [55]Mac cormack, R W and Paullay A. J, Computational Efficiency Achieved by Time Splitting of Finite Difference Operators, AIAA Paper: 72~154
    [56]Beam R M and Warming R F, An implicit factored scheme for the compressible Navier-Stokes equations, AIAA Journal, 1978, 16:393~401
    [57]Deton J D, Extension of the Finite Area Time Marching Method to Three Dimensions, VKI. Lecture Series, 1976, 145: 84
    [58]成立,刘超,周济人等,基于RNG湍流模型的双向泵站出水流道流动计算,水科学展,2004,15(1):109
    [59]陈庆光,徐忠,张永建,RNG湍流模型在冲击射流数值计算中的应用,力学与实践,2002,24:21
    [60]J C Beck, A P Watkins, The droplet number moments approach to spray modeling, The development of heat and mass transfer sub-models, International Journal of Heat and Fluid Flow, 2003, 24: 243~244
    [61]M Schultes, Absorption of Sulphur Dioxide with Sodium Hydroxide Solution in Packed Columns, Chem. Eng. Technol., 1998, 21 (2): 201~209
    [62]Chang C S, Rochelle G T, SO2 Absorption into NaOH and Na 2 SO3 Aqueous Solutions, Ind. Eng. Chem. Fundam, 1985, 24: 7~11
    [63]Martin Zidar, Gas-Liquid Equili Equilibium Operation Diagram: Graphical Presentation of Absorption Of SO2 in the NaOH-SO2 -H2O System Taking Place within a Laboratory Absorber, Ind. Eng. Chem. Res., 2000, 39: 3042~3050
    [64]Pasuik-Bronikowska W, Rudzinsky K J, Absorption of SO2 into aqueous systems, Chem. Eng. Sci., 1991, 46(9): 2281~2291
    [65]Verfahrenstechnische Berechnungsmethoden, VCH-VerlagWeinheim , 1985: Teil 7, Stoffdaten

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700