用户名: 密码: 验证码:
灰飞虱对毒死蜱和噻嗪酮的抗性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰飞虱Laodelphax striatellus (Fallen)是我国粮食作物上的一种重要害虫,它不仅刺吸取食禾本科植物造成虫害,还通过传播病毒而引起水稻、玉米、小麦等重要粮食作物的病毒病。2000年以前灰飞虱在我国只是零星发生,长期作为次要害虫对其进行防治。但自从2005年以来,该虫在我国许多地区特别是江苏、山东等省频繁暴发。长期大面积和不合理使用化学药剂导致灰飞虱抗药性的产生,灰飞虱对杀虫剂抗药性的产生是其近年来暴发频繁的主要原因之一。因此,必须加强灰飞虱的抗性治理,以期延缓其抗性进一步发展。明确杀虫剂的抗性机制是害虫抗性治理的前提。本文以灰飞虱室内抗药性筛选为基础,系统地研究了灰飞虱对毒死蜱和噻嗪酮的抗性生化、分子生物学机理。为更好地进行灰飞虱抗性治理和新药开发提供新的依据。
     一、灰飞虱抗毒死蜱品系的抗性筛选及生化机理研究
     经过对灰飞虱云南敏感品系(YN)连续32代的毒死蜱抗性筛选,与云南品系相比,毒死蜱抗性品系(YN-CPF)的抗药性上升到213.49倍;该抗性品系在连续12代无药剂筛选压力下其抗性衰退为83.08倍,以此作为抗性衰退品系(YN-DPF)。以YN, YN-DPF和YN-CPF品系为试虫,通过解毒代谢酶活力和增效剂生物测定分析,研究了灰飞虱对毒死蜱的抗性生化机理。分别在YN-CPF、YN-DPF和YN品系中测定了PBO、 DEM和TPP对毒死蜱的增效作用。结果显示在抗性和抗性衰退品系中,多功能氧化酶抑制剂PBO分别对毒死蜱有3.77倍和2.28倍的增效作用,谷胱甘肽S-转移酶抑制剂DEM对毒死蜱的增效作用分别为2.82倍和1.79倍,羧酸酯酶抑制剂TPP对毒死蜱的增效作用分别为4.31倍和2.59倍,三种增效剂在敏感品系中均未对毒死蜱表现出显著的增效作用。解毒代谢酶活力测定结果显示抗性品系细胞色素P450单加氧酶活力为敏感品系的0.67倍;谷胱甘肽S-转移酶活力在两品系间无显著差异;酯酶活力在抗性和抗性衰退品系中分别为敏感品系中的4.15倍和1.92倍。此外,抗性品系乙酰胆碱酯酶最大反应速率(Km)是敏感品系的2.56倍,亲和力及氧化毒死蜱抑制中浓度分别为敏感品系的1.81倍(Km-YN-CPF/Km-YN)和5.53倍(I50-YN-CPF/I50-YN)。以上结果说明,酯酶活性提高以及乙酰胆碱酯酶敏感性下降可能参与了毒死蜱的抗性形成,关于细胞色素P450单加氧酶和谷胱甘肽S-转移酶在毒死蜱抗性中的具体作用方式还需进一步研究。
     二、灰飞虱抗噻嗪酮品系的抗性筛选及生化机理研究
     对灰飞虱YN品系连续41代的噻嗪酮抗性筛选,获得了82.08倍的相对噻嗪酮抗性品系YN-BPF;对南京田间灰飞虱品系(NJ)连续12代的噻嗪酮抗药性筛选,与初始NJ和YN品系相比,获得的南京抗性品系(NJ-BPF)对噻嗪酮的相对抗性分别为4.46倍和96.58倍。以’YN-BPF、NJ-BPF品系和YN品系为试虫,通过解毒代谢酶活力和增效剂生物测定分析,初步研究了灰飞虱对噻嗪酮抗性的生化机理。分别在YN. NJ-BPF和YN-BPF品系中测定了PBO、DEM和TPP对噻嗪酮的增效作用,结果显示,三类增效剂在YN品系中对噻嗪酮都未表现出显著的增效作用。在YN-BPF和NJ-BPF品系中,PBO分别对噻嗪酮有1.77倍和1.69倍的增效作用,细胞色素P450单加氧酶活力也分别比敏感品系中升高了1.39倍和1.89倍; DEM分别对噻嗪酮有1.02倍和1.03倍的增效作用,谷胱甘肽S-转移酶活力在噻嗪酮抗、感品系间也未表现出显著差异;酯酶抑制剂TPP分别对噻嗪酮有1.50倍和1.77倍的增效作用,酯酶活力与YN品系相比分别升高了1.69倍和2.16倍。此外,YN-BPF和NJ-BPF品系中乙酰胆碱酯酶酶活力分别为YN品系的1.79和1.53倍。以上研究结果表明,酯酶及细胞色素P450单加氧酶活力的提高在一定程度上参与了噻嗪酮代谢抗性的形成,而乙酰胆碱酯酶活力升高对噻嗪酮抗性的形成可能也有一定的辅助作用。
     三、灰飞虱羧酸酯酶基因序列及表达量分析
     以云南敏感品系为材料,运用RT-PCR技术从灰飞虱转录组数据库中成功验证出31条灰飞虱羧酸酯酶基因(暂名为Ls.CarE1-31).分别在毒死蜱抗性和敏感品系中比较了这些基因的表达差异,结果发现:与YN品系相比,Ls. CarE1和Ls.CarE2在YN-CPF品系中分别具有32.6倍和7.52倍的显著过量表达。以YN-DPF品系为实验材料,分析过量表达的羧酸酯酶基因的抗性相关性,结果显示,Ls.CarE1和Ls.CarE2在抗性衰退品系中的表达量分别为敏感品系中的8.6倍和1.09倍。这些结果表明,过量表达的Ls.CarE1与毒死蜱抗性水平密切相关,而在毒死蜱抗性品系中过量表达的Ls.CarE2与抗性水平不存在一致的相关性。此外,毒死蜱抗性和敏感品系中的羧酸酯酶氨基酸序列比较发现,毒死蜱抗性个体中Ls.CarE9、Ls.CarEl6、Ls.CarE24和Ls.CarE25存在相对稳定的点突变。由此推断,不仅过量表达的Ls.CarEl参与了毒死蜱抗性的形成,部分羧酸酯酶点突变也可能是毒死蜱抗性形成的重要因子。
     四、灰飞虱细胞色素P450基因序列及表达分析
     从灰飞虱转录组数据中筛选出编码细胞色素P450的序列112条(长度从100bp到2000bp以上),去掉较短的及重复测序的序列,RT-PCR共验证出大于279bp的灰飞虱P450基因55条,其中26条具有完整的氨基酸序列编码区。进一步在灰飞虱抗、感噻嗪酮和毒死蜱的品系中分析了这些基因的表达情况。与敏感品系相比,CYP6CW1在噻嗪酮抗性品系中表现出9.75倍的过量表达。此外,3个P450基因(CYP4C,CYP4DE1和CYP6AX)在毒死蜱抗性品系中表达量与敏感品系的相比分别下降了82.01%,89.22%和92.25%。这些结果表明,过量表达的CYP6CW1可能在噻嗪酮抗性中发挥重要作用,减少的毒死蜱活化也有可能参与了毒死蜱抗性的形成。
     五、毒死蜱抗性相关的羧酸酯酶基因RNAi功能分析及原核表达
     利用cDNA末端快速扩增技术(RACE)克隆了灰飞虱Ls.CarEl的全长cDNA序列。Ls.CarEl全长共1839bp,编码547个氨基酸,5'-UTR为87bp,3'-UTR为111bp。序列分析表明LsCarEl具有羧酸酯酶的基因序列特征,包括三个催化三联体氨基酸残基Ser215、Glu345、His466;氧负离子孔Gly134、Gly135、Ala217;半胱氨酸环残基Cys92、Cys110等编码序列。氨基酸序列比对表明,Ls.CarEl与已报道的褐飞虱羧酸酯酶序列(GenBank:AAG40239.1)同源性达72%。因此推断Ls.CarEl序列为灰飞虱的羧酸酯酶基因序列。接着对其RNAi分析发现,以两个不同浓度(80ng/ul和200ng/ul)的Ls.CarE1-dsRNA连续6天喂养灰飞虱抗毒死蜱品系的一龄若虫后,Ls.CarEl的表达量分别下降62.6%和68.72%。进一步以毒死蜱(800mg/L)对RNA干扰后的抗性品系灰飞虱进行毒力测定,结果显示:与对照相比,死亡率分别由33.7%上升至72.31%(80ng/ul)和31.7%上升至69.56%(200ng/ul).这些结果说明,过量表达的Ls.CarE1在毒死蜱抗性形成中发挥着重要的作用。由于基因表达量增强不一定造成蛋白水平的增加,为此通过原核表达技术成功表达了灰飞虱的Ls.CarE1,为进一步对其进行抗体制备,Western-blot检测毒死蜱抗、感品系间蛋白质量变奠定了基础。
The small brown planthopper Laodelphax striatellus (Fallen) is a kind of pests that bring serious harm to grain crops. It is not only sucking the gramineous plants, but also spreading the virus between crops. This pest broke out only intermittently in China, and it was not an important pest for pest controlling before2000years. Since the early2005, however L. striatellus has reAChEd large number in china, especially in Jiangsu province. Long-term and unreasonable using of chemical insecticides in a wide range of rice-growing areas is the important reason for resistance of L. striatellus to the insecticides, and in recent years, insecticide resistance has been associated with frequent occurrence of the L. striatellus. Therefore, insecticide resistance management strategies must be developed to prevent further increase in resistance of L. striatellus. Lacking of the knowledge of resistance mechanism is the barrier for implementation of resistance management and efficient control. In this paper, efforts have been made to declare its biochemical and molecular mechanism of resistance to two types of synthetic insecticides, chlorpyrifos and buprofezin, which have been frequently used for controlling L. striatellus and other crop insect pests in fields for years, based on the lab-selected resistance strains. The results obtained are summarized as follows.
     1. The resistance selection and biochemical mechanism of chlorpyrifos resistance in L. striatellus
     Compared with the susceptible strain (YN), the chlorpyrifos resistance strain (YN-CPF) of L. striatellus developed213.49-fold resistance by continuous selection with chlorpyrifos for36generations on the strain YN in the laboratory. The chlorpyrifos resistance recession strain (YN-DPF) of L. striatellus came from the strain YN-CPF and was reared without contacting with any insecticides for12consecutive generations, and the resistance levels of strain YN-DPF recovered to83.08-fold relative to the strain YN. The biochemical mechanisms of chlorpyrifos resistance in L. striatellus were first studied by synergism test and detoxifying enzyme activity. The synergistic effects of PBO, TPP and DEM on chlorpyrifos in strain YN were compared with those in strains YN-CPF and YN-DPF. The resultes indicated that the oxidase inhibitor PBO showed3.77-and2.28-fold synergism with chlorpyrifos in strains YN-CPF and YN-DPF respectively, but no synergism of chlorpyrifos efficacy in strain YN, P450monooxygenase activity in strain YN-CPF was lower (only68%of the YN level) than in strain YN; The glutathione depleter DEM showed2.82-and1.79-fold synergism with chlorpyrifos in strains YN-CPF and YN-DPF respectively, but no synergism of chlorpyrifos efficacy was also found in strain YN, while the glutathione S-transferase activity towards CDNB was not significantly different between the distinct strains; The esterase inhibitor TPP synergized chlorpyrifos both in strains YN-CPF (4.31-fold) and YN-DPF (2.59-fold), but not in strain YN, while esterase activity using α-naphthyl acetate as substrate was significantly higher both in strains YN-CPF (4.15-fold) and YN-DPF (1.92-fold) than in strain YN. In addition, this study also found the maximum reaction rate (Vmax) of acetylcholinesterase (AChE) in strain YN-CPF was2.56-fold higher than that in strain YN. Affinity (Km) and inhibition concentration (Ⅰ10) experiment of AChE on chlorpyrifos-oxon also showed AChE insensitivity in the chlorpyrifos resistance strain. The results revealed that AChE insensitivity and elevated esterase activities may play important roles in conferring chlorpyrifos resistance in L. striatellus, the specific action mechanism of P450monooxygenase and glutathione S-transferase in L. striatellus on chlorpyrifos resistance remained to be further elucidated in future.
     2. The resistance selection and biochemical mechanism of buprofezin resistance in L.striatellus
     Compared with the strain YN, the buprofezin resistance strain (YN-BPF) of L. striatellus developed82.08-fold resistance by41generations of continuous selection with buprofezin on the strain YN in the laboratory; After12generations of continuous selection with buprofezin on the nanjing field strain (NJ), we obtained another buprofezin resistance strain (NJ-BPF) of L. striatellus which separately showed4.46-and96.58-fold resistance in comparison with the strains NJ and YN. The biochemical mechanisms of buprofezin resistance in L. striatellus were studied by synergism test and detoxifying enzyme activity. The synergistic effects of PBO, TPP and DEM on buprofezin in strain YN were compared with those in strains YN-BPF and NJ-BPF. The results showed that they all had no synergistic effects on strain YN, but the oxidase inhibitor PBO had1.77-and1.69-fold synergism with buprofezin in strains YN-BPF and NJ-BPF respectively, and P450 monooxygenase activity in strains YN-BPF (1.39-fold) and NJ-BPF (1.89-fold) was higher than that in strain YN. The glutathione depleter DEM showed1.02-and1.03-fold synergism with buprofezin in strains YN-BPF and NJ-BPF respectively, and the glutathione S-transferase activity towards CDNB was not significantly different among three strains. The esterase inhibitor TPP synergised buprofezin both in strains YN-BPF (1.50-fold) and NJ-BPF (1.77-fold), while esterase activity using a-naphthyl acetate as substrate was significantly higher in strains YN-BPF (1.69-fold) and NJ-BPF (2.16-fold) than that in strain YN. In addition, this study also found the activity of acetylcholinesterase (AChE) in strains YN-BPF and NJ-BPF were separately1.79-and1.53-fold higher than that in strain YN. The results indicated that enhanced detoxification that was mediated by P450monooxygenase and esterase could contribute to buprofezin resistance to some extent, moreover, the elevated AChE activity as an additional mechanism of buprofezin resistance cannot be ruled out.
     3. The sequence identification and expression analysis of carboxylesterase genes in L. striatellus
     31carboxylesterase-like genes (CarEs) were identified from the transcriptome database of L striatellus by using RT-PCR technique (tentatively named by Ls.CarEl-Ls.CarE31). Real-time quantitative PCR (qPCR) was performed for the relative expression analysis of31CarEs. Compared with that in strain YN, Ls.CarEl and Ls.CarE2showed significantly overexpression with32.06-and8.52-fold in strain YN-CPF, respectively. Then, qPCR of Ls.CarEl and Ls.CarE2in strain YN-DPF was conducted to verify their correlation with chlorpyrifos resistance. Compared with that in strain YN, the expression levels of Ls.CarEl and Ls.CarE2separately showed8.6-and1.09-fold in strain YN-DPF, which indicated a significant linear relationship between the expression level of Ls.CarEl and the level of phenotypic resistance (LC50), but didn't in the case of Ls.CarE2. In addition, this study also found some amino acid mutations of Ls.CarE9, Ls.CarEl6, Ls.CarE24and Ls.CarE25in YN-CPF individuals. The results indicated that overexpression of Ls.CarEl might play important roles in conferring chlorpyrifos resistance in strain YN-CPF, and the amino acid mutants of carboxylesterase genes as an additional resistance mechanism cannot be ruled out.
     4. The sequence identification and expression analysis of P450genes in L. striatellus
     A total of112unique sequences annotated as cytochrome P450genes (P450s)(partial or full length cDNA, from100bp to over2000bp) were identified from the transcriptome database of L. striatellus. After the shorter and repeated sequences were deleted, we finally obtained55P450s which ranging from279bp to2001bp in length, of which25P450s had the complete open reading frame (ORF), the55P450s were named by Dr. David Nelson in accordance with the P450nomenclature committee convention (http://drnelson.uthsc.edu/cytochromeP450. html). Then qPCR was used to analyze the relative expression levels of the55P450s among those resistant and susceptible strains of chlorpyrifos and buprofezin. Of these genes, CYP6CW1showed9.72-fold higher expression in strain YN-BPF than in strain YN. Among the55P450s, the expression of CYP4C, CYP4DE1and CYP6AX decreased82.01%,89.22%and92.25%in strain YN-CPF compared with that in strain YN. These results suggested that overexpression of CYP6CW1might play important roles in conferring buprofezin resistances, and chlorpyrifos resistance might be partially achieved through decrease chlorpyrifos activation in L. striatellus.
     5. The functional analysis via RNAi and prokaryotic expression of carboxylesterase gene to elucidate the chlorpyrifos resistance in L. striatellus
     The Rapid Amplification of cDNA Ends (RACE) technique was employed to clone the full-length sequence of Ls.CarEl from L. striatellus. The results showed that the ORF of Ls.CarEl was1839bp, encoding sequences of474aa in size. The5'and3'untranslated regions (UTR) were87bp and111bp, respectively. Analysis of the Ls.CarEl sequence revealed that it had these characteristics shared in many insect carboxylesterase genes, including the catalytic triads Ser215, Glu345and His466; oxyanion hole Gly134, Gly135and Ala217; the conserved cysteines Cys92and Cys110. Homologous analysis of amino acid sequences indicated that Ls.CarEl shared72%high identity with the carboxylesterase gene of Nilaparvata lugens (GenBank accession no. CAZ65617.1), so we could conclude that the Ls.CarEl was carboxylesterase gene in L. striatellus. Furthermore, Ls.CarEl was chosen for RNA interference (RNAi) followed by chlorpyrifos bioassay. The dsRNA concentrations for RNAi were separately designated as doses of80ng/ul and200ng/μL. qPCR was performed to analyze the relative expression level of Ls.CarEl after ingestion of the dsRNA on the sixth day. The results showed that the transcript level of Ls. CarEl was significantly decreased (60%for80ng/ul and70%for200ng/μL) as compared with those in the controls. At the same time, mortalities of the YN-CPF nymphs by RNAi increased from33.7%to72.31%(for80ng/ul) and31.7%to69.56%(for200ng/μL), respectively. These results provided a believable evidence for the role of Ls.CarEl in the resistance of L. striatellus to chlorpyrifos. Overexpression of gene does not always result in increasing of protein content. Therefore, we obtained the fusion protein of Ls.CarEl through prokaryotic expression technology, which laid a foundation for the following experiment on specific antibody preparation and western-blot to detect the difference of Ls.CarEl quantity between the chlorpyrifos resistance and susceptive strain.
引文
1. 边全乐,1997.使用毒死蜱的安全性.中国农学通报,13:71.
    2. 曹娟,2003.抗性和敏感性棉蚜的乙酰胆碱酯酶和酯酶的比较研究.南京农业大学硕士学位论文.
    3. 丁锦华,1991.农业昆虫学.南京:江苏科技出版社,203-207.
    4. 丁锦华,苏建亚,2002.农业昆虫学.北京:中国农业出版社,174-179.
    5. 董双林,韩召军,Williamson MS,2006.利用Bac-to-Bac系统表达棉蚜的乙酰胆碱酯酶.动物学研究,27(1):75-80.
    6. 封云涛,徐宝云,吴青君,王少丽,常晓莉,张友军,2009.杀虫剂分子靶标烟碱型乙酰胆碱受体研究进展.农药学学报,11(2):149-158.
    7. 高保立,2007.灰飞虱抗药性及其机理研究.南京农业大学博士学位论文.
    8. 公茂庆,顾燕,胡小邦等.2007.淡色库蚊细胞色素P450基因的克隆、序列分析及表达差异的鉴定.中国病原生物学杂志,2(1):62-66.
    9. 郭亭亭,姜辉,高希武,2009.昆虫细胞色素P450基因的多样性、进化及表达调控.昆虫学报,52(3):301-311.
    10.贺秉军,刘东波,王勇等,2004.敏感及抗性棉铃虫不同龄期幼虫神经细胞Na+通道电生理特性的比较研究.南开大学学报(自然科学版),37(4):111-114.
    11.梁沛,2001.小菜蛾对阿维菌素抗性的分子机制研究.中国农业大学博士学位论文.
    12.林友伟,张晓梅,沈晋良,2005.亚洲稻区灰飞虱抗药性研究进展.昆虫知识,42(1):28-30.
    13.刘向东,翟保平,刘慈明,2006.灰飞虱种群暴发成灾原因剖析.昆虫知识,43(2):141-146.
    14.马崇勇,高聪芬,沈晋良等,2007.灰飞虱对几类杀虫剂的抗性和敏感性.中国水稻科学,215:555-558.
    15.唐涛,成玉红,王成菊等,2007.抗氰戊菊酯棉铃虫细胞色素P450基因的克隆及分析.农药学学报,9(4):370-375.
    16.唐振华,袁建忠,庄佩君等,2004.昆虫钠通道的结构和与击倒抗性有关的基因突变.昆虫学报,47(6):830-836.
    17.王利华,2007.烟粉虱对高效氯氰菊酯和阿维菌素抗性的生化和分子机理.南京农业大学博士学位论文.
    18.王利华,方继朝,刘宝生,2008.儿类杀虫剂对灰飞虱的相对毒力及田间种群的抗药性现状.昆虫学报,51(9):930-937.
    19.王文全,龚国玑,谭福杰,1995.灭幼脲毒理学研究Ⅷ.灭幼脲对粘虫幼虫表皮蛋白质系列的影 响.南京农业大学学报,18(4):33-38.
    20.王新国,王怀位,甄天民等,2005.淡色库蚊三种抗性品系抗性发展与乙酰胆碱酯酶相关性的研究.中国媒介生物学及控制杂志,16(4):264-265.
    21.王彦华,吴长兴,赵学平等,2010.灰飞虱对杀虫剂抗药性的研究进展.植物保护,36(4):29-35.
    22.王震宇,2011.烟粉虱吡虫啉抗性的检测与机理.南京农业大学博士论文.
    23.巫国瑞,胡萃,许绍朴,1987.稻飞虱.北京农业出版社,149-168.
    24.吴家红,赵彤言,2004.拟除虫菊酯对昆虫钠通道作用的研究进展.寄生虫与医学昆虫学报,11(3):188-192.
    25.吴青君,张文吉,2002.表皮穿透和GABAA受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报,45(3):336-340.
    26.吴雪芬,张国彪,林松茂,陈军,2005.水稻条纹叶枯病暴发原因及防治策略对策研究.中国农学通报,21(2):237-241.
    27.吴益东,沈晋良,谭福杰,尤子平,1995.棉铃虫对氰戊菊醋抗性机理研究.南京农业大学学报,18(2):63-68.
    28.夏华兴,刘维新,吕迟华,卞中杰,2006.几种药剂混用防治灰飞虱药效试验初报.现代农药,5(2):53-54.
    29.杨广,尤民生,赵伊英,刘春辉,2009.昆虫的RNA干扰.昆虫学报,52,1156-1162.
    30.颜增光,蒋志胜,2001.电压门控钠通道作为杀虫剂靶标.世界农药,23(2):27-30.
    31.张宁宁,2011.烟粉虱对毒死蜱的抗性机制研究.南京农业大学博士学位论文.
    32.钟决龙,2006.国内毒死蜱应用现状及前景展望.农药市场信息,19:11-12.
    33.周小毛,2006.小菜蛾抗阿维菌素抗性的分子机理研究.华南农业大学博士学位论文.
    34.庄永林,2000.褐飞虱对噻嗪酮及吡虫啉的抗药性研究.南京农业大学博士论文.
    35.朱昌亮,李建民,田海生等,2000.淡色库蚊细胞色素P450抗性相关基因克隆与初步鉴定.中国寄生虫学与寄生虫病杂志,18(5):263-268.
    36.朱绍先,邬楚中,杜景佑,1984.稻飞虱及其防治.上海科学技术出版社,116-139.
    37. Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W.,2Hoskins, R.A., Galle, R.F.,2000. The genome sequence of Drosophila melanogaster. Science 287,2185-2195.
    38. Aldridge, W.N., and Reiner, E.,1972. Enzyme inhibitors as substrates:Interactions of esterases with esters of organophosphorus and carbamic acids. In Frontiers of Biology, Vol.26. (A. Neuberger and E. L. Tatum, Eds.), North-Holland, London.
    39. Alin, M. P., Stephen, P. F., Linda, O., Ian, D., Linda, M. F., Neil, S.M., Martin, S.W., Chris, B., 2010. Amplification of a Cytochrome P450 Gene is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzuspersicae, Plos GENETICS 6, e1000999.
    40. Alon, M., Alon, F., Nauen, R., Morin, S.,2008. Organophosphates'resistance in the B-biotype of Bemisia tabaci (Hemiptera:Aleyrodidae) is associated with a point mutation in an ace 1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochemistry and Molecular Biology 38,940-949.
    41. Alout, H., Berthomieu, A., Hadjivassilis, A., Weill, M.,2007. A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. Insect Biochemistry and Molecular Biology 37,41-47.
    42. Alout, H., Weill, M.,2008. Amino-acid substitutions in acetylcholinesterasel involved in insecticide resistance in mosquitoes. Chemico-biological interactions 175,138-141.
    43. Amenya, D.A., Naguran, R., Lo, T.C., Ranson, H., Spillings, B.L., Wood, O.R., Brooke, B.D., Coetzee, M., Koekemoer, L.L.,2008. Overexpression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Molecular Biology 17, 19-25.
    44. Amichot, M., A. Brun, A. Cuany, C. Helvig, J. Salaun, F. Durst, and J. Berge.1994. Expression study of CYP genes in Drosophila strains resistant or sensitive to insecticides. Cytochrome P450, 689-692.
    45. Anber, H.A.I., Oppenoorth, F.J.,1989. A mutant esterase degrading organophosphates in a resistant strain of the predacious mite Amblyseius potentillae (Garman). Pesticide Biochemistry and Physiology 33,283-297.
    46. Andrews, M., Callaghan, A., Field, L., Williamson, M., Moores, G.,2004. Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover. Insect molecular biology 13,555-561.
    47. Anspaugh, D.D., Kennedy, G.G., Roe, R.M.,1995. Purification and characterization of a resistance-associated esterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Pesticide Biochemistry and Physiology 53,84-96.
    48. Argentine, J.A., Lee, S.H., Sos, M.A., Barry, S.R., Clark, J.M.,1995. Permethrin resistance in a near isogenic stain of Colorado potato beetle. Pesticide Biochemistry and Physiology 53,97-115.
    49. Armstrong, K.F., Suckling, D.M.,1988. Investigations into the biochemical basis of azinphosmethyl resistance in the light brown apple moth, Epiphyas postvittana (Lepidoptera, Tortricidae). Pesticide Biochemistry and Physiology 32,62-73.
    50. Augustinsson, K.B.,1959. Electrophoresis studies on blood plasma esterase:I. Mammalian plasmata. Acta Chemica Scandinavica 13,571-592.
    51. Augustinsson, K.B.,1961. Multiple forms of esterase. Annals of the New York Academy of Sciences 94,844-868
    52. Baek, J.H., Kim, J.I., Lee, D.W., Chung, B.K., Miyata, T., Lee, S.H.,2005. Identification and characterization of ace 1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pesticide Biochemistry and Physiology 81,164-175.
    53. Barber, M.D., Moores, G.D., Tatchell, G.M., Vice, W.E., Denholm, I.,1999. Insecticide resistance in the currant-lettuce aphid, Nasonovia ribisnigri (Hemiptera:Aphididae) in the UK. Bulletin of entomological research 89,17-23.
    54. Bass, C., Carvalho, R., Oliphant, L., Puinean, A., Field, L., Nauen, R., Williamson, M., Moores, G., Gorman, K.,2011. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance. to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology 10,1-10.
    55. Bassett, M.H., McCarthy, J.L., Waterman, M.R., Sliter, T.J.,1997. Sequence and developmental expression of Cyp18, a member of a new cytochrome P450 family from Drosophila. Molecular and cellular endocrinology 131:39-49.
    56. Bautista, M.A.M., Tanaka, T., Miyata, T.,2007. Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pesticide Biochemistry and Physiology 87,85-93.
    57. Bautista, M.A.M., Miyata, T., Miura, K., Tanaka, T.,2009. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology 39,38-46.
    58. Benting, J., Nauen, R.,2004. Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypii mediates resistance to pirimicarb and omethoate. Pest management science 60,1051-1055.
    59. Beyssat-Arnaouty, V., Mouches, C., Georghiou, G.P., Pasteur, N.,1989. Detection of organophosphate detoxifying esterases by dot-blot immunoassay in Culex mosquitoes. Journal of the American Mosquito Control Association 5,196-200.
    60. Blackman, R.L., Spence, J.M., Field, L.M., Devonshire, A.L.,1995. Chromosomal location of the amplified esterase genes conferring resistance to insecticides in Myzus persicae (Homoptera, Aphididae). Heredity 75,297-302.
    61. Blair, D. S., Jeffrey, G.S.,1991. Mechanisms responsible for propoxur resistance in the German cockroach, Blattella germanica. Pesticide science 33,133-146.
    62. Bogwitz, M.R., Chung, H., Magoc, L., Rigby, S., Wong, W., O'Keefe, M., McKenzie, J.A., Batterham, P., Daborn, P.J.,2005. Cypl2a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 102,12807-12812.
    63. Brogdon, W.G., Barber, A.M.,1990. Fenitrothion-deltamethrin cross-resistance conferred by esterases in Guatemalan Anopheles albimanus. Pesticide Biochemistry and Physiology 37,130-139.
    64. Bush, M.R., Abdel-Aal, Y.A.I., Rock, G.C.,1993. Parathion resistance and esterase activity in codling moth (Lepidoptera:Tortricidae) from North Carolina. Journal of economic entomology 86, 660-666.
    65. Busuttil, B.E., Turney, K.L., Frauman, A.G.,2001. Protein Expression and Purification 23, 369-373.
    66. Byrne, F.J., Gorman, K.J., Cahill, M., Denholm, I., Devonshire, A.L.,2000. The role of B-type esterases in conferring insecticide resistance in the tobacco whitefly, Bemisia tabaci (Genn.). Pest Management Science 56,867-874.
    67. Byrne, F.J., Devonshire, A.L.,1997. Kinetics of insensitive acetylcholinesterase in organophosphate resistant tobacco whitefly, Bemisia tabaci (Gennadius) (Homoptera:Aleyrodidae). Pesticide Biochemistry and Physiology 58,119-124.
    68. Campbell, P.M., Yen, J.L., Masoumi, A., Russell, R.J., Batterham, P., et al.,1998c. Cross-resistance patterns among Lucilia cuprina (Diptera:Calliphoridae) resistant to organophosphorus insecticides. Journal of economic entomology 91,367-375.
    69. Catterall, W. A.,1986. Molecular properties of voltage-sensitive sodium channels. Annual Review of Biochemistry 55,953-985.
    70. Cao, C.W., Zhang, J., Gao, X.W., Liang, P., Guo, H.L.,2008. Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pesticide Biochemistry and Physiology 90,175-180.
    71. Cassanelli, S., Reyes, M., Rault, M., Carlo Manicardi, G., Sauphanor, B.,2006. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella. fnsect Biochemistry and Molecular Biology 36,642-653.
    72. Charpentier, A., Foumier, D.,2001. Levels of total acetylcholinesterase in Drosophia melanogaster in relation to insecticide resistance. Pesticide Biochemistry and Physiology 70,100-107.
    73. Chen, J., Zhang, D., Yao, Q., Zhang, J., Dong, X., Tian, H., Zhang, W.,2010. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect molecular biology 19,777-786.
    74. Che-Mendoza, A., Penilla, R., Rodrguez, D.,2009. Insecticide resistance and glutathione S-transferases in mosquitoes:A review. African Journal of Biotechnology 8,1386-1397.
    75. Chen,W.L., Sun, C. N.,1994. Purification and characterization of carboxylesterases of a rice brown planthopper, Nilaparvata lugens (Fallen). Insect Biochemistry and Molecular Biology 24,347-355.
    76. Chevillon, C., Bourguet, D., Rousset, F., Pasteur, N., Raymond, M.,1997. Pleiotropy of adaptive changes in populations:comparisons among insecticide resistance genes in Culex pipiens. Genetical research 70,195-204.
    77. Chiang, F.M., Sun, C.N.,1993. Glutathione transferase isozymes of diamondback moth larvae and their role in the degradation of some organophosphorus insecticides. Pesticide Biochemistry and Physiology 45,7-14.
    78. Chiang, S.W., Sun, C.N.,1996. Purification and characterization of carboxylesterases of a rice green leafhopper Nephotettix cincticeps Uhler. Pesticide Biochemistry and Physiology 54,181-189.
    79. Chris, W.C., Colin, J.J., Tara, S., Peter, J.H., Alan, L.D., Robyn, J.R., John, G.O.,2012. Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides. Insect Biochemistry and Molecular Biology xxx 1-10.
    80. Claudianos, C., Crone, E., Coppin, C., Russell, R., Oakeshott, J.,2001. A genomics perspective on mutant aliesterases and metabolic resistance to organophosphates. In:Marshall Clark, J., Yamaguchi, I. (Eds.), Agrochemical Resistance:Extent, Mechanism and Detection. American Chemical Society, Washington, DC, pp.90-101.
    81. Claudianos, C., Russell, R.J., Oakeshott, J.G.,1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochemistry and Molecular Biology 29,675-686.
    82. Clement, J.G.,1984. Role of aliesterase in organophosphate poisoning. Fundamental and Applied Toxicology 4, S96-S105.
    83. Coates, P.M., Mestriner, M.A., Hopkinson, D.A.,1975. A preliminary genetic interpretation of the esterase isozymes of human tissues. Annals of human genetics 39,1-20.
    84. Clement, J.G.,1984. Role of aliesterase in organophosphate poisoning. Fundam. Aquatic Toxicology 4, S96-S105.
    85. Cohen, E., Casida, J.E.,1980. Properties of Tribolium gut chitin synthetase. Pesticide Biochemistry and Physiology 13,121-128
    86. Daborn, P. J., Yen, J.L., Bogwitz, M.R., et al.,2002. A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science 297,2253-2256.
    87. Cuany, A., Handani, J., Berge, J., Fournier, D., Raymond, M., Georghiou, G.P., Pasteur, N.,1993. Action of esterase B1 on chlorpyrifos in organophosphate-resistant Culex mosquitos. Pesticide Biochemistry and Physiology 45,1-6.
    88. Cui, F., Lin, Z., Wang H.S., Liu, S.L., Chang, H.J., Gerald, R., Qiao, C.L., Michel, R., Kang. L., 2011. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects. Insect Biochemistry and Molecular Biology 41,1-8.
    89. De Cock, A., Degheele, D., Buprofezin:a novel chitin synthesis inhibitor acting specifically planthoppers, whiteflies and scale insects. In:Ishaaya I, Degheele D (eds) Insecticides with novel mode of action:mechanism and application. Springer, Berlin Heidelberg New York,1998 pp 74-91.
    90. Deloach, J.R., Meola, S.M., Mayer, R.T., et al.,1981. Inhibition of DNA synthesis by diflubenzuron in pupae of the stable fly Stomoxys calcitrans. Pesticide Biochemistry and Physiology 15,172-180
    91. De Silva, D., Hemingway, J., Ranson, H., Vaughan, A.,1997. Resistance to Insecticides in Insect Vectors of Disease:esta3, a Novel Amplified Esterase Associated with Amplified estβ1from Insecticide Resistant Strains of the Mosquito Culex quinquesfasciatus. Experimental parasitology 87,253-259.
    92. Devonshire, A.L., Field, L.M.,1991. Gene amplification and insecticide resistance, Annual Review of Entomology 36,1-21.
    93. Devonshire, A.L., Heidari, R., Bell, K.L., Campbell, P.M.,Campbell, B.E., et al.,2003. Kinetic efficiency of mutant carboxylesterases implicated in organophosphate insecticide resistance. Pesticide Biochemistry and Physiology 76,1-13.
    94. Devonshire, A.L., Moores, G.D.,1982.Acarboxylesterase with broad substrate specificity causes organophosphorous, carbamate and pyrethroid resistance in peach potato aphids (Myzus persicae). Pesticide Biochemistry and Physiology 18,235-246.
    95. Devonshire, A.L., Searle, L.M., Moores, G.D.,1986. Quantitative and qualitative variation in the messenger-RNA for carboxylesterases in insecticide-susceptible and resistant Myzus persicae (Sulz). Insect biochemistry 16,659-665.
    96. Dong, K.,1997. A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticide in German cockroach. Insect Biochemistry and Molecular Biology 27(2):93-100.
    97. El-Abidin Salam, A., Pinsker, W.,1981. Effects of selection for resistance to organphosphorus insecticides on two esterase loci in Drosophila melanogaster. Genetica 55,11-14.
    98. Ferrari, J.A., Morse, J.G., Georghiou, G.P., Sun, Y.Q.,1993. Elevated esterase-activity and acetylcholinesterase insensitivity in citrus thrips (Thysanoptera, Thripidae) populations from the San Joaquin Valley of California. Journal of economic entomology 86,1645-1650.
    99. Feyereisen, R., Andersen, J.F., Carino, F.A., Cohen, M.B., Koener, J.F.,1995. Cytochrome P450 in the house fly:Structure, catalytic activity and regulation of expression of CYP6A1 in an insecticide-resistant strain. Pesticide science 43,233-239.
    100. ffrench-Constant, R.H., Devonshire, A.L.,1988. Monitoring frequencies of insecticide resistance in Myzus persicae (Sulzer) (Hemiptera, Aphididae) in England during 1985-86 by immunoassay. Bulletin of Entomological Research 78,163-171.
    101. Feyereisen, R., Koener, J.F., Farnsworth, D.E., Nebert, D.W.,1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proceedings of the National Academy of Sciences of the United States of America 86, 1465-1469.
    102. Ffrench-Constant, R, H., Park, Y., Feyereisen, R.,1998. Molecular biology of insecticide resistance. In:Puga A., Wallace K. B. (Eds.), Molecular Biology of the Toxic Response. Taylor and Francis, Philadelphia, pp 533-551.
    103. Field, L.M., Devonshire, A.L., ffrench-Constant, R.H., Forde, B.G.,1989. Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Letters 243,323-327.
    104. Field, L.M., Devonshire, A.L., Forde, B.G.,1988. Molecular evidence that insecticide resistance in peach-potato aphids(Myzus persicae Sulz.) results from amplification of an esterase gene. Biochemical Journal 251,309-312.
    105. Field, L.M., Anderson, A.P., Denholm, I., Foster, S.P., Harling, Z.K., et al.,1997. Use of biochemical and DNA diagnostics for characterising multiple mechanisms of insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Pesticide Science 51,283-289.
    106. Field, L.M., Devonshire, A.L.,1998. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochemical Journal 330,169-173.
    107. Field, L.M.,2000. Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochemical Journal 349,863-868.
    108. Field, L.M., Blackman, R.L.,2003. Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages. Biological Journal of the Linnean Society 79,107-113.
    109. Fournier, D., Bride, J., Hoffmann, F., Karch, F.,1992. Acetylcholinesterase. Two types of modifications confer resistance to insecticide. Journal of Biological Chemistry 267,14270-14274.
    110. Furk, C., Powell, D.F., Heyd, S.,1980. Primicarb resistance in the melon and cotton aphid, Aphis gossypii Glover. Plant Pathology 29,191-196.
    111.Fukuto, T.R.,1990. Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectives 87,245-254.
    112. Gao B.L., Wu J., Huang S.J., Mu L.F., Han Z.J.,2008. Insecticide resistance in field populations of Laodelphax striatellus Fallen (Homoptera:Delphacidae) in China and its possible mechanisms. International journal of pest management 54,13-19.
    113. Gao, J.R., Kambhampati, S., Zhu, K.,2002. Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. Insect Biochemistry and Molecular Biology 32,765-775.
    114. Gao, J.R., Zhu, K.Y.,2002. Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera:Aphididae). Pesticide Biochemistry and Physiology 73,164-173.
    115. Gao, J.W., Scott, J.G.,2006. Role of the transcriptional repressor mdGfi-1 in CYP6D1v1-mediated insecticide resistance in the house fly, Musca domestica. Insect Biochemistry and Molecular Biology 36,387-395.
    116. Gatehouse, H.S., Gatehouse, L.N., Malone, L.A., Hodges, S., Tregidga, E., Todd, J.,2004. Amylase activity in honey bee hypopharyngeal glands reduced by RNA interference. Journal of Apicultural Research 43,9-131.
    117. Georghiou, G.P., Pasteur,N., Hawley,M.K.,1980. Linkage relationships between organophosphate resistance and a highly active esterase-B in Culex pipiens quinquefaciatus Say from California. Journal of economic entomology 73,301-305.
    118. Goh, D.K.S., Anspaugh, D.D., Motoyama, N., Rock, G.C., Roe, R.M.,1995. Isolation and characterization of an insecticide-resistance-associated esterase in the tobacco budworm Heliothis virescens (F). Pesticide Biochemistry and Physiology 51,192-204.
    119. Grosjean, Y., Grillet, M., Augustin, H., et al.,2007. A glial amino 2 acid transporter controls synapse strength and courtship in Drosophila. Nature Neuroscience 11,54-611.
    120. Guardino, X., Obiols, J., Rosell, M.G., Farran, A., Serra, C.,1998. Determination of chlorpyrifos in air, leaves and soil from a greenhouse by gas-chromatography with nitrogen-phosphorus detection, highperformance liquid chromatography and capillary electrophoresis. Journal of Chromatography A 823,91-96.
    121. Guerrero, F.D., Barros, A.T.,2006. Role of Kdr and Esterase-Mediated Metabolism in Pyrethroid-resistant Populations of Haematobia irritans (Diptera:Muscidae) in Brazil. Journal of medical entomology 43,896-901.
    122. Guerrero, F.D.,2000. Cloning of a horn fly cDNA, HiaE7, encoding an esterase whose transcript concentration is elevated in diazinon-resistant flies. Insect Biochemistry and Molecular Biology 30, 1107-1115.
    123.Guillemaud, T., Makate, N., Raymond, M., Hirst, B., Callaghan, A.,1997. Esterase gene amplification in Culex pipiens. Insect Molecular Biology 6,319-327.
    124. Guillemaud, T., Rooker, S., Pasteur, N., Raymond, M.,1996. Testing the unique amplification event and the worldwide migration hypothesis of insecticide resistance genes with sequence data. Heredity 77,535-543.
    125. Guittard, E., Blais, C., Maria, A., Parvy, J.P., Pasricha, P., Lumb, C., Lafont, R., Daborn, P.J., Dauphin-Villemant, C.,2011. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Developmental Biology 349,35-45.
    126. Gunning, R.V., Moores, G.D., Devonshire, A.L.,1997. Esterases and fenvalerate resistance in a field population of Helicoverpa punctigera (Lepidoptera:Noctuidae) in Australia. Pesticide Biochemistry and Physiology 58,155-162.
    127. Guzov, V.M., Unnithan, G.C., Chernogolov, A.A., Feyereisen, R.,1998. CYP12A1, a Mitochondrial Cytochrome P450 from the House Fly. Archives of Biochemistry and Biophysics 359,231-240.
    128. Haubruge, E., Amichot, M., Cuany, A., Berge, J.B., Arnaud, L.,2002. Purification and characterization of a carboxylesterase involved in malathion-specific resistance from Tribolium castaneum (Coleoptera:Tenebrionidae). Insect Biochemistry and Molecular Biology 32, 1181-1190.
    129. Hardstone, M., Komagata, O., Kasai, S., Tomita, T., Scott, J.,2010. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus. Insect molecular biology 19,717-726.
    130. Harel, M., Kryger, G., Rosenberry, T.L., Mallender, W.D., Lewis, T., Fletcher, R.J., Guss, J.M., Silman, I., Sussman, J.L.,2000. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science 9,1063-1072.
    131. Haubruge, E., Amichot, M., Cuany, A., Berge, J.B., Arnaud, L.,2002. Purification and characterization of a carboxylesterase involved in malathion-specific resistance from Tribolium castaneum (Coleoptera:Tenebrionidae). Insect Biochemistry and Molecular Biology 32, 1181-1190.
    132. Hawkes, N.J., Janes, R.W., Hemingway, J., Vontas, J.,2005. Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin). Pesticide Biochemistry and Physiology 81,154-163.
    133. Head, D.J., McCaffery, A.R., Callaghan, A.,1998. Novel mutations in the para-homologous sodium channel gene associated with phenotypic expression of nerve insensitivity resistance to pyrethroids in Heliothine Lepidoptera. Insect Molecular Biology 7,191-196.
    134. Healy, M.J., Dumancic, M.M., Oakeshott, J.G.,1991. Biochemical and physiological studies of soluble esterases from Drosophila melanogaster. Biochemical genetics 29,365-388.
    135. Helvig, C., Koener, J.F., Unnithan, G.C., Feyereisen, R.,2004. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proceedings of the National Academy of Sciences of the United States of America 101,4024-4029.
    136. Hemingway, J., Callaghan, A., Kurtak, D.C.,1989. Temephos resistance in Simulium damnosum Theobald (Diptera, Simuliidae):a comparative study between larvae and adults of the forest and savanna strains of this species complex. Bulletin of Entomological Research 79,659-670.
    137. Hemingway, J., Coleman, M., Paton, M., McCarroll, L., Vaughan, A., et al.,2000. Aldehyde oxidase is coamplified with the world's most common Culex mosquito insecticide resistance-associated esterases. Insect Molecular Biology 9,93-99.
    138. Hilliker, A.J.H.A.J., Chen, M.C.M., Han, Z.H.Z., Qiao, X.Q.X., Qu, M.Q.M.,2007. Mutations in acetylcholinesterase genes of Rhopalosiphum padi resistant to organophosphate and carbamate insecticides. Genome 50,172-179.
    139. Holmes, R.S., Masters, C.J.,1967. The developmental multiplicity and isoenzyme status of cavian esterases. Biochimicaet Biophysica Acta (BBA)-Enzymology 132,379-399.
    140. Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., Nusskern, D.R., Wincker, P., Clark, A.G., Ribeiro, J.M.C., Wides, R.,2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298,129-149.
    141. Hoffmann, F., Fournier, D., Spierer, P.,1992. Minigene rescues acetylcholinesterase lethal mutations in Drosophila melanogaster. Journal of molecular biology 223,17-22.
    142. Hosie, A., Sattelle, D., Aronstein, K.,1997. Molecular biology of insect neuronal GAB A receptors. Trends in neurosciences 20,578-583.
    143. Hurban, P., Thummel, C.,1993. Isolation and characterization of fifteen ecdysone-inducible Drosophila genes reveal unexpected complexities in ecdysone regulation. Molecular and cellular biology 13,7101-7111.
    144. Itokawa, K., Komagata, O., Kasai, S., Okamura, Y, Masada, M., et al.,2010. Genomic structures of in pyrethroid resistant and susceptible strains of Culex quinquefasciatus. Insect Biochemistry and Molecular Biology 40,631-640.
    145. Jiang, X., Qu, M., Denholm, I., Fang, J., Jiang, W., Han, Z.,2009. Mutation in acetylcholinesterasel associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera:Pyralidae). Biochemical and biophysical research communications 378,269-272.
    146. Jokanovic, M.,2001. Biotransformation of organophosphorus compounds. Toxicology 166, 139-160.
    147. Kale, S.P, Carvalho, F.P., Raghu, K., Sherkhane, P.D., Pandit, G.G., Mohan Rao, A.,1999. Studies on degradation of 14C-chlorpyrifos in the marine environment. Chemosphere 39,969-976.
    148. Karoly, E.D., Rose, R.L., Thompson, D.M., Hodgson, E., Rock, G.C., et al.,1996. Monooxygenase, esterase, and gutathione transferase activity associated with azinphosmethyl resistance in the tufted apple bud moth, Platynota idaeusalis. Pesticide Biochemistry and Physiology 55,109-121.
    149. Karunaratne, S.H.P.P., Hemingway, J., Jayawardena, K.G.I., Dassanayaka, V., Vaughan, A.,1995. Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes. Journal of Biological Chemistry 270,31124-31128.
    150. Karunaratne, S.H.P.P., Small, G.J., Hemingway, J.,1999. Characterization of the elevated esterase-associated insecticide resistance mechanism in Nilaparvata lugens (Stal) and other planthopper species. International journal of pest management 45,225-230.
    151. Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., Morin, S.,2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochemistry and Molecular Biology 38,634-644.
    152. Klingenberg, M.,1958. Pigments of rat liver microsomes. Archives of biochemistry and biophysics 75,376-386.
    153. Konno, T., Hodgson, E., Dauterman, W.,1989. Studies on methyl parathion resistance in Heliothis virescens. Pesticide Biochemistry and Physiology 33,189-199.
    154. Korochkin, L.I., Ludwig, M.Z., Poliakova, E.V., Philinova, M.R.,1987. Some molecular genetic aspects of cellular differentiation in Drosophila. Soviet scientific reviews. Section F Physiology and general biology reviews 1,411-466.
    155. Kuwahara, M., Miyata, T., Saito, T., Eto, M.,1982. Activity and substrate specificity of the esterase associated with organophosphorus insecticide resistance in the Kanzawa spider mite, Tetranychus kanzawai Kishida. Applied Entomology and Zoology 17,82-91.
    156. Leandro, P., Lechner, M.C., Almerda, H., et al.,2001. Molecular Genetics and Metabolism 73,173-178.
    157. Leighton, T., Marks, E., Leighton, F.,1981. Pesticides:insecticide and fungicides as chitin synthesis inhibitors. Science 231,905-907.
    158. Lenormand, T., Guillemaud, T., Bourguet, D., Raymond, M.,1998b. Evaluating gene flow using selected markers:a case study. Genetics 149,1383-1392.
    159. Li, A., Yang, Y., Wu, S., Li, C., Wu, Y.,2006. Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera:Plutellidae). Journal of economic entomology 99,914-919.
    160. Li, F., Han, Z.J., Tang, B.,2003. Insensitivity of acetylcholinesterase and increased activity of esterase in the resistant cotton aphid, Aphis gossypii Glover. Acta Entomologica Sinica 46, 578-583.
    161. Li, F., Han, Z.,2004. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochemistry and Molecular Biology 34,397-405.
    162. Li, X., Schuler, M.A., Berenbaum, M. R.,2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology 52,231-253.
    163. Li, X., Schuler, M.A., Berenbaum, M.R.,2002. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419,712-715.
    164. Liu, N., Scott, J.G.,1996. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochemical genetics 34,133-148.
    165. Liu, N., Scott, J.,1997. Phenobarbital induction of CYP6D1 is due to atransacting factor on autosome 2 in house flies, Musca domestica. Insect molecular biology 6,77-81.
    166. Liu, Z., Williamson, M.S., Lansdell, S.J., Denholm, I., Han, Z., Millar, N.S.,2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proceedings of the National Academy of Sciences of the United States of America 102,8420-8425.
    167. Livak, K.J., Schmittgen, T.D.,2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2△△CT method, methods 25,402-408.
    168. Maeda, S., Nakashima, A., Yamada, R., Hara, N., Fujimoto, Y., Ito, Y., Sonobe, H.,2008. Molecular cloning of ecdysone 20-hydroxylase and expression pattern of the enzyme during embryonic development of silkworm Bombyx mori. Comparative Biochemistry and Physiology, 149 507-516.
    169. Maitra, S., Dombrowski, S.M., Basu, M., Raustol, O., Waters, L.C., Ganguly, R.,2000. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene 248,147-156.
    170. Maitra, S., Dombrowski, S.M., Waters, L.C., Ganguly, R.,1996. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster. Gene 180,165-171.
    171. Maitra, S., Price, C., Ganguly, R.,2002. Cyp6a8 of Drosophila melanogaster:gene structure, and sequence and functional analysis of the upstream DNA. Insect Biochemistry and Molecular Biology 32,859-870.
    172. Ma, T., Chambers, J.E.,1994. Kinetic parameters of desulfuration and dearylation of parathion and chlorpyrifos by rat liver microsomes. Food and chemical toxicology 32,763-767.
    173. Maxwell, D.M., Brecht, K., Saxena, A., Feaster, S., Doctor, B.P.,1998. Comparison of cholinesterases and carboxylesterases as bioscavangers of organophosphorus compounds. In: Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K.(Eds.), Structure and Function of Cholinesterases and Related Proteins. Springer, pp.387-393.
    174. Marullo, R., Lovei, G.L., Tallarico, A., Tremblay, E.,1988. Quick detection of resistant phenotypes with high esterase activity in two species of aphids (Homoptera, Aphididae). Journal of Applied Entomology 106,212-214.
    175. Matsumoto, R.R.,1989. GABA receptors:are cellular differences reflected in function? Brain Research Reviews 14,203-225.
    176. Matsumura, F.,2010. Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects:A review on the status of research activities in the past, the present and the future prospects. Pesticide Biochemistry and Physiology 97,133-139.
    177. Mikko, U.O., Gabor, M.,2006. Allosteric modulation of [3H] EBOB binding to GABAA receptors by diflunisal analogues. Neurochemistry international 49,676-682.
    178. Matthews, G.C., Bolos-Sy, A.M., Holland, K.D., et al.,1994. Developmental alteration in GABAA receptor structure and physiological properties in cultured cerebellar granule cells. Neuron,13, 149-158.
    179. Mazzarri, M.B., Georghiou, G.P.,1995. Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. Journal of the American Mosquito Control Association 11,315-322.
    180. Mouches, C., Pasteur, N., Berge, J.B., Hyrien, O., Raymond, M., de Saint Vincent, B.R., de Silvestri, M., Georghiou, G.P.,1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233,778-780.
    181. Mouches, C., Magnin, M., Berge, J.B., De Silvestri, M., Beyssat, V., Pasteur, N., Georghiou, G.P., 1987. Overproduction of detoxifying esterases in organophosphate-resistant Culex mosquitoes and their presence in other insects. Proceedings of the National Academy of Sciences of the United States of America 84,2113-2116.
    182. Mouches, C., Pauplin, Y., Agarwal, M., Lemieux, L.,Herzog, M., et al.,1990. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proceedings of the National Academy of Sciences of the United States of America 87,2574-2578.
    183. Nabeshima, T., Kozaki, T., Tomita, T., Kono, Y.,2003. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochemical and biophysical research communications 307,15-22.
    184. Nabeshima, T., Mori, A., Kozaki, T., Iwata, Y., Hidoh, O., Harada, S., Kasai, S., Severson, D.W., Kono, Y., Tomita, T.,2004. An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochemical and biophysical research communications 313,794-801.
    185.Nebert, D.W., Adesnik, M., Coon, M.J., Estabrook, R.W., Gonzalez, F.J., Guengerich, F.P., Gunsalus, I.C., Johnson, E.F., Kemper, B., Levin, W.,1987. The P450 gene superfamily: recommended nomenclature. DNA 6,1-11.
    186. Nebert, D.W., Nelson, D.R., Adesnik, M., Coon, M.J., Estabrook, R.W., Gonzalez, F.J., Guengerich, F.P., Gunsalus, I.C., Johnson, E.F., Kemper, B., et al.,1989. The P450 superfamily:updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 8,1-13.
    187. Nelson, D.R.,1998. Metazoan cytochrome P450 evolutionl. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology 121,15-22.
    188. Nelson, D.R., Kamataki, T., Waxman, D.J., Guengerich, F.P., Estabrook, R.W., Feyereisen, R., Gonzalez, F.J., Coon, M.J., Gunsalus, I.C., Gotoh, O., et al.,1993. The P450 superfamily:update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA and cell biology 12,1-51.
    189.Nene,V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., Tu, Z.J., Loftus, B., Xi, Z., Megy, K., Grabherr, M., et al.,2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316,1718-1723.
    190. Newcomb, R.D., Campbell, P.M., Ollis, D.L., Cheah, E., Russell, R.J., et al.,1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National Academy of Sciences of the United States of America 94,7464-7468.
    191. Oakeshott, J.G., Claudianos, C, Campbell, P.M., Newcomb, R.D., Russell, R.J.,2005. Biochemical Genetics and Genomics of Insect Esterases. In:Gilbert,L.I., Iatrou,K., Gill,S.S.(Eds), Comp.Mol. Insect science. Elsevier, Oxford, pp.309-381.
    192. O'Brien, P.J., Abdel-Aal, Y.A., Ottea, J.A., Graves, J.B.,1992. Relationship of insecticide resistance to carboxylesterases in Aphis gossypii (Homoptera, Aphididae) from midsouth cotton. Journal of economic entomology.85,651-657.
    193. Ono, H., Rewitz, K.F., Shinoda, T., Itoyama, K., Petryk, A., Rybczynski, R., Jarcho, M., Warren, J.T., Marques, G., Shimell, M.J., Gilbert, L.I., O Connor, M.B.,2006. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Developmental Biology 298:555-570.
    194. Oppenoorth, F.J.,1990. Reevaluation of kinetic data for a paraoxon-hydrolyzing enzyme in a resistant strain of the predacious mite Amblyseius potentillae. Pesticide Biochemistry and Physiology 38,99-100.
    195. Ottea, J.A., Ibrahim, S.A., Younis, A.M., Young, R.J., Leonard, B.R., et al.,1995. Biochemical and physiological mechanisms of pyrethroid resistance in Heliothis virescens (F). Pesticide Biochemistry and Physiology 51,117-128.
    196. Pandey, S., Singh, D.K., Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 2004,55:197-205.
    197. Pan, Y., Guo, H.L., Gao, X.W.,2009. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 152, 266-270.
    198. Pasteur, N., Marquine, M., Hoang, T.H., Nam, V.S., Failloux, A.B.,2001. Overproduced esterases in Culex pipiens quinquefasciatus (Diptera:Culicidae) from Vietnam. Journal of Medical Entomology 38,740-745.
    199. Pittendrigh, B., Aronstein, K., Zinkovsky, E., et al.1997. Cytochrome P450 genes from Helicoverpa armigera:ex pression in a pyrethroid susceptible and resistant strain. Insect Biochemistry and Molecular Biology 27,507-512.
    200. Pittendrigh, B., Aronstein, K., Zinkovsky, E., Andreev, O., Campbell, B., Daly, J., Trowell, S., 1997. Ffrench-Constant RH:Cytochrome P450 genes from Helicoverpa armigera:expression in a pyrethroid-susceptible and-resistant strain. Insect Biochemistry and Molecular Biology 27,507-512.
    201. Poirie, M., Raymond, M., and Pasteur, N.,1992. Identification of two distinct amplifications of the esterase B locus in Culex pipiens (L.) mosquitoes from mediterranean countries. Biochemical genetics 30,13-26.
    202. Prabhakaran, S.K., Kamble, S.T.,1995. Purification and characterization of an esterase isozyme from insecticide resistant and susceptible strains of German cockroach, Blattella germanica (L.). Insect Biochemistry and Molecular Biology 25,519-524.
    203. Puinean, A.M., Foster, S.P., Oliphant, L., Denholm, I., Field, L.M., Millar, N.S., Williamson, M.S., Bass, C.,2010. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzuspersicae. PLoS genetics 6, e1000999.
    204. Qiao, C.L., Raymond, M.,1995. The same esterase B1 haplotype is amplified in insecticide-resistant mosquitoes of the Culex pipiens complex from the Americas and China. Heredity 74,339-345.
    205. Ramos, S., Sultatos, L.,1998. Flavonoid-induced alterations in cytochrome P450-dependent biotransformation of the organophosphorus insecticide parathion in the mouse, Toxicology 13, 1155-167.
    206. Raymond, M., Beyssat-Arnaouty, V., Sivasubramanian, N., et al.,1989. Amplification of various esteraseBs responsible for organophosphate resistance in Culex mosquitoes. Biochemical genetics 27,417-423.
    207. Raymond, M., Callaghan, A., Fort, P., Pasteur, N.,1991. Worldwide migration of amplified insecticide resistanc genes in mosquitoes. Nature 350,151-153.
    208. Raymond, M., Pasteur, N., Georghiou, G.P., Mellon R.B.W.M.C., Hawley, M.K.,1987. Detoxificatio esterases new to California, USA, in organophosphate resistant Culex quinquefasciatus (Diptera:Culicidae) Journal of medical entomology 24,24-27.
    209. Rewitz, K.F., O'Connor, M.B., Gilbert, L.I.,2007. Molecular evolution of the insect Halloween family of cytochrome P450s:phylogeny, gene organization and functional conservation. Insect Biochemistry and Molecular Biology 37,741-753.
    210. Richards, S., Gibbs, R.A., Weinstock, G.M., Brown, S.J., Denell, R., Beeman, R.W., Gibbs, R., Bucher, G., Friedrich, M., Grimmelikhuijzen, C.J.P.,2008. The genome of the model beetle and pest Tribolium castaneum. Nature 452,949-955.
    211. Riskallah, M.R.,1983. Esterases and resistance to synthetic pyrethroids in the Egyptian cotton leafworm. Pesticide Biochemistry and Physiology 19,184-189.
    212. Rivet, Y., Marquine, M., Raymond, M.,1993. French mosquito populations invaded by A2-B2 esterases causing insecticide resistance. Biological Journal of the Linnean Society 49,249-255.
    213. Rohl, C.A., Boeckman, F.A., Baker, C., Scheuer, T., Catterall, W.A., Klevit, R.E.,1999. Solution structure of the sodium channel inactivation gate. Biochemistry 38,855-861.
    214. Rosario-Cruz, R.,Miranda-Miranda, E., Garcia-Vasquez, Z.,Ortiz-Estrada, M.,1997. Detection of esterase activity in susceptible and organophosphate resistant strains of the cattle tick Boophilus microplus (Acari:Ixodidae). Bulletin of Entomological Research 87,197-202.
    215. Rose, R.L., Goh, D., Thompson, D.M., Verma, K.D., Heckel, D.G., Gahan, L.J., Roe, R.M., Hodgson, E.,1997. Cytochrome P450 (CYP) 9A1 in Heliothis virescens:the first member of a new CYP family. Insect Biochemistry and Molecular Biology 27,605-615.
    216. Rossiter, L.C., Conyers, C.M., MacNicoll, A.D., Rose, H.A.,2001. Two qualitatively different B-esterases from two organophosphate-resistant strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) and their roles in fenitrothion and chlorpyrifos-methyl resistance. Pesticide Biochemistry and Physiology 69,118-130.
    217. Rossiter, L.C., Gunning, R.V., Rose, H.A.,2001. The use of polyacrylamide gel electrophoresis for the investigation and detection of fenitrothion and chlorpyrifos-methyl resistance in Oryzaephilus surinamensis (Coleoptera:Silvanidae). Pesticide Biochemistry and Physiology 69,27-34.
    218. Russell, R.J., Dumancic, M.M., Foster, G.G., Weller, G.L., Healy, M.J., et al.,1990. Insecticide resistance as a model system for studying molecular evolution. In:Barker, J.S.F., Starmer, W.T., Maclntyre, R.J. (Eds.), Ecological and Evolutionary Genetics of Drosophila. Plenum, New York, pp. 293-314.
    219. Sakata, K., Miyata, T.,1994. Biochemical characterization of carboxylesterase in the small brown planthopper Laodelphax striatellus (Fallen). Pesticide Biochemistry and Physiology 50,247-256.
    220. Sams, C., Mason, H.J., Rawbone, R.,2000. Evidence for the activation of organophosphate pesticides by cytochromes P450 3A4 and 2D6 in human liver microsomes. Toxicology letters 116, 217-221.
    221. Sato, M.E., Tanaka, T., Miyata, T.,2007. A cytochrome P450 gene involved in methidathion resistance in Amblyseius womersleyi Schicha (Acari:Phytoseiidae). Pesticide Biochemistry and Physiology 88,337-345.
    222. Scharf, M. E., Parimi, S., Meinke, L. J., et al.,2001. Expression and induction of three family 4 cytochrome P450 (CYP4)* genes identified from in secticide resistant and susceptible western corn root worms Diabrotica virgifera. Insect Molecular Biology 10,139-146.
    223. Scharf, M.E., Hemingway, J., Small, G.J., Bennett, G.W.,1997. Examination of esterases from insecticide resistant and susceptible strains of the German cockroach, Blattella germanica (L.). Insect Biochemistry and Molecular Biology 27,489-497.
    224. Schlichting, I., Berendzen, J., Chu, K., Stock, A.M., Maves, S.A., Benson, D.E., Sweet, R.M., Ringe, D., Petsko, G.A., Sligar, S.G.,2000. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. Science 287,1615-1622.
    225. Schliins, H., Crozier, R.H.,2007. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect molecular biology 16,753-759.
    226. Schmidt, J.M., Good, R.T., Appleton, B., Sherrard, J., Raymant, G.C., Bogwitz, M.R., Martin, J., Daborn, P.J., Goddard, M.E., Batterham, P.,2010. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6gl locus. PLoS genetics 6, el000998.
    227. Scott, J.,1999. Molecular basis of insecticide resistance:cytochromes P450. Insect Biochemistry and Molecular Biology 29,757-777.
    228. Scott, J.G., Wen, Z.,1997. Toxicity of fipronil to susceptible and resistant strains of German cockroACh.Es (Dictyoptera:Blattellidae) and house flies (Diptera:Muscidae). Journal of economic entomology 90,1152-1156.
    229. Scott, J.G., Zhang, L.,2003. The house fly aliesterase gene (MdalphaE7) is not associated with insecticide resistance or P450 expression in three strains of house fly. Insect Biochemistry and Molecular Biology 33,139-144.
    230. Shan, G., Ottea, J.A.,1998. Contributions of monooxygenases and esterases to pyrethroid resistance in the tobacco budworm, Heliothis virescens. Proceedings of the National Academy of Science of the United States of America 2,1148-1151.
    231. Siegfried, B.D., Zera, A.J.,1994. Partial purification and characterization of a greenbug (Homoptera, Aphididae) esterase associated with resistance to parathion. Pesticide Biochemistry and Physiology 49,132-137.
    232. Siegfried, B.D., Swanson, J.J., Devonshire, A.L.,1997. Immunological detection of greenbug (Schizaphis graminum) esterases associated with resistance to organophosphate insecticides. Pesticide Biochemistry and Physiology 57,165-170.
    233. Small, G.J., Hemingway, J.,2000a. Differential glycosylation produces heterogeneity in elevated esterases associated with insecticide resistance in the brown planthopper Nilaparvata lugens (Stal). Insect Biochemistry and Molecular Biology 30,443-453.
    234. Small, G.J., Hemingway, J.,2000b. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology 9,647-653.
    235. Snyder, M., Davidson, N.,1983. Two gene families clustered in a small region of the Drosophila genome. Journal of Molecular Biology 166,101-118.
    236. Soreq, H., Seidman, S.,2001. Acetylcholinesterase-new roles for an old actor. Nature Reviews Neuroscience 2,294-302.
    237. Sundaram, B., Rai, S.K., Ravendra, N.,1999. Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pesticide Science 55: 1222-1228.
    238. Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., Silman, I.,1991. Atomic structure of acetylcholinesterase from Torpedo californica:a prototypic acetylcholine-binding protein. Science 253,872.
    239. Tang, J., Cao, Y., Rose, R.L., Brimfield, A.A., Dai, D., Goldstein, J.A., Hodgson, E.,2001. Metabolism of chlorpyrifos by human cytochrome p450 isofrms and human, mouse, and rat live microsomes, Drug Metabolism and Disposition 29,1201-1204.
    240. Ugaki, M., Shono, T., Fukami, J.I.,1985. Metabolism of fenitrothion by organophosphorus-resistant and-susceptible house flies, Musca domestica. Pesticide Biochemistry and Physiology 23,33-40.
    241.Vaughan, A., Rodriguez, M., Hemingway, J.,1995. The independent gene amplification of electrophoretically indistinguishable Beta-esterases from the insecticide resistant mosquito Culex quinquefasciatus. Biochemical Journal 305,651-658.
    242. Vontas, J.G., Small, G.J., Hemingway, J.,2000. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stal). Insect Molecular Biology 9,655-660.
    243. Vulue, J.M., Beach, R.F., Atiele, F.K., et al.,1999. Elevated Oxidase and Esterase Levels Associated with Permethrin Tolerance in Anopheles gambiae from Kenyan Villages using permethrin-impregnated nets. Medical and Veterinary Entomology 13,239-244.
    244. WAChEndorff, U., Zoebelein, G.,1988. Diagnosis of insecticide resistance in Phorodon humuli (Homoptera, Aphididae). General Entomology 13,145-155.
    245. Walsh, S.B., Dolden, T.A., Moores, G.D., Kristensen, M., Lewis, T., Devonshire, A.L., Williamson, M.S.,2001. Identification and characterization of mutations in housefly(Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochemical Journal 359,175-181.
    246. Wang, Y.H., Gao, C.F., Xu, Z.P., Zhu, Y.C., Zhang, J.H., Li, W.H., Dai, D.J., Lin, Y.W., Zhou, W.J., Shen, J.L.,2008. Buprofezin susceptibility survey, resistance selection and preliminary determination of the resistance mechanism in Nilaparvata lugens (Homoptera:Delphacidae). Pest Management Science 64,1050-1056.
    247. Weill, M., Berticat, C., Raymond, N., Chevillon, C.,2000. Quantitative polymerase chain reaction to estimate the number of amplified esterase genes in insecticide-resistant mosquitoes. Analytical Biochemistry 285,267-270.
    248. Weill, M., Lutfalla, G., Mogensen, K., Chandre, F., Berthomieu, A., Berticat, C., Pasteur, N., Philips, A., Fort, P., Raymond, M.,2003. Insecticide resistance in mosquito vectors. Nature 423, 136-137.
    249. Weinstock, G.M., Robinson, G.E., Gibbs, R.A., Worley, K.C., Evans, J.D., Maleszka, R., Robertson, H.M., Weaver, D.B., et al.,2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443,931-949.
    250. Wessels, D., Barr, D.B., Mendola, P.,2003. Use of biomarkers to indicate exposure of children to organophosphate pesticides:implications for a longitudinal study of children's environmental health. Environmental Health Perspectives 111,1939-1946.
    251. Wu, S.W., Yang, Y.H., Yuan, G.R., Campbell, P.M., Teese, M.G., Russell, R.J., Oakeshott, J.G., Wu, Y.D.,2011. Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochemistry and Molecular Biology 41,14-21.
    252. Wheelock, G.D. and Scott, J.G.,1992. The role of cytochrome P4501pr in deltamethrin metabolism by pyrethroid-resistant and susceptible strains of house flies. Pesticide Biochemistry and Physiology 43,67-77.
    253. Wigglesworth, V.B.,1934. Memoirs:The Physiology of Ecdysis in Rhodnius Prolixus (Hemiptera). Ⅱ. Factors controlling Moulting and 'Metamorphosis'. Quarterly Journal of Microscopical Science 2,191-222.
    254. Wirth, M.C., Georghiou, G.P.,1996. Organophosphate resistance in Culex pipiens from Cyprus. Journal of the American Mosquito Control Association 12,112-118.
    255. White, N.D.G., Bell, R.J.,1988. Inheritance of malathion resistance in a strain of Tribolium castaneum (Coleoptera, Tenebrionidae) and effects of resistance genotypes on fecundity and larval survival in malathion-treated wheat. Journal of economic entomology 81,381-386.
    256. Williamson, M.S., Martinez-Torres, D., Hick, C.A., et al.1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Molecular and General Genetics MGG 252,51-60.
    257. Willis, J.H.,1996. Metamorphosis of the cuticle, its proteins, and their genes. In:Gilbert, L.I., Tata,J.R., Atkinson, B.G. (Eds.), Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibians and Insect Cells. Academic Press, pp.253-282.
    258. Willis, J.H., Rezaur, R., Sehnal, F.,1982. Juvenoids cause some insects to form composite cuticles. Journal of embryology and experimental morphology 71,25-40.
    259. Wirth, M.C., Marquine, M., Georghiou, G.P., Pasteur, N.,1990. Esterases A2 and B2 in Culex quinquefasciatus (Diptera:Culicidae):role in organophosphate resistance and linkage studies. Journal of medical entomology 27,202-206.
    260. Wood, O.R., Hanrahan, S., Coetzee, M., Koekemoer, L.L., Brooke, B.D.,2010. Cuticle thickening associated with pyrethroid resistance in the major malaria vector. Parasit Vectors 3,1-7.
    261. Xu, J., Qu, F., Weide, L.,1994. Diversity of amplified esterase B genes responsible for organophosphate resistance in Culex quinquefasciatus from China. J. Med. Colleges Peoples Liberation Army 9,20-23.
    262. Xu, X.J., Yu, L.Y., Wu, Y.D.,2005. Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental microbiology 71,948-954.
    263. Yang, M.L., Zhang, J.Z., Zhu, K.Y., Xuan, T., Liu, X.J., Guo, Y.P., et al.,2008. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Archives of Physiology and Biochemistry 69,1-10.
    264. Feng, Y. N., Yan, J., Sun, W., Zhao, S., Lu, W.C., Li, M., He, L.,2011. Transcription and induction profiles of two esterase genes in susceptible and acaricide-resistant Tetranychus cinnabarinns. Pesticide Biochemistry and Physiology 100,70-73
    265. Yu, S.J., Terriere, L.C.,1975. Activities of hormone metabolizing enzymes in house flies treated with some substituted urea growth regulators. Life Sciences 17,619-625.
    266. Zhang, J.Z., Zhang, J.Q., Yang, M.L., Jia, Q.D., Guo, Y.P., Ma, E., Zhu, K.Y.,2011. Genomics-based approAChEs to screening carboxylesterase-like genes potentially involved in malathion resistance in oriental migratory locust(Locusta migratoria manilensis). Pest management science DOI 10.1002/ps.2049
    267. Zhang, L., Shi, J., Shi, X.Y., Liang, P., Gao, J.P., Gao, X.W.,2010. Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera:Muscidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 156,6-11.
    268. Zhang, X.J., Yang, L., Zhao, Q., Caen, J.P., He, H.Y., Jin, Q.H., Guo, L.H., Alemany, M., Zhang, L.Y., Shi, Y.F.,2002. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell death and differentiation 9,790.
    269. Zhao, G.Y., Liu, W., Knowles, C.O.,1994. Mechanisms associated with diazinon resistance in western flower thrips. Pesticide Biochemistry and Physiology 49,13-23.
    270. Zhao, G., Rose, R.L., Hodgson, E., Roe, R.M.,1996. Biochemical mechanisms and diagnostic microassays for pyrethroid, carbamate, and organophosphate insecticide resistance/cross-resistance in the tobacco budworm, Heliothis virescens. Pesticide Biochemistry and Physiology 56,183-195.
    271. Zhou, Z., Scharf, M.E., Parimi, S., Meinke, L.J., Wright, R.J., et al.,2002. Diagnostic assays based on esterase-mediated resistance mechanisms in western corn root worms (Coleoptera: Chrysomelidae). Journal of economic entomology 95,1261-1266.
    272.Zhuang, H.M., Wang, K.F., Zheng, L., Wu, Z.J., Miyata, T., Wu, G.,2010. Identification and characterization of a cytochrome P450 CYP6CX1 putatively associated with insecticide resistance in Bemisia tabaci. Insect Science 18,484-494.
    273. Zhu, K.Y., Brindley, W.A.,1990b. Properties of esterases from Lygus hesperus Knight (Hemiptera: Miridae) and the roles of the esterases in insecticide resistance. Journal of economic entomology 83, 725-732.
    274. Zhu, K.Y., Brindley, W.A.,1992. Enzymological and inhibitory properties of acetylcholinesterase purified from Lygus hesperus Knight (Hemiptera, Miridae). Insect Biochemisry and Molecular Biology 22,245-251.
    275. Zhu, F., Parthasarathy, R., Bai, H., Woithe, K., Kaussmann, M., Nauen, R., Harrison, D.A., Palli, S.R.,2010. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proceedings of the National Academy of Sciences 107,8557-8562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700