用户名: 密码: 验证码:
低压孔口式滴灌管水力学特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着节能、节水意识的加强,低压滴灌系统由于其能耗低,维护简单,易于使用等优点,已成为滴灌技术发展的重要方向之一,本文采用室内试验和数学分析相结合的方法,从影响低压条孔口式滴灌管出流和水头损失的因素出发,对低压孔口式滴灌管出流及水头损失规律进行研究,为低压滴灌设计及运行管理提供理论依据,通过试验与分析得到了以下结论:
     1)孔口式滴灌管,采用0.6mm孔径时制造偏差系数C v最大,1.2mm孔径的次之,0.9mm孔径的最小,孔距一定时,φ16滴灌管C v随孔径的变化幅度要大于φ12滴灌管C v的变化幅度。
     2)同管径的滴灌管孔口流量随孔径的变化规律相似,孔口流量随孔径增大而增大,这种增幅随管径的增大而增大;除0.6mm孔径滴灌管在相同的工作压力时,孔距33cm的孔口流量大于孔距100cm的孔口流量,其他两种孔径的滴灌管孔口流量随孔径的变化规律表现为:孔距100cm的孔口流量大于孔距33cm的孔口流量,孔距50cm的孔口流量最小。
     3)流量系数k随孔径d的增大而增大,孔距33cm、50cm的两种管径的滴灌管k与d的关系曲线基本平行,孔距100cm的滴灌管k随d的变化明显大于其它两种孔距的滴灌管。φ16滴灌管流态指数x随孔径的增大先增大后减小,φ12滴灌管流态指数x随孔径的增大先减小后增大。
     4)在试验条件下,毛管内水流流态出现三种情况:层流、层紊流共存、紊流;在不同流态条件下,流态指数不同,灌水均匀度Cu随工作水头h变化规律也不尽相同:层流时不论x为何值, Cu随h的增大而增大。层紊流共存时当0.5     5)低压条件下,用达西-韦斯巴赫公式和经验公式计算的毛管总水头损失值与实测值有很大偏差,通过对试验数据回归分析,对经验公式用以工作水头为变量的参数β进行了修正,取得了较好的计算精度。
     6)孔口的局部水头损失与毛管入口工作水头成线性关系,即不同组合滴灌管孔口的局部水头损失都随着毛管入口工作水头的增大而增大;同管径、同孔距,孔口小的滴灌管孔口局部损失大;同工作压力、同孔径,管径大的滴灌管孔口局部损失要小于管径小的滴灌管孔口局部损失。
With consciousness enhancement of energy and water saving, low pressure drip irrigation system which is low energy consumption, maintains simply, easy to use and other merits and becomes one of drip irrigation important development directions. This article uses the method which in integrate the experiment with the mathematical analysis, base on the influence factor to outflow rule and head losses of the orifice outlet drip irrigation laterals under low pressure condition, do research on outflow and head losses rule of the orifice outlet laterals under low pressure condition, provided the theory basis for the low pressure drip irrigation design and the operating management. Obtained following conclusion through the experiment and the analysis:
     1) For orifice outlet drip irrigation laterals, manufacture coefficient C v is maximal when 0.6mm aperture, midst when 1.2mm aperture, minimal when 0.9mm aperture. When pitch is const, the scale of which C vchange with pitch inφ16 laterals is larger than that inφ12 laterals.
     2) The change rule of orifice discharge along with the aperture is similar in same diameter laterals, orifice discharge increases along with aperture increases, this amplitude increases along with the laterals’diameter increases; Except that 0.6mm aperture under same working head, orifice discharge of pitch in 33cm is larger than discharge of pitch in 100cm, change rule of orifice discharge along with the aperture performance in other two kind of aperture laterals is: Orifice discharge of 100cm pitch laterals is larger than that in 33cm pitch laterals, the orifice discharge of 50cm pitch laterals is smallest.
     3) Discharge coefficient k increases along with aperture d increases, curve of k and d almost parallel in laterals which pitch in 33cm、50cm , k change with the d change in laterals which pitch in 100cm are obviously larger than that in other two kind of pitch’s laterals. Flow regime exponent x increases first and then reduces after the d increases inφ16laterals, inφ12 laterals x reduces first and then increases after the d increases.
     4) There are three flow regime of current in laterals under experimental condition: laminar only, laminar together with turbulent, turbulent only. The change rule of irrigation uniformity Cu and working head h is different under different flow regime and emitter discharge exponent x condition, under low pressure condition: Under laminar condition, the Cu increases along with the h increases and they are independent of x. Under laminar together with turbulence condition, Cu increases along with h increases when 0.5     5) Under experimental low pressure condition, there is great deviation between total head losses value calculated by Dacy-Weisbach formula and empirical formula and measured value. Based on the regression analysis to experiment result carry on the revision to empirical formula with the parameterβwhich related to working head, obtained the good revision effect.
     6) the relationship between orifice’s local head losses and working head of laterals entrance is linear, orifice’s local head losses in different laterals increases along with working head increases; The same aperture and pitch, head losses of smaller orifice is bigger, the same working head and aperture, head losses of bigger lateral diameter is smaller than that in caliber small laterals.
引文
[1]科司.世界水资源现状.世界科技经济瞭望[J].2003,(9):60.
    [2]黄修桥,高峰,王宪杰.节水灌溉与21世纪水资源的持续利用[J].灌溉排水学报,2001,(3):1~5.
    [3]王烨,朱琨.我国水资源现状与可持续利用方略[J].兰州交通大学学报,2005,(10):79~80.
    [4]冯素珍,莫日根图.低水头滴灌系统的研究[J].内蒙古农业大学学报,1999,20,(4):31~35.
    [5]水利部农村水利司,中国灌溉排水发展中心.节水灌溉工程实用手册[M].北京:中国水利水电出版社,2005.
    [6]张永茂.一种旱地果园新型节水渗灌器[J].甘肃农村科技,1997,(1):38~39.
    [7]吴普特,牛文全,赫宏科.现代高效节水灌溉设施[M].北京:化学工业出版社,2002.
    [8]冯广志.我国节水灌溉发展的总体思路[C].中国节水农业问题论文集.北京:中国水利水电出 版社,1999.
    [9]农田水利及农业水资源高效利用专题调研组.农田水利及农业水资源高效利用专题调研报告[R].1999.
    [10]钱蕴壁,李英能,杨刚等.节水农业新技术研究[M].郑州:黄河水利出版社,2002.
    [11]吴景社,康绍忠.节水灌溉综合效应评价研究进展[J].2003,(5):42~46.
    [12]卢炳瑞.水利管理与执法务实全书[M].北京:言实出版社,2004.
    [13]王春堂.我国水资源现状及缓解用水紧张的措施[J].排灌机械,2001,19,(2):35~42.
    [14]汪志农.灌溉排水工程学[M].北京:中国农业出版社,2000.
    [15]王文焰.波涌灌试验研究与应用[M].西安:西北工业大学出版社,1994.
    [16]傅琳,董文楚,郑耀泉等.微灌工程技术指南[M].北京:水利电力出版社,1987.
    [17]康绍忠.西北地区农业节水与水资源持续利用[M].北京:中国农业出版社,1999.
    [18]匡尚富,高占义,许迪.农业高效用水灌排技术应用研究[M].北京:中国农业出版社,2001.
    [19]李援农,马孝义.节水灌溉新技术—喷灌、微灌技术(2)[J].节水农业,2002,(12):13~15.
    [20]徐正峰.重力滴灌系统在京郊果园应用的必要性和可行性分析[J].北京水利,2005,(2):17~20.
    [21] 苏 德 荣 , 田 媛 , 高 前 兆 . 日 光 温 室 中 自 流 式 低 压 滴 灌 技 术 的 研 究 [J]. 农 业 工 程 学报,2000,(3):73~76.
    [22]张建君,李久生,任理.滴灌施肥灌溉条件下土壤水氮运移的研究进展[J].灌溉排水,2002, 21,(2):75~79.
    [23]刘晓英,杨振刚,王天俊,等.滴灌条件下土壤水分运动规律的研究[J].水利学报,1990,(1): 11~21.
    [24]J Ben—Asher, Ch Charach.Infiltration and water extraction from trickle irrigation Source, The effective hemisphere model [J].Soil Sci Soc Am J,1986, (50): 882~887.
    [25]Shu—Tung Chu.Green—Ampt analysis of wetting patterns for surface emitters[J].Irri and Drainage Eng, 1994, (120): 414~421.
    [26]胡笑涛,康绍忠,马孝义.地下滴灌灌水均匀度研究现状及展望[J].干旱地区农业研究, 2000,18(1):113~117.
    [27]郑耀泉.微灌系统水力学研究现状[J].北京农业工程大学学报,1992,12(3):26~32.
    [28]凯勒丁, 喀麦利D 著.罗远培译.滴灌设计[M].北京: 水利出版社,1980.
    [29]Bralts V F,Wu I- pai, Gitlin H M.Manufacturing variation and drip irrigation uniformity[J].ASAE,1981,24(1):113~119.
    [30]Bralts V F, Edwards D M.Field evaluation of drip irrigation submain units[J].ASAE, 1985,29,(6):1659~1664.
    [31]仵峰.地下滴灌条件下灌水器水力性能研究[D].北京:中国农业科学研究院.2002.
    [32]Khrabrov M.Y Low Head Drip Spray Irrigation system[A] : Irrigation under Condition of Water Scarity[C].1999 ,157~161.
    [33]艾学山,李万红.水科学的若干领域研究前沿[J].水利学报,2002,(7):125~128.
    [34]唐莲,孙学平,张卫兵.微灌技术及设备进展[J].宁夏农学院学报,2003,(2):82~85.
    [35]牛文全,吴普特,范兴科.低压滴灌系统研究[J].节水灌溉,2005,(2):29~31
    [36]微灌工程技术规范编制组.微灌工程技术规范(SL103-95)[S].北京:中国水利水电出版社,1995.
    [37]姚振宪,何松林.滴灌设备与滴灌系统规划设计[M].北京:中国农业出版社,1999.
    [38]杨培岭,雷显龙.滴灌灌水器的发展及研究[J].节水灌溉,2000,(3):17~19.
    [39]余根坚,李久生,龚时宏,等.喷微灌技术发展的影响因素分析[J].节水灌溉,2002,(5):1~4.
    [40]马学良,赵其恒,田贺红,等.国内外设施农业节水灌溉设备技术现状与发展[J].节水灌溉1999,(2):4~6.
    [41]Solomon K H, Jorgensen G Subsurface drip irrigation[J]. Grounds Maitenance, 1992,27,(10): 24~26.
    [42]Zoldoske, D.F, S.Genitos, Jorgensen GS. Subsurface drip irrigation(SDI)on turfgrass: A university experience[A].proc 5th Int Microirrigation congress[C].1995,300~302.
    [43]Ruskin R, Van Voris P, Cataldo DA. Root intrusion protection of buried drip irrigation devices with slow-re-lease herbicides[A]. proc 3rd Nat irrigation Symp[C].1990: 211~216.
    [44]马晖.因特网上的节水灌溉资源[J].节水灌溉,1998,(6):34~35.
    [45]王留运,叶清平,岳兵.我国微灌技术发展的回顾与预测[J].节水灌溉,2000,(3):3~7.
    [46]康绍忠,蔡焕杰,冯绍元.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报,2004,(1):1~6.
    [47]仵峰,范永申,李金山,等.低压条件下灌水器水利性能试验研究[J].节水灌溉,2003,(1):14~16.
    [48]P R. Bhatnagar and R.C. Srivastava. Gravity-fed drip irrigation system for hilly terraces of the northwest Himalayas[J], Irrig Sic,2003,(21):151~157.
    [49]张国祥,吴普特.滴灌系统滴头设计水头的取值依据[J].农业工程学报,2005,(9):21~22.
    [50]张志澍,郑耀全,田春元,等.灌水器的工作水头对微灌系统灌水均匀度影响的研究[J].节水灌溉,1996,(1):28~34.
    [51]王伟,李光永,段中锁.低水头滴灌系统研究[J].节水灌溉,2000,(3):36~39.
    [52]李援农,康绍忠,王健.微孔渗灌防堵塞处理技术初步试验研究[J].节水灌溉,1999,(5):28~29.
    [53]周新国,温季.浅井低压灌溉优化技术研究及应用[J].水利学报,2000,(3):73~76.
    [54]刘焕芳,孙海燕.微灌自压软管合理铺设长度的确定[J].农业工程学报,2005,(2): 46~50.
    [55]范永申,仵峰,李金山,等.微压滴灌灌水器的研制[J].节水灌溉,2005,(4):34~35.
    [56]刘晓丽.低压滴灌系统中支管端压力调节装置的研究[D].杨凌:中国科学院教育部水土保持与生态环境研究中心,2004.
    [57]Myers, L.E. and Bucks D. A. Uniform irrigation with low-pressure trickle systems[J].Journal of the Irrigation and Draining Division, proc. of the ASCE1972,(IR3):341~346.
    [58]Wu, I, P. Design of irrigation main lines[J]. Journal of the Irrigation and Draining Division, proc. ofthe ASCE,1975 ,(IR4):265~278.
    [59]Pressure Losses Across Trickle Irrigation Fittings and Emitters[J]. Transaction of the ASAE 1980,(4):928~933.
    [60]Terry and Hiller, Trickle Irrigation Lateral Design. Transaction of the ASAE 1974,17,(5):902~908.
    [61]Warrick, A.W.and M.Yitayew.Tricklelateralhydraulics.I:Analytical solution. Journal of the Irrigation and Draining engineering, 1998, (2):281~288.
    [62]Tals,Zur B,flow regime in helical long-path emitters[J], Irrig Drain Div,1980,106,(1):27~35.
    [63]Khatri, I-Pai Wu etc. Hydraulics of Microtube Emitters[J]. Irrig Drain Div, 1979,(6):163~173.
    [64]John D. Valiantas. Modified Hazen-Williams and Dacy-Weisbach Equations for Friction and Local Head Losses Along Irrigation Laterals[J]. Journal of the Irrigation and Draining Engineering, 2005,(131):342~350.
    [65]张国祥.微灌毛管水力学研究——微灌水力设计计算方法探讨之一[J].喷灌技术,1990,(2):9~16.
    [67]张国祥.微灌毛管水力设计的经验系数法——微灌水力设计计算方法探讨之三[J].喷灌技术,1991,(1):4~8.
    [68]王留运.微灌系统毛管与微灌灌水器的水力学计算及设计程序[J].节水灌溉 1999,(6):14~17.
    [69]王金如.均匀坡下微灌毛管水力设计的平均水头法[J].喷灌技术,1992,(3):26~32.
    [70]郑耀泉.微灌系统水力学研究现状[J].北京农业工程大学学报,1992,(3):26~32.
    [71]赵德菱,方部玲.DL 型螺纹滴头的研制[J].节水灌溉,1998,(5):26~27.
    [72]王瑞环,赵万华,杨来侠等.基于快速成形技术滴头的结构试验研究[J].西安交通大学学报,2003,(5):542~545.
    [73]姚彬,刘志烽,张建萍.流道长度对内镶贴片式滴头性能参数影响的初步研究[J].节水灌溉,2003,(5):38~39.
    [74]陈振宇,高志强,赵美香,等.国内外常用滴(渗)管滴头供水规律试验研究[J].山西农业大学学报,1998,(3):262~265.
    [75]李云开,杨培岭.滴灌灌水器迷宫式流道内部流体流动特性分析与试验研究[J].水力学报,2005,(3):36~40.
    [76]魏青松,史玉升,卢刚,等.内镶式滴灌带绕流流道水力性能研究[J].农业工程学报,2006,(10):83~87.
    [77]王永功.微灌灌水器结构对其水力性能的影响研究[D].杨凌: 中国科学院教育部水土保持与生态环境研究中心,2005.
    [78]陈渠昌,郑耀泉.微灌灌水器局部水头损失的估算[J].内蒙古水利,1994,(4):52~54.
    [79]Bagarello V, Ferro V, Provenzano G, Pumo D. Evaluating pressure losses in drip-irrigation lines[J]. Journal of the Irrigation and Draining Engineering,1997,(3):1~7.
    [80]Luis Juana, Leonor Rodriguze-Sinobas etc Determining Minor Head Losses in Drip Irrigation Laterals II: Experimental Study and Valiation[J]. Journal of the Irrigation and Draining Engineering, 2002,(128):385~396.
    [81]Luis Juana, Leonor Rodriguze-Sinobas etc Determining Minor Head Losses in Drip Irrigation Laterals I: Methodology[J]. Journal of the Irrigation and Draining Engineering, 2004,(130):318~324.
    [82]白丹,魏小亢,王凤翔,等.节水灌溉工程技术[M].西安:陕西科学技术出版社,2001.
    [83]魏正英,赵万华,唐一平,等.滴灌灌水器迷宫流道主航道抗堵设计方法研究[J].农业工程学报2005,(6):1~7.
    [84]农业灌溉设备.滴头技术规范和试验方法[M].北京:国家质量技术监督局,1997.
    [85]中华人民共和国行业标准.微灌灌水器[M].北京:中华人民共和国水利部,1994.
    [86]余玲,刘群昌,陈先军,等.塑料在节水灌溉中的应用[M]北京:化学工业出版社,2002.
    [87]秦为耀,丁必然,曾建军,等.节水灌溉技术[M].北京:中国水利水电出版社,2000.
    [88] F.S Nakayama. Trickle Irrigation For Crop Production[J].USA,1986: 383~386.
    [89]水利部国际合作司,水利部农村水利司.美国国家灌溉工程手册[M].北京:中国水利水电出版社,1998.
    [90]蔡焕杰.大田膜下滴灌的理论与应用[M].杨凌:西北农科技大学出版社,2003.
    [91] 蔡 小 超, 刘 焕 芳 , 李 强 , 等 . 微 灌 自 压 软 管 毛 管 灌 水 均 匀 度 的 试 验 研 究 [J]. 节水 灌溉,2005,(5):8~11.
    [92]吕宏兴,水力学[M].北京:中国农业出版社,2002.
    [93]朱德兰,王健,吴普特.微灌滴头设计工作压力取值理论研究[J].西北农林科技大学学报,2006,(10):189~192.
    [94]牛文全,吴普特,范兴科.微灌系统综合流量偏差率与灌溉均匀度的模拟计算[A].第6次全国微灌大会论文集[C].2004.
    [95]陈渠昌,耀泉.微灌工程灌水均匀度的选定[J].农业工程学报,1995,(2):128~132.
    [96]陈阳生.塑料软管水利特性研究,中国农村水利水电[J].1992,(3):12~14.
    [97]完颜华,付小勇,张国珍.三种塑料管道沿程水头损失的试验研究[J].给水排水2002,(8): 58~60.
    [98]李永顺,马存奎,牟日升,等.塑料管道水力性能测试与分析[J].水利学报,1993,(11):1~8.
    [99]胡笑涛.地下滴灌管水均匀度试验研究[D].杨凌:西北农林科技大学,2001.
    [100]水利部农村水利司,中国灌溉排水技术开发培训中心.微灌工程手册[M]北京:中国水利水电出版社,1999.
    [101]费翔麟.高等流体力学[M].北京:高等教育出版社,1989.
    [102]苏玉亮,张鸣远,侯洪宁,等.水平管内气液两相泡状流壁面切应力研究[J].西安交通大学学报,2006,(5):497~511.
    [103]杨建,张鸣远,张超杰,等.水平管内气液两相泡状流进口段的试验研究[J].西安交通大学学报,2001,(5):895~898.
    [104]苏玉亮,张鸣远,杨建等.水平管内气液两相泡状流壁面切应力的试验测量[J].试验流体力学,2006,(3):81~84.
    [105]Avdeev A. Turbulent flow hydrodynamics of a bubbly two-phase mixture[J].J Engng Physics,1984,21,(4):536~544.
    [106]刘焕芳,吕宏兴.高等流体力学[M].北京:中国教育文化出版社,2005.
    [107]张学军.新型节水灌溉设备推介[J].中国农村水利水电,2000,(1):61~62.
    [108]Giuseppe Provenzano, Domenico Pumo,Pietro Di Dio.Simplifiled Procedure to Evaluate Head Losses in Drip Irrigation Laterals[J]. Journal of the Irrigation and Draining Engineering, 2005,(131):525~532.
    [109]张祝新.对工程流体力学中节流孔口流量特性的讨论[J].机床与液压,1999,(6):68~69.
    [110]仇伟德,赵怀文.套管的挤压分析[J].石油学报,1995,(2):99~108.
    [111]仇伟德,赵怀文.影响套管挤压的主要因素[J].石油学报,1996,(2):113~109.
    [112]盛敬超.液压流体力学[M]北京机械工业出版社,1984.
    [113]周士昌.工程流体力学[M].沈阳:东北大学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700