用户名: 密码: 验证码:
带狭长上室调压室水面线的非恒定全数值仿真计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代计算机技术和计算流体动力学(CFD)的发展,相应的CFD数值模拟方法在相关领域中得到了广泛的应用,并已成为当今研究各种流动问题的一种非常重要的方法。在水利工程中,带有自由表面的流动问题广泛存在着,如果能够很好的利用数值模拟解决这类问题,不仅可以对这些水流流动规律行深入地研究,同时相对于试验来说可以节省人力、财力和时间。本文以某水电站带狭长上室的溢流式尾水调压室为例,探讨了CFD方法在调压室水面线非恒定全数值仿真计算中的应用。
     调压室水面波动是一个非恒定过程,计算时需要给出非恒定的边界条件。本文运用CFD方法计算调压室的局部水头损失系数,然后将它输入到水电站过渡过程计算,得到调压室底部随时间变化的边界条件。本文的主要内容如下:
     1.简要介绍了计算流体动力学及其数值解法,并对带有自由表面流动问题的常用研究方法行了总结。
     2.用CFD方法计算出调压室的局部水头损失系数,并将计算结果与模型试验值行比较分析。通过比较,证明计算结果是可靠的。
     3.根据计算得到的调压室局部水头损失系数,对水电站行过渡过程计算,得出调压室底部流量随时间的变化过程曲线。
     4.运用CFD方法,将流量变化过程曲线作为调压室底部的非恒定边界条件,采用二维可行化κ-ε湍流模型,结合VOF方法对调压室水面线非恒定过程行仿真计算,给出了不同时刻调压室水面线的具体分布情况。计算结果比较真实地再现了调压室波动过程。
With the rapid development of modern computer technology and the Computational Fluid Dynamics(CFD) in the related fields, the numerical simulation method of CFD has been achieved a wide application and become a very important method in the area of various fluid flow research. The problem of complicated free surface widely exists in the hydraulic engineering. If this kind of problem can be solved by means of numerical simulation, it not only can do some research on those flow rules, but also can save manpower, budget and time. The paper takes the tailrace surge tank with long upper-chamber in a pumped-storage power station for instance, and the application of CFD method in the area of numerical simulation of transient flow of the water surface has been discussed.
     The water level in surge tank is unsteady,which,needs the unsteady boundary conditions while computing. In this paper, the coefficients of head loss of surge tank have been calculated by means of CFD and then applied in the computation of transient process in hydropower station. According to that, the boundary condition varying with time at the bottom of surge tank can be achieved. The main contents are as follows:
     1. It has introduced briefly the basic principles of CFD and its numerical methods, and the recent research on solving the problem of free surface has been summarized.
     2. The coefficients of head loss of surge tank have been calculated by means of CFD, and then the calculated results are compared with the hydraulic model test data. By comparision, it shows the calculated results are reasonable.
     3. The computation of transient flow in hydropower station has been done on the basis of the coefficients of head loss of surge tank with long upper-chamber which have been calculated by means of CFD, and then the discharge at the bottom of surge tank which varies with time can be obtained.
     4. By taking the discharge calculated above as the transient boundary condition, numerical simulation of the transient flow of the water surface in surge tank has been done using two dimension Realizable k—εturbulent model, VOF method which tracks the free surface. The specific water surface of the surge tank at different time was given. According to the calculations, the transient flow of surge tank water surface was simulated.
引文
[1] 李志高.水工自由水面及掺气问题的数值模拟研宄[D].西安:西安理工大学,2004.
    [2] 沙海飞,周辉,吴时强,陈惠玲,范丽丽.多孔溢洪道泄流三维数值模拟[J].水利水电技术,2005,36(10):42-46.
    [3] 邓军,许唯临,雷军,刁明军.高水头岸边泄洪洞水力特性的数值模拟[J].水利学报,2005,36(10):1209-1218.
    [4] 李仁年,刘成胜.螺旋离心泵内部流场的数值模拟[J].水泵技术,2005,(3):26-33.
    [5] 刘小龙,施卫东,潘中永,刘厚林.泵站出水流道三维不可压缩湍流流场数值模拟[J].中国农村水利水电,2003,(6):25-27.
    [6] 张文华,陈刚,许联锋等.明流溢洪洞三维流场数值模拟[J].西北水力发电,2005,21(1):24-26
    [7] 王奇峰.溢流反弧紊流流动数值模拟[J].水利学报,1993,(8):1-9.
    [8] 张土乔,尹则高,毛根海.弯曲圆形管道紊流的数值模拟[J].水力发电学报,2005,24(3):61-64
    [9] 成立.泵站水弯道三维流动分析及流态改善研究[J].扬州大学学报(自然科学版),2002,5(2):64-68.
    [10] 王志东,汪德爟.不同墩型溢流坝水动力特性研究[J].河海大学学报(自然科学版),2004,32(4):391-394.
    [11] 王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.9.
    [12] 韩古忠,王敬,兰小平.FLUENT:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [13] Harlow F H and Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. Physics of Fluids, 1965,8:2182-2189.
    [14] Chan R K C and Street R L. A computer study of finite-amplitude waterwaves[J]. J.Comp.Physics, 1970,6:68-94
    [15] Chen S, Johnson D B and Raad P. Velocity boundary conditions for the simulation of free surface fluid flow[J]. J.Comp.Physics, 1995, 116: 52-68.
    [16] Hirt C W and Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. J.Comp.Physics, 1981,39:201-225.
    [17] Toorey M D and Hirt C W. NASA-VOF2D: a computer program for incompressible flows with free surface[R]. LA-10621-MS, 1985.
    [18] 韩标.姚朝晖.叶宏开,王学芳.快堆钠池自由表面波动的三维数值模拟[J].核动工程,1997,18(3):211-216.
    [19] 马福喜,马吉明.溢流坝及水跃强紊流区流速场数值模拟[J].力学学报,1997,29(2):151-157.
    [20] 陈群,戴光清,刘浩吾.带有曲线自由表面的阶梯溢流坝面流场的数值模拟[J].水利学报,2002,(9):20-26.
    [21] 李志勤,李洪,李嘉,李然.溢流丁坝附近自由表面的试验研究与数值模拟[J].水利学报,2003,(8):53-57.
    [22] 刁明军,杨永全,王玉蓉,刘善均.挑流消能水气二相流数值模拟[J].水利学报,2003,(9):77-82.
    [23] 戴会超,王玲玲.淹没水跃的数值模拟[J].水科学展,2004,15(2):184-188.
    [24] 陈永明.带有复杂自由表面的泄水建筑物紊流场的数值模拟[D].扬州:扬州大学,2004,4:5-6.
    [25] 李国栋,陈刚,李建中.明渠泄洪洞流场数值模拟[J].水动力学研究与展,1996,11(6):633-639.
    [26] 许联锋,李建中,陈刚.泄水建筑物体型优选的数值模拟研究[J].水动力学研究与展,2002,17(6):701-708.
    [27] 廖华胜,汝树勋,吴持恭.阶梯溢流坝流场的数值模拟[J].成都科技大学学报,1995,(5):27-33.
    [28] 许联锋,陈刚,李建中,邵建斌.粒子图像测速技术研究展[J].力学展,2003,33(4):533-540.
    [29] 许联锋,陈刚,李建中,邵建斌.气液两相流中气泡运动速度场的PIV分析与研究[J].试验力学,2002,17(4):458-463.
    [30] 陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [31] 刘启钊,彭守拙.水电站调压室[M].北京:水利电力出版社,1995.
    [32] 程永光,杨建东.用三维计算流体力学方法计算调压室阻抗系数[J].水利学报,2005,36(7):787-792.
    [33] 是勋刚.湍流[M].天津:天津大学出版社,1994.
    [34] J.G.Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow, 2003,24(4):626-635.
    [35] M.Piller, E.Nobile, J.Thomas. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics, 2002, 458: 419-441.
    [36] A.A.Feiz, M.Ould-Rouis, G.Lauriat. Large eddy simulation of turbulent flow in a rotating pipe[J]. International Journal of Heat and Fluid Flow, 2003,24(3):412-420.
    [37] M.Ivan, S.Pierre. Large eddy simulation of flow around an airfoil near stall[J]. AIAA Journal, 2002, 40(6): 1139-1145.
    [38] L.Shen, D.K.P.Yue. Large-eddy simulation of free-surface turbulence[J]. Journal of Fluid Methods, 2001,440:75-116.
    [39] L.D.Mare, W.P.Jones. LES of turbulent flow past a swept fence[J]. Internal Journal of Heat and Fluid Flow, 2003,24(4):606-615.
    [40] Versteeg H.K., Malalasekera W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. New York: Wiley, 1995.
    [41] Fluent Inc., FLUENT User's Guide. Fluent Inc., 2003.
    [42] 黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003.
    [43] H. Schlichting. Boundary Layer Theory, McGraw Hill[D]. New York, 1969.
    [44] 金忠青.N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1989.6.
    [45] B.E.Launder, D.B.Spalding. Lectures in Mathematical Models of Turbulence[M]. Academic Press, London, England, 1972.
    [46] 郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [47] Shih,T.H., Liou, W.W., Shabbir, A., and Zhu Jiang. A new κ-ε eddy viscosity model for high Reynolds number turbulent flows model development and validation[J]. Comput Fluids, 1995, 24(3): 227-238.
    [48] 成立,刘超,周济人等.大型立式泵站簸箕型水流道三维紊流数值模拟[J].水力发电学报,2004,23(4):65-68.
    [49] S.V.Patanker, D.B.Spalding. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int J Heat Mass Transfer, 1972.15:1787-1806.
    [50] 何文学,李茶青.水电站大波动过波过程研究现状及发展趋势[J].水利水电科技展,2003,23(4):58-61.
    [51] 穆祥鹏.长距离输水系统的过渡过程数值计算及水力特性研究[D].天津:天津大学,2004,12:3-5.
    [52] 郊邦民,赵昕.计算水动力学[M].武汉:武汉大学出版社,2001.8:1-10,14,22,59-71.
    [53] E.B.怀利,V.L.斯特里特.瞬变流[M].清华大学流体传动与控制教研组译.水利电力出版社,1987.1.
    [54] 蒋仕章,蒲家宁.水力瞬变特征线法和隐式差分法的对比分析[J].油气储运,2001,20(1):12-14.
    [55] 杨景芳.微机计算水力学[M].大连:大连理工大学出版社,1991.5:73-78.
    [56] 王树人.水电站建筑物[M].北京:清华大学出版社,1992.3.
    [57] 刘启钊.水电站(第三版)[M].北京:中国水利水电出版社,1998,5:177-179.
    [58] Chorin A J. Flame advection and propagation algorithms[J]. J. Comp. Phys., 1980,35:1-11.
    [59] Puckeet E G. A high-order projection method for tracking fluid interface in variable density incompressible flows[J]. J. Comp. Phys., 1997, 130:269-283.
    [60] Hong Fangwen, Zhao Feng. A new free surface reconstruction method in VOF[J]. 船舶力学,1999,3(3):8-12.
    [61] Ashgriz N, Poo J Y.Flair:Flux line-segment model for advection and interface reconstruction[J]. J. Comp. Phys., 1991,93:449-468.
    [62] Rudman M. Volume-tracking methods for interfacial flow calculation[J], inter. J. for Numer. Meth. in Fluid, 1997, 24: 671-691.
    [63] R. I. Issa. Solution of th implicitly discretised fluid flow equations by operator-splitting[J]. J. Comput. Phys., 1986, 62: 40-65.
    [64] 章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [65] 蔡付林,胡明,曹青.有长连接管的阻抗式调压室阻抗损失系数研究[J].水电能源科学,2001,(4):40-42.
    [66] 河海大学,江苏抽水蓄能发电有限公司.江苏宜兴抽水蓄能电站输水系统水工模型试验研究[R].2003.3:104-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700