用户名: 密码: 验证码:
昆虫烟碱型乙酰胆碱受体的组成及其药理学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟碱型乙酰胆碱受体(nAChRs)是脊椎动物和无脊椎动物神经系统中快速介导胆碱能突触传递的配基门控离子通道。在脊椎动物中,nAChRs在神经肌肉接头以及中枢和周缘神经系统中均有表达。在昆虫中,nAChRs在神经肌肉接头处没有分布,却是中枢神经系统中最丰富的神经递质受体,是重要的杀虫剂作用靶标。目前通过分子克隆和基因组测序技术在多种昆虫中发现了大量的nAChRs亚基,为昆虫nAChRs的研究提供了坚实的基础。在昆虫nAChRs亚基功能研究中,试图体外组建昆虫功能性nAChRs一直是国际研究热点,但近20年来始终没有突破,主要有两个问题没有解决:第一,昆虫神经系统中nAChRs蛋白复合体的组成仍然未知;第二,在异源表达系统中无法获得有功能的昆虫nAChRs同型五聚体。
     本文利用非洲爪蟾卵母细胞表达系统,对褐飞虱的四个nAChRs a亚基与大鼠的nAChRs β2亚基进行了体外重组,通过双电极电压钳技术及放射性配基结合实验研究了重组型受体的药理学特性,并利用免疫共沉淀技术对昆虫内源性nAChRs a亚基的组成进行了探索。通过搜索褐飞虱EST数据库及基因克隆获得了两个Ly-6/neurotoxin超家族基因,分别将其命名为Nl-lynx1和Nl-lynx2.在异源表达系统中检测了这两个lynx蛋白对重组型受体NIαl/rβ2的调节作用,并对其调节机理进行了研究。
     一、昆虫烟碱型乙酰胆碱受体a1、a2亚基的异源表达与功能研究
     吡虫啉等新烟碱类杀虫剂作为昆虫烟碱型乙酰胆碱受体(nAChRs)的选择性激动剂,在农业害虫和卫生害虫的防治中应用广泛。褐飞虱(Nilaparvata lugens)是亚洲许多地区的主要水稻害虫。本文在异源表达系统中对褐飞虱nAChRs两个a亚基Nlal和Nla2进行了体外重组,并对重组型受体的功能特性进行了研究。在非洲爪蟾卵母细胞中,Nlal和Nla2分别与哺乳动物的β2亚基共表达,均能够形成有功能的受体,这与以往对于昆虫a亚基的研究结果一致。两种重组受体Nlαl/rβ2和Nlα2/rβ2对乙酰胆碱的激动剂剂量反应相差不足两倍,但是,Nlα1/rβ2受体对吡虫啉的亲和力显著高于Nlα2/rβ2受体,其EC5o分别为61±7μM(n=9)和870±76μM(n=13)。
     在卵母细胞中同时表达Nlα1, Nla2和哺乳动物的β2亚基,所形成的受体对激动剂的剂量反应曲线介于Nlα1/rβ2受体和Nlα2/rβ2受体对激动剂的剂量反应曲线之间,但又与计算机模拟的两种受体同时存在时的剂量反应曲线存在显著差异,由此推测,Nlα1, Nlα2和哺乳动物的β2亚基可能组成一个三亚基五聚体Nlα1/Nlα2/rβ2。改变各亚基的注射比例,激动剂的EC50没有显著变化,进一步证明三个亚基共表达时形成的受体不是亚基组成不同的nAChRs的混合物,而是单一的重组型nAChRs。为证明在褐飞虱体内Nlal和Nla2两个亚基是否存在于同一个受体中,进一步研究昆虫内源性nAChRs的组成,本文分别以Nlal和N1a2亚基胞内环的氨基酸序列为抗原制备特异性的多克隆抗体,进行了免疫共沉淀,研究结果证明,在褐飞虱体内N1a1和N1a2亚基的确存在于同一个受体中。
     二、昆虫烟碱型乙酰胆碱受体a3、a8亚基的异源表达与功能研究
     昆虫烟碱型乙酰胆碱受体(nAChRs)是以吡虫啉为代表的新烟碱类杀虫剂的作用靶标。目前,通过基因组序列分析和基因克隆的方法在包括黑腹果蝇(Drosophila melanogaster)在内的多种昆虫中鉴定出了大量的nAChRs亚基。系统发生关系的分析结果表明,果蝇Dβ2亚基与许多昆虫的a8亚基属于同一个亚类群中。以往的研究中并没有关于在异源表达系统中成功表达昆虫a8/Dβ2亚类群nAChRs亚基的报道,但是,有证据表明DD2亚基可以与其它两个亚基共聚,形成三亚基五聚体。
     本文通过RT-PCR和RACE技术克隆了褐飞虱Nla8亚基(GenBank登录号:FJ481979),并首次报道了包含昆虫nAChRs a8亚基的三亚基五聚体Nla8/Nla3/rβ2。Nla8亚基基因全长2036bp,开放阅读框为1617bp,编码538个氨基酸,与意大利蜜蜂(Apis mellifera)、赤拟谷盗(Tribolium castaneum)、冈比亚按蚊(Anopheles gambiae)的nAChRs a8亚基具有较高的相似性,且具有nAChRs a亚基基因家族的特征结构。在非洲爪蟾卵母细胞表达系统中,褐飞虱Nla8亚基可以与哺乳动物p亚基rβ2共聚,形成重组型受体Nlα8/rβ2;也可以与Nla3亚基及rβ2共聚,形成三亚基五聚体Nlα8/Nlα3/rβ2,且该受体对激动剂的剂量反应显著高于Nlα8/rβ2nAChRs. Nlα/Nlα/rp2对吡虫啉的最大反应电流Imax是Nlα8/rβ2的29.69倍。剂量依赖反应的研究结果表明,Nlα8/rβ2对乙酰胆碱的ECs0是Nlα8/Nlα3/rβ的5.58倍,而Nlα8/rβ2对吡虫啉的EC50约是Nlα8/Nlα/rβ2的40倍。免疫共沉淀的研究结果进一步证明,Nla3与Nla8亚基存在于同一个内源性1nAChRs中。
     三、昆虫烟碱型乙酰胆碱受体附属蛋白的克隆及其对受体的调节作用
     在昆虫体内或离体条件下,除了nAChRs亚基组成外,一些附属蛋白,包括分子伴侣,调控因子或调节蛋白,在昆虫nAChRs的蛋白折叠与成熟、复杂结构组成、蛋白功能等方面起到十分重要的作用。本文通过搜索褐飞虱EST数据库(http://bphest.dna.affrc.go.jp/:Noda et al.,2008)及基因克隆获得了两个Ly-6/neurotoxin超家族基因,分别将其命名为Nl-lynx1和Nl-lynx2。Nl-lynx1和Nl-lynx2与萤火虫Pr-lynx1基因的相似性分别为53%和50%,与小鼠lynx1基因的相似性分别为39%和41%,与小鼠lynx2基因的相似性分别为42%和44%。尽管褐飞虱Nl-lynx1和Nl-lynx2基因与萤火虫的Pr-lynx1基因及脊椎动物的Ly-6/neurotoxin超家族的基因不具有较高的相似性,但是具有Ly-6/neurotoxin超家族基因的特征结构。在非洲爪蟾卵母细胞表达系统中,Nl-Lynx1和Nl-Lynx2能够上调重组型受体Nlα1/rβ2对激动剂反应的最大电流,但是对受体对激动剂的敏感性没有影响。Nl-Lynx1与重组型受体Nlα1/rβ2共表达时,受体对乙酰胆碱和吡虫啉的Imax分别是单独表达Nlα1/rp2时的3.56倍和1.72倍;Nl-Lynx2与重组型受体Nlal/rβ2共表达时,受体对乙酰胆碱和吡虫啉的Imax分别是单独表达Nla1/rβ2时的3.25倍和1.51倍。放射性配基结合实验的结果表明,Nl-lynx1或Nl-lynx2与受体Nla1/rβ2共表达只能增加配基的最大结合量(Bmax)不改变受体与配基结合的平衡常数(Kd),即不改变受体对配基的亲和力。进一步的研究结果表明,Nl-lynx1或Nl-lynx2对受体的脱敏特性及nAChRs亚基表达水平没有影响,且在一定范围内Nla1/rβ2对激动剂的反应电流随Nl-lynx:主射量的增加而增大,由此推测,Nl-lynx对受体的调节作用可能是通过提高蛋白质折叠和亚基组装的效率实现的。
     本文的研究结果表明,两种不同的昆虫nAChRs α亚基共表达可以提高受体对激动剂的反应,但仍需哺乳动物β亚基的参与才能够在异源表达系统中构建功能受体;附属蛋白与受体亚基共表达仍然不能形成有功能的受体,由此推测昆虫nAChRs的蛋白复合体中尚有未知的蛋白需要鉴定,试图体外组建昆虫功能性nAChRs可能需要更多的未知附属蛋白。因此,本研究通过免疫共沉淀分离纯化包含某一亚基的昆虫内源性nAChRs蛋白复合体,经SDS-PAGE电泳进行分离,LC-MS/MS质谱鉴定的方法,对nAChRs蛋白复合体中的未知蛋白鉴定进行了尝试。虽然,由于抗体特异性等原因导致鉴定出的蛋白数量过多,难以筛选出目的蛋白并对其功能进行验证,但是,应用免疫共沉淀,亲和层析等方法对昆虫1nAChRs蛋白复合体进行分离纯化,结合基因组或转录组数据库,通过质谱对其组分进行鉴定的方法仍然具有可行性。应用蛋白质组学和基因组学的技术手段,鉴定昆虫nAChRs蛋白复合体的组成,体外构建功能性昆虫nAChRs,仍然是未来昆虫nAChRs结构与功能研究的热点之一
Nicotinic acetylcholine receptors (nAChRs) are neurotransmitter-gated ion channels, which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems. In mammals and other vertebrates, nAChRs are expressed at both the neuromuscular junction and within the CNS (Central Nervous System) and PNS (Peripheral Nervous System). In insects, though not expressed at the neuromuscular junction, nAChRs play an important role in the insect CNS, where ACh is the major excitatory neurotransmitter. Many insect nAChR subunits have been identified and characterized by molecular cloning and genome sequencing. In the last two decades, studies have focused on the heterologous expression of functional insect nAChRs. However, in the case of insects such as Drosophila with all subunits identified, considerable problems remain in identification of native subunit composition and even in generating functional insect nAChRs in heterologous expression systems. Some proteins other than nAChRs themselves might play important roles in insect nAChRs formation in vivo and in vitro, such as the chaperones, regulators and modulators.
     In the present study, we co-expressed four nAChRs a subunits of brown planthopper, Nilaparvata lugens, with rat β2subunit in Xenopus oocytes and characterized the hybrid nAChRs using electrophysiological recordings with a two-electrode voltage clamp and radioligand binding assay. Co-immunoprecipitation was used to examine the native nAChRs subunit composition. We also reported the identification of two members of the Ly-6/neurotoxin superfamily in the brown planthopper and their action as the modulators on insect nAChRs were evaluated in the Xenopus oocytes heterologous expression system. The mechanism of these two modulators effecting on the agonist potency was also discussed.
     1. Heterologous co-expression and pharmacological characterization of two insect nAChRs a subunits:Nlal and Nla2
     Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nAChRs and are used extensively in areas of crop protection and animal health to control a variety of insect pest species. Here, we describe studies performed with nAChR subunits Nlal and Nla2cloned from the N. lugens, a major insect pest of rice crops in many parts of Asia. When Nlal or Nla2was co-expressed with the rat nAChR β2subunit in Xenopus oocytes, functional hybrid nAChRs could be generated, which is consistent with previous studies. The difference in EC50values for ACh from oocytes expressing Nlal/rP2and Nla2/rβ2nAChRs was less than two fold (EC50=37±6μM and EC5o=62±10μM, respectively; n=9). Whereas EC50values for imidacloprid were61±7μM (n=9) and870±76μM (n=13) for Nlal/rβ2and Nlα2/rβ2, respectively.
     In oocytes co-injected with the Nlal, Nla2, and rP2subunit cRNAs, the experimental dose-response curve differed from theoretical dose-response curves predicted for mixed populations of Nla1/rβ2and Nla2/rβ2nAChRs, and no plateau was detected in the experimental dose-response data, which provided evidence for a single population of 'triplet' Nla1/Nla2/rβ2nAChR. Increasing the ratio of the P2subunit resulted in reduced maximal currents, but no significant difference in EC50values was detected, which also proved that one 'triplet' nAChR was generated. In addition, evidence has also been obtained from immunoprecipitation study to indicate that Nlal and Nla2subunit co-assembled in N. lugens native nAChR.
     2. Heterologous co-expression and pharmacological characterization of two insect nAChRs a subunits:Nla3and Nla8
     Genome sequence analysis has provided information concerning subunit diversity of nAChRs from several insect species. Phylogenetic analysis suggests that the 'DP2group' contains 'a' type subunit in most insect species including a8subunit. There have been no reports of the successful functional heterologous expression of any nAChR subunit from the insect a8/DP2subunit group previously. But there is the evidence to suggest that the Dβ2subunit might be able to co-assemble with two other subunits into a triplet nAChR. Here we cloned the nAChRs a8subunit of N. lugens (GenBank accession number FJ481979) and demonstrated for the first time the incorporation of an insect nAChR subunit from the a8/Dβ2group into a functional recombinant nAChR.
     The full length of N. lugens nAChRs a8subunit is2036bp, including1617bβ ORF which code538amino acid, and share close sequence similarity with nAChR a8subunits from honey bee Apis mellifera, the malaria mosquito Anopheles gambiae, and the red flour beetle Tribolium castaneum. Heterologous expression demonstrated that when Nla8was co-expressed with rat β2subunit or co-expressed together with Nla3and rβ2, functional nAChRs were detected. However, in oocytes co-injected with the Nlα3, Nlα8, and rβ2subunit cRNAs, much larger responses were detected than those in oocytes expressing Nla8/rβ2nAChRs. The maximal agonist response (Imax) detected with imidacloprid in oocytes expressing Nla8/rβ2nAChRs was29.69fold higher than Imax in oocytes expressing Nla3/Nla8/rβ2nAChRs. EC50values for acetylcholine were95.8±11.7and17.6±3.7μM for Nla8/rβ2and Nla3/Nla8/rβ2nAChRs, respectively, and for imidacloprid values were127.9±19.3and3.2±0.5μM, respectively. These data indicated Nla3, Nla8, and rβ2subunit generated a'triple'nAChRs. Evidence has also been obtained from immuno-precipitation study to indicate that Nla3and Nla8subunit co-assemble in native nAChR.
     3. Identification of two Lynx proteins and the modulation on insect nAChRs
     Some proteins other than nAChRs themselves might play important roles in insect nAChRs formation in vivo and in vitro, such as the chaperone, regulator and modulator. In present study, two members of the Ly-6/neurotoxin superfamily have been identified by blasting in EST database of N. lugens with Pr-lynxl (Pyrocoelia rufa) and named as Nl-lynxl and Nl-lynx2. Although Nl-lynxl and Nl-lynx2did not show very high similarities to Pr-lynx1(53%and50%) and vertebrate Ly-6/neurotoxin superfamily, such as Mus musculus lynxl (39%and41%) and lynx2(42%and44%), both Nl-lynx1and Nl-lynx2contained the signature cysteine-rich motif of the Ly-6/neurotoxin superfamily. Similar to Pr-lynxl, both Nl-lynxl and Nl-lynx2only increased agonist-evoked currents, but did not change the agonist sensitivity on nAChRs expressed in Xenopus oocytes. In Xenopus oocytes expressing Nlal/rβ2, the addition of Nl-lynx1or Nl-lynx2increased Imax of ACh to3.56-fold and3.25-fold respectively, and increased Imax of imidacloprid to1.72-fold and1.51-fold respectively. Radioligand binding assay determined that co-expression of Nl-lynx1or Nl-lynx2with Nlal/rβ2only increased the maximum binding (Bmax), but did not change the binding affinity (Kd). Further studies showed that the co-expression of Nl-lynxl or Nl-lynx2did not change the desensitization properties of Nlal/rβ2or the expression levels of Nlalor rβ2subunit on oocyte surface. So, the higher efficiency of protein folding and subunit assembly might be the important reasons for the significantly higher level of binding detected with co-expression of Nlal/rβand Nl-lynxl or N1-lynx2.
     The present study shows that co-expression of two insect nAChRs a subunits is able to increase agonist response of hybrid receptors, but functional nAChRs could not be detected in Xenopus oocytes without mammalian β subunit, even with nAChRs modulator Nl-lynx1or Nl-lynx2, which suggests additional accessory proteins need to be identified for heterologous expression of functional insect nAChRs. So, we have tried to identify more proteins of native nAChRs complex by co-immunoprecipitation, SDS-PAGE electro-phoresis and LC-MS/MS. Although the number of proteins identified is too large to find useful information, the method we used was proved to be feasible.
引文
1. 龚燕华,彭小忠编辑.蛋白质相互作用及亚细胞定位原理与技术.北京,中国协和医科大学出版社,2009
    2. 胡守萍,尹训南,付德霞等.原位杂交技术展望.畜牧兽医科技信息.2005:14-15
    3. 刘泽文.褐飞虱对吡虫啉的抗性及其机理研究.南京农业大学,2004.
    4. 吕国蔚,李云庆编辑.神经生物学实验原理与技术.北京,科学出版社,201 1
    5. 谭伟龙,董言德,王忠灿等.荧光定量PCR快速检测淡色库蚊击倒抗性相关钠通道基因突变(L1014F).寄生虫与医学昆虫学报.2011,18:5
    6. 杨宝峰编辑.离子通道药理学.北京,人民卫生出版社,2005
    7. 翟启慧.昆虫分子生物学的一些进展:神经递质和离子通道.昆虫学报.1995
    8. Albertson, GD. Mapping muscle protein genes by in situ hybridization using biotin-labeled probes London, ROYAUME-UNI, Nature Publishing Group,1985
    9. Amar M, Thomas P, Wonnacott S, et al.. A nicotinic acetylcholine receptor subunit from insect brain forms a non-desensitising homo-oligomeric nicotinic acetylcholine receptor when expressed inXenopus oocytes. Neuroscience Letters.1995,199:107-110
    10. Arias, HR.. Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Research Review.1997,25:133-191
    11. Barnard EA, Miledi R, Sumikawa K. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proceedings of the Royal Society of London. Series B. Biological Sciences.1982,215:241-246
    12. Bass C, Lansdell SJ, Millar NS, et al. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera:Pulicidae). Insect Biochemistry and Molecular Biology.2006,36:86-96
    13. Bate L, Gardiner M. CHAPTER 5.5 Genetics of idiopathic epilepsy. In:Crusio WE, Gerlai RT editor, Techniques in the Behavioral and Neural Sciences, Elsevier,1999:820-840
    14. Benton R, Vannice KS, Gomez-Diaz C, et al. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell.2009,136:149-162
    15. Bertrand D, Ballivet M, Gomez M, et al. Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate beta 2 subunit and Drosophila alpha subunits. European Journal of Neuroscience.1994,6:869-875
    16. Brandtzaeg P. The increasing power of immunohistochemistry and immunocytochemistry. Journal of Immunological Methods.1998,216:49-67
    17. Breer H, Kleene R, Hinz G. Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. The Journal of Neuroscience.1985,5:3386-3392
    18. Brejc K, van Dijk WJ, Klaassen RV, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature.2001,411:269-276
    19. Broadbent S, Groot-Kormelink PJ, Krashia PA, et al. Incorporation of the β3 subunit has a dominant-negative effect on the function of recombinant central-type neuronal nicotinic receptors. Molecular Pharmacology.2006,70:1350-1357
    20. Campagna-Slater V, Weaver DF. Molecular modelling of the GABAA ion channel protein. Journal of Molecular Graphics and Modelling.2007,25:721-730
    21. Castillo M, Mulet J, Gutierrez LM, et al. Dual role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. Journal of Biological Chemistry.2005,280:27062-27068
    22. Chamaon K, Schulz R, Smalla K-H, et al. Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster. the a-subunit Dα3 and the P-type subunit ARD co-assemble within the same receptor complex. FEBS Letters.2000,482:189-192
    23. Chamaon K, Smalla KH, Thomas U, et al. Nicotinic acetylcholine receptors of Drosophila:three subunits encoded by genomically linked genes can co-assemble into the same receptor complex. Journal of Neurochemistry.2002,80:149-157
    24. Charnet P, Labarca C, Lester HA. Structure of the gamma-less nicotinic acetylcholine receptor: learning from omission. Molecular Pharmacology.1992,41:708-717
    25. Chen DN, Patrick JW. The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha 7 subunit. Journal of Biological Chemistry.1997,272:24024-24029
    26. Cheng A, Bollan KA, Greenwood SM, et al. Differential subcellular localization of RIC-3 isoforms and their role in determining 5-HT3 receptor composition. Journal of Biological Chemistry.2007, 282:26158-26166
    27. Cheng A, McDonald NA, Connolly CN. Cell surface expression of 5-Hydroxytryptamine Type 3 receptors is promoted by RIC-3. Journal of Biological Chemistry.2005,280:22502-22507
    28. Choo YM, Lee BH, Lee KS, et al. Pr-lynxl, a modulator of nicotinic acetylcholine receptors in the insect. Molecular and Cellular Neuroscience.2008,38:224-235
    29. Clarke P, Schwartz R, Paul S, et al. Nicotinic binding in rat brain:autoradiographic comparison of [3H]-acetylcholine, [3H]-nicotine, and [125I]-alpha-bungarotoxin. The Journal of Neuroscience.1985, 5:1307-1315
    30. Colquhoun D. Binding, gating, affinity and efficacy:The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. British Journal of Pharmacology. 1998,125:924-947
    31. Coons AH. Introduction:The development of immunohishochemistry. Annals of the New York Academy of Sciences.1971,177:5-9
    32. Corringer PJ, Novere NL, Changeux JP. Nicotinic receptors at the amino acid level. Annual Review of Pharmacology and Toxicology.2000,40:431-458
    33. Couturier S, Bertrand D, Matter JM, et al. A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by a-BTX. Neuron. 1990,5:847-856
    34. Deck KA, Kern R, Trautwein W. Voltage clamp technique in mammalian cardiac fibres. European Journal of Physiology.1964,280:50-62
    35. Dessaud E, Salaun D, Gayet O, et al. Identification of Iynx2, a novel member of the ly-6/neurotoxin superfamily, expressed in neuronal subpopulations during mouse development. Molecular and Cellular Neuroscience.2006,31:232-242
    36. Dimartino S, Boi C, Sarti GC. A validated model for the simulation of protein purification through affinity membrane chromatography. Journal of Chromatography A.2011,1218:1677-1690
    37. Duvoisin RM, Deneris ES, Patrick J, et al. The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit:(34. Neuron.1989,3:487-496
    38. Eccles JC editor. The Physiology of Synapses. Springerverlag, Berlin,1964
    39. Edmondson DG, Dent SY. Identification of protein interactions by far western analysis. In:John E. Coligan, et al., editor. Current protocols in protein science,2001, Chapter 19
    40. Einarson MB, Pugacheva EN, Orlinick JR. GST Pull-down. Cold Spring Harbor Protocols.2007
    41. Elgoyhen AB, Johnson DS, Boulter J, et al. a9:An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell.1994,79:705-715
    42. Elgoyhen AB, Vetter DE, Katz E, et al. α10:A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proceedings of the National Academy of Sciences.2001,98:3501-3506
    43. Enell L, Hamasaka Y, Kolodziejczyk A, et al. y-Aminobutyric acid (GABA) signaling components in Drosophila:Immunocytochemical localization of GABAB receptors in relation to the GABAA receptor subunit RDL and a vesicular GABA transporter. The Journal of Comparative Neurology. 2007,505:18-31
    44. Fedorova IM, Magazanik LG, Tikhonov DB. Characterization of ionotropic glutamate receptors in insect neuro-muscular junction. Comparative Biochemistry and Physiology Part C:Toxicology& Pharmacology.2009,149:275-280
    45. Fiebitz A, Nyarsik L, Haendler B, et al. High-throughput mammalian two-hybrid screening for protein-protein interactions using transfected cell arrays. BMC Genomics.2008,9:68
    46. Fields S, Song O-k. A novel genetic system to detect proteinⅡ protein interactions. Nature.1989, 340:245-246
    47. Fucile S, Matter JM, Erkman L, et al. The neuronal a6 subunit forms functional heteromeric acetylcholine receptors in human transfected cells. European Journal of Neuroscience.1998,10: 172-178
    48. Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences.1969,63:378-383
    49. Gerzanich V, Kuryatov A, Anand R, et al. "Orphan" a6 nicotinic AChR subunit can form a functional heteromeric acetylcholine receptor. Molecular Pharmacology.1997,51:320-327
    50. Gisselmann G, Plonka J, Pusch H, et al. Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. British Journal of Pharmacology.2004,142: 409-413
    51. Goldin AL. Evolution of voltage-gated Na+ channels. Journal of Experimental Biology.2002,205: 575-584
    52. Gottschalk A, Anderson S, Yates J, et al. Tandem affinity purification of the C. elegans levamisole nAChR, mass spectrometric identification and functional characterization of associated proteins. Society for Neuroscience Abstract Viewer and Itinerary Planner.2003
    53. Grabner M, Bachmann A, Rosentha F, et al. Insect calcium channels:Molecular cloning of an αl-subunit from housefly (Muscadomestica) muscle. FEBS Letters.1994,339:189-194
    54. Gundelfinger ED. How complex is the nicotinic receptor system of insects? Trends in Neurosciences.1992,15:206-211
    55. Halevi S, McKay J, Palfreyman M, et al. The C.elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO Journal.2002,21:1012-1020
    56. Halevi S, Yassin L, Eshel M, et al. Conservation within the RIC-3 Gene Family. Journal of Biological Chemistry.2003,278:34411-34417
    57. Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. European Journal of Physiology.1981,391: 85-100
    58. Harrison JB, Chen HH, Sattelle E, et al. Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system of Drosophila melanogaster. Cell and Tissue Research.1996,284:269-278
    59. Hermsen B, Stetzer E, Thees R, et al. Neuronal nicotinic receptors in the locust Locusta migratoria. Journal of Biological Chemistry.1998,273:18394-18404
    60. Hibbs RE, Gouaux E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature.2011,474:54-60
    61. Hille B editor. Ion channels of excitable membranes. Sunderland, MA, Sinauer,2001
    62. Hodgkin AL, Huxley AF. Action Potentials Recorded from Inside a Nerve Fibre. Nature.1939,144: 710-711
    63. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology.1952,117:500-544
    64. Homberg U, Vitzthum H, Miiller M, et al. Immunocytochemistry of GAB A in the central complex of the locust Schistocerca gregaria:Identification of immunoreactive neurons and colocalization with neuropeptides. The Journal of Comparative Neurology.1999,409:495-507
    65. Hrdina PD. General Principles of Receptor Binding. In:Boulton AA, Baker GB, Hrdina PD editor, Humana Press,1986; 1-22.
    66. Huang Y, Williamson MS, Devonshire AL, et al. Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus persicae. Journal of Neurochemistry.1999,73:380-389
    67. Huang Y, Williamson MS, Devonshire AL, et al.. Cloning, heterologous expression and co-assembly of Mpβ1, a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae. Neuroscience Letter.2000,284:116-120
    68. Hugo RA. Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Research Reviews.1997,25:133-191
    69. Ibanez-Tallon I, Miwa JM, Wang HL, et al. Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynxl. Neuron.2002,33:893-903
    70. Ihara M, Matsuda K, Otake M, et al. Diverse actions of neonicotinoids on chicken α7, α4β2 and Drosophila-chicken SAD(32 and ALSβ2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuropharmacology.2003,45:133-144
    71. Jolkkonen M, Vangiersbergen PLM, Hellman U, et al. A toxin from the green mamba Dendroaspis angusticeps:amino acid sequence and selectivity for muscarinic m4 receptors FEBS Letters.1994, 352:91-94
    72. Jonas PE, Phannavong B, Schuster R, et al. Expression of the ligand-binding nicotinic acetylcholine receptor subunit Dα2 in the Drosophila central nervous system. Journal of Neurobiology.1994,25:1494-1508
    73. Jones A, Brown L, Sattelle D. Insect nicotinic acetylcholine receptor gene families:from genetic model organism to vector, pest and beneficial species. Invertebrate Neuroscience.2007,7:67-73
    74. Jones A, Marshall J, Blake A, et al. Sgβ1, a novel locust (Schistocerca gregaria) non-a nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster Dβ1 subunit. Invertebrate Neuroscience.2005,5:147-155
    75. Jones A, Sattelle D. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics.2007,8:327
    76. Jones AK, Grauso M, Sattelle DB. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics.2005,85:176-187
    77. Jones AK, Raymond-Delpech V, Thany SH, et al. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Research.2006,16:1422-1430
    78. Joung JK, Ramm EI, Pabo CO. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proceedings of the National Academy of Sciences.2000,97: 7382-7387
    79. Khiroug SS, Harkness PC, Lamb PW, et al. Rat nicotinic ACh receptor α7 and β2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. The Journal of Physiology. 2002,540:425-434
    80. Kullberg R, Owens JL, Camacho P, et al. Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed in Xenopus oocytes. Proceedings of the National Academy of Sciences.1990,87:2067-2071
    81. Lansdell SJ, Collins T, Yabe A, et al. Host-cell specific effects of the nicotinic acetylcholine receptor chaperone RIC-3 revealed by a comparison of human and Drosophila RIC-3 homologues. Journal of Neurochemistry.2008,105:1573-1581
    82. Lansdell SJ, Gee VJ, Harkness PC, et al. RIC-3 enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in mammalian cells. Molecular Pharmacology.2005,68: 1431-1438
    83. Lansdell SJ, Millar NS. The influence of nicotinic receptor subunit composition upon agonist, a-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology.2000a,39: 671-679
    84. Lansdell SJ, Millar NS. Cloning and heterologous expression of Da4, a Drosophila neuronal nicotinic acetylcholine receptor subunit:identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology.2000b,39:2604-2614
    85. Lansdell SJ, Millar NS. Dβ3, an atypical nicotinic acetylcholine receptor subunit from Drosophila: molecular cloning, heterologous expression and coassembly. Journal of Neurochemistry.2002,80: 1009-1018
    86. Lansdell SJ, Schmitt B, Betz H, et al. Temperature-sensitive expression of Drosophila neuronal nicotinic acetylcholine receptors. Journal of Neurochemistry.1997,68:1812-1819
    87. Lee HJ, Rocheleau T, Zhang HG, et al. Expression of a Drosophila GABA receptor in a baculovirus insect cell system:Functional expression of insecticide susceptible and resistant GABA receptors from the cyclodiene resistance gene Rdl. FEBS Letters.1993,335:315-318
    88. Lee SH, Smith TJ, Ingles PJ, et al.. Cloning and functional characterization of a putative sodium channel auxiliary subunit gene from the house fly(Musca domestica). Insect Biochemistry and Molecular Biology.2000,30:479-487
    89. Li J, Shao Y, Ding Z, et al. Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid. Insect Biochemistry and Molecular Biology.2010,40:17-22
    90. Li YJ, Tan ZY, Ji YH. The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium channels. Neuroscience Research.2000,38:257-264
    91. Liman ER, J fa, Cora, et al. Subunit stoichiometry of a mammalian K+channel determined by construction of multimeric cDNAs.Neuron.1992,9:862-871
    92. Lind RJ, Clough MS, Reynolds SE, et al. [3H]Imidacloprid labels high-and low-affinity nicotinic acetylcholine receptor-like binding sites in the aphid Myzus persicae (Hemiptera:Aphididae). Pesticide Biochemistry and Physiology.1998,62:3-14
    93. Ling G, and Gerard RW. The normal membrane potential of frog sartorius fibers. Journal of Cellular and Comparative Physiology.1949,34:383-396
    94. Littleton JT, Ganetzky B. Ion channels and synaptic organization:Analysis of the Drosophila genome. Neuron.2000,26:35-43
    95. Liu Y, Brehm, et al. Expression of subunit-omitted mouse nicotinic acetylcholine receptors in Xenopus laevis oocytes. Oxford, Royaume-uni, Blackwell,1993
    96. Liu Z, Williamson, et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). PNAS.2005,102:8420-8425
    97. Liu Z, Williamson MS, Lansdell SJ, et al. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. Journal of Neurochemistry. 2006,99:1273-1281
    98. Luo Y, Batalao A, Zhou H, et al. Mammalian two-hybrid system:a complementary approach to the yeast two-hybrid system. BioTechniques.1997,22:350-352
    99. Ma D, Ma J, Pierzchala M, et al. RNAi-mediated knockout of a neuronal nicotinic acetylcholine receptor in Drosophila melanogaster. Society for Neuroscience Abstract Viewer and Itinerary Planner.2003,2003
    100. Machida K, Mayer BJ. Detection of protein-protein interactions by far-western blotting. In:Kurien BTSRH editor. Protein Blotting and Detection:Methods and Protocols,2009;313-329
    101. Marshall J, Buckingham SD, Shingai R, et al. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. EMBO Journal.1990,9:4391-4398
    102. Matsuda K, Buckingham SD, Freeman JC, et al. Effects of the alpha subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. British Journal of Pharmacology.1998, 123:518-524
    103. Matsuda K, Buckingham SD, Kleier D, et al.. Neonicotinoids:insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences.2001,22:573-580
    104. McAlister-Henn L, Gibson N, Panisko E. Applications of the yeast two-hybrid system. Methods. 1999,19:330-337
    105. Millar N, Denholm I. Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invertebrate Neuroscience.2007,7:53-66
    106. Millar NS. Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochemical Society Transactions.2003,31:869-874
    107. Millar NS. RIC-3:a nicotinic acetylcholine receptor chaperone. British Journal of Pharmacology. 2008,153:S177-S183
    108. Millar NS, Gotti C. Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology. 2009,56:237-246
    109. Millar NS, Lansdell SJ. Characterisation of insect nicotinic acetylcholine receptors by heterologous expression. In:Thany SH editor, Springer New York,2010;65-73.
    110. Miwa JM, Ibanez-Tallon I, Crabtree GW, et al. Lynxl, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Society for Neuroscience Abstracts.1999, 25:286
    111.Miwa JM, Stevens TR, King SL, et al. The prototoxin lynxl acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron.2006,51:587-600
    112. Nauen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides:Current status and future prospects. Archives of Insect Biochemistry and Physiology.2005,58:200-215
    113. Naur P, Vestergaard B, Skov LK, et al. Crystal structure of the kainate receptor GluR5 ligand-binding core in complex with (S)-glutamate. FEBS Letters.2005,579:1154-1160
    114. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature.1976,260:799-802
    115. Nguyen M, Alfonso A, Johnson CD, et al. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics.1995,140:527-535
    116. Noda H, Kawai S, Koizumi Y, et al. Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens:A genomic resource for studying agricultural pests. BMC Genomics.2008,9:117
    117. Noda M, Takahashi H, Tanabe T, et al. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature.1983,302:528-532
    118. Noda M, Takahashi H, Tanabe T, et al.. Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature,1982,299:793-7
    119. Novere N, Changeux J-P. Molecular evolution of the nicotinic acetylcholine receptor:An example of multigene family in excitable cells. Journal of Molecular Evolution.1995,40:155-172
    120. Orr N, Shaffner AJ, Watson GB. Pharmacological characterization of an epibatidine binding site in the nerve cord of Periplaneta americana.Pesticide Biochemistry and Physiology:1997,58:183-192
    121.Osborne RH. Insect neurotransmission:Neurotransmitters and their receptors. Pharmacology & Therapeutics.1996,69:117-142
    122. Palma E, Maggi L, Barabino B, et al. Nicotinic acetylcholine receptors assembled from the α7 and (33 subunits. Journal of Biological Chemistry.1999,274:18335-18340
    123. Papke RL, Boulter J, Patrick J, et al.. Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Neuron.1989,3:589-596
    124. Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method:A general procedure of protein complex purification. Methods.2001,24:218-229
    125. Ren L, Emery D, Kaboord B, et al. Improved immunomatrix methods to detect protein-protein interactions. Journal of Biochemical and Biophysical Methods.2003,57:143-157
    126. Sakmann B, Neher E. Patch clamp techniques for studying ionic channels in excitable membranes. Annual Review of Physiology.1984,46:455-472
    127. Sands SB, Barish ME. Calcium permeability of neuronal nicotinic acetylcholine receptor channels in PC12 cells. Brain Research.1991,560:38-42
    128. Sattelle DB, Breer H. Purification by affmity-chromatography of a nicotinic acetylcholine receptor from the CNS of the cockroach Periplaneta americana. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology.1985,82:349-352
    129. Sattelle DB, Harrison JB, Chen HH, et al. Immunocytochemical localization of putative y-aminobutyric acid receptor subunits in the head ganglia of Periplaneta americana using an anti-RDL C-terminal antibody. Neuroscience Letters.2000,289:197-200
    130. Sattelle DB, Jones AK, Sattelle BM, et al. Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays.2005,27:366-376
    131. Sawruk E, Schloss P, Bete H, et al. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit. EMBO Journal.1990,9:2671-2677
    132. Schloβ P, Hermans-Borgmeyer I, Betz H, et al. Neuronal acetylcholine receptors in Drosophila: the ARD protein is a component of a high-affinity alpha-bungarotoxin binding complex. The EMBO journal.1988,7:2889-2894
    133. Schulz R, Bertrand S, Chamaon K, et al.. Neuronal nicotinic acetylcholine receptors from Drosophila:Two different types of a subunits coassemble within the same receptor complex. Journal of Neurochemistry.2000,74:2537-2546
    134. Schulz R, Sawruk E, Mulhardt C, et al.. Dα3, a new functional a subunit of nicotinic acetylcholine receptors from Drosophila. Journal of Neurochemistry.1998,71:853-862
    135. Sgard F, Charpantier E, Bertrand S, et al.. A novel human nicotinic receptor subunit, α10, that confers functionality to the a9-subunit. Molecular Pharmacology.2002,61:150-159
    136. Sgard F, Fraser SP, Katkowska MJ, et al.. Cloning and functional characterisation of two novel nicotinic acetylcholine receptor alpha subunits from the insect pest Myzus persicae. Journal of Neurochemistry.1998,71:903-912
    137. Shao YM, Dong K, Zhang CX. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics.2007,8:324
    138. Singer SJ. Preparation of an electron-dense antibody conjugate. Nature,1959,183:1523-1524
    139. Spurden DP, Court JA, Lloyd S, et al.. Nicotinic receptor distribution in the human thalamus: autoradiographical localization of [3H]nicotine and [125I]α-bungarotoxin binding. Journal of Chemical Neuroanatomy.1997,13:105-113
    140. Sur C, Fresu L, Howell O, et al. Autoradiographic localization of α5 subunit-containing GABAA receptors in rat brain. Brain Research.1999,822:265-270
    141.Suter B, Kittanakom S, Stagljar I. Two-hybrid technologies in proteomics research. Current Opinion in Biotechnology.2008,19:316-323
    142. Tautz D, Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma.1989,98:81-85
    143. Thany SH, Lenaers G, Crozatier M, et al. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Molecular Biology.2003,12:255-262
    144. Tomizawa M, Latli B, Casida JE. Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors. Journal of Neurochemistry.1996,67:1669-1676
    145. Tomizawa M, Millar NS, Casida JE. Pharmacological profiles of recombinant and native insect nicotinic acetylcholine receptors. Insect Biochemistry and Molecular Biology.2005,35:1347-1355
    146. Tong F, Coats JR. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl-uptake in American cockroach ventral nerve cord. Pesticide Biochemistry and Physiology.2010,98:317-324
    147. Tongiorgi E, Righi M, Cattaneo A. A non-radioactive in situ hybridization method that does not require RNAse-free conditions. Journal of Neuroscience Methods.1998,85:129-139
    148. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets:procedure and some applications. Proceedings of the National Academy of Sciences.1979,76:4350-4354
    149. Ultsch A, Schuster CM, Laube B, et al. Glutamate receptors of Drosophila melanogaster. Primary structure of a putative NMDA receptor protein expressed in the head of the adult fly. FEBS Letters. 1993,324:171-177
    150. Venskutonyte R, Frydenvang K, Gajhede M, et al. Binding site and interlobe interactions of the ionotropic glutamate receptor GluK3 ligand binding domain revealed by high resolution crystal structure in complex with (S)-glutamate. Journal of Structural Biology.2011,176:307-314
    151. Vermehren A, Trimmer BA. RNAi in Manduca Sexta:studying the role of the nicotinic subunit MARA1. Society for Neuroscience Abstract Viewer and Itinerary Planner.2002
    152. Wiesner P, Kayser H. Characterization of nicotinic acetylcholine receptors from the insects Aphis craccivora, Myzus persicae, and Locusta migratoria by radioligand binding assays:Relation to thiamethoxam action. Journal of Biochemical and Molecular Toxicology.2000,14:221-230
    153. Xu Q, Tian L, Zhang L, et al. Sodium channel genes and their differential genotypes at the L-to-F kdr locus in the mosquito Culex quinquefasciatus. Biochemical and Biophysical Research Communications.2011,407:645-649
    154. Xu Q, Wang H, Zhang L, et al. Sodium channel gene expression associated with pyrethroid resistant house flies and German cockroaches. Gene.2006,379:62-67
    155. Xu X, Song Y, Li Y, et al. The tandem affinity purification method:An efficient system for protein complex purification and protein interaction identification. Protein Expression and Purification. 2010,72:149-156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700