用户名: 密码: 验证码:
中国重要蝗区东亚飞蝗有机磷杀虫剂抗性生化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蝗灾是世界性的农业灾害,20世纪90年代以来,受异常气候及生态环境恶化等因素的影响,我国蝗虫发生逐年加重,特别是近年北方地区持续高温干旱,蝗虫孳生环境变化,以东亚飞蝗为主的蝗灾发生面积扩大,暴发频率提高,对我国农业生产构成严重威胁。我国目前控制蝗虫危害的手段主要是采用化学药剂来降低虫口密度,化学防治虽然具有快速、高效、使用灵活等优点,但是随着农药品种及数量的增加和无限制地使用农药,会导致引起蝗虫的抗药性、农药的效能降低、农药生产成本增加等一系列问题。东亚飞蝗某些自然种群对常用杀虫剂马拉硫磷的抗性已经引起了植保部门有关人员的注意。
     自从1908年首次发现美国的梨圆蚧对石硫合剂产生抗药性以来,至今至少有600多种昆虫及螨已产生了抗药性。害虫对杀虫剂产生抗性的主要机制有代谢抗性和靶标抗性。代谢抗性是指对杀虫剂起水解或隔离作用的酶发生改变,从而对杀虫剂起到解毒作用,昆虫主要解毒酶系有酯酶、谷胱甘肽-S-转移酶、细胞色素P450单加氧酶等,这三种酶系任何一种的组成部分发生改变均会引起害虫抗性的改变;靶标抗性是指由于杀虫剂作用靶标敏感度降低而产生的抗性。杀虫剂的作用靶标主要有:有机磷和氨基甲酸酯杀虫剂的作用靶标—乙酰胆碱酯酶;DDT和拟除虫菊酯类杀虫剂的作用靶标—神经轴突钠离子通道;环戊二烯类和吡唑类等杀虫剂的作用靶标—γ-氨基丁酸(GABA)受体-氯离子通道复合体。这两种抗性机理在果蝇、家蝇、棉铃虫、小菜蛾、蚊类等害虫中已经有深入的研究,为其它害虫的抗性机理研究提供了丰富的资料。
     本文选取我国东亚飞蝗河北黄骅、河北平山、天津北大港和山东无棣四个杀虫剂选择压力不同的东亚飞蝗自然种群进行有机磷抗性相关酶的生化特性研究。河北黄骅、天津北大港和山东无棣三个蝗区生态特征相似,均靠近渤海湾,属于滨海蝗区,河北平山蝗区位于岗南水库库区,属于河泛蝗区。其中河北黄骅和天津北大港两个蝗区为我国重点蝗区,这两个东亚飞蝗种群的农药选择压力较大,河北平山和山东无棣种群较上述两个种群农药选择压力小。通过马拉硫磷对这四个东亚飞蝗种群的生物测定,结果表明,山东无棣和河北平山种群对马拉硫磷的敏感性较高,而天津北大港和河北黄骅种群的较低。天津北大港、河北黄骅及河北平山三种群对马拉硫磷的LD_(50)值分别是山东无棣种群的1.96、1.8及1.02倍,这说明,我国重点蝗区杀虫剂的选择压力已经造成当地东亚飞蝗种群对常用杀虫剂的敏感性下降。
    
     对上述四个东亚飞蝗种群酷酶的生化特性进行了比较研究。东亚飞蝗中酷酶
    活性主要集中在胸部和腹部,水解a~NA的酷酶活性在雌性东亚飞蝗中分别有
    46.1%和36.1%集中在胸部和腹部,在雄性中分别为42.7%和36%。酉旨酶动力学
    研究表明,东亚飞蝗中酷酶对a一A、a一B、p一A及p一A等四种模式底物均有
    水解活性,其中a一NA为最适底物,而对p一A的水解活性较低。用对氧磷、马
    拉氧磷、西维因及毒扁豆碱等四种抑制剂对这四个东亚飞蝗种群的酷酶进行体外
    抑制实验,结果表明,四个种群中大部分酷酶属于B一型。酉旨酶活性在四个种群
    中有明显差异,其中山东无棣种群对a一A、a一B及p一NA三种底物的水解活性
    均为最低水平,在雌性种群中,河北黄骥、河北平山及天津北大港三个种群水解
    a一A酉旨酶的活性分别是山东无棣种群的2.09、1.28和1.24倍;水解a一NB酉旨酶
    的活性分别是山东无棣种群的6.30、3.79和1.61倍;水解p一A酉旨酶的活性分别
    是山东无棣种群的2.06、1.21和1.29倍。在雄性种群中,河北黄弊、河北平山
    及天津北大港三个种群水解a一A酉旨酶的活性分别是山东无棣种群的1 .71、1.53
    和1.51倍;水解a一NB酉旨酶的活性分别是山东无棣种群的4.71、3.34和1.55倍;
    水解p一A醋酶的活性分别是山东无棣种群的1.82、1.43和1.49倍。四个种群醋
    酶活性大小的分布统计表明,四个种群酷酶活性在个体中的分布有明显差异,河
    北平山种群和山东无棣种群水解三种底物的醋酶活性在低水平有分布,而河北黄
    弊种群则有较多个体的醋酶活性分布在较高的水平,天津北大港种群个体酷酶活
    性一致性较高,这可能与我们的取样有关。根据醋酶非变性聚丙烯酞胺凝胶电泳
    染色后,河北黄弊和天津北大港两个种群表现出相似的带型,在慢迁移率区有两
    条明显染色较深的带,而河北平山和山东无棣两种群中,慢迁移率区只可分辨出
    一条带,其它迁移较快的酷酶在四个种群间没有明显的差异,推测,天津北大港
    种群酷酶活性可能与河北黄弊种群处于同一水平,且酷酶活性的增加可能是由这
    两个迁移较慢的醋酶产生。结合四个种群对马拉硫磷的敏感性差异,分析认为,
    河北黄弊和天津北大港两种群中酷酶活性的提高与马拉硫磷敏感性降低有关。对
    江苏沛县、河南郑州、山西永济和山西临琦四个东亚飞蝗种群的64个个体(雌
    雄各半)以a一NA为底物进行醋酶活性检测,结果表明,山西临椅和河南郑州两
    个种群醋酶活性处于较低水平,而江苏沛县和山西永济两个种群醋酶活性水平较
    高,它们之间的酷酶活性差异与该地区蝗虫防治的用药背景相关。提出,酉旨酶活
    性可以
The swarming locusts represent a group of prominent worldwide agriculture pests. Due to the extended high temperature, long-lasting drought and the consequent alternations in locust breeding environment the destructive outbreaks of locust had been increasing in China since 1990s, especially in the north, which seriously threaten the agriculture production. So far the chemical controls are still the major measures taken in locust abatement programs in China. In spite of the effectiveness and convenience, the frequent use of insecticides both in quantity and variety has caused a series of problems like locust resistance development, increased control difficulty and rising cost. Recently, the Chinese plant protection agencies reported the growing hardships in controlling some field populations of oriental migratory locust with organophosphate (OP) compounds.
    Up to now there are more than 600 arthropod species with documented resistance to one or more insecticides and/or acaricides since resistance phenomenon was first described in San Jose scale to lime-sulfur in Washington in 1908. Enhanced metabolic detoxification and reduced sensitivity of insecticide target-sites are the two major mechanisms in resistance development, involving three primary metabolic enzymes of esterases, glutathione S-transferases and cytochrome P450 polysubstrate monooxygenases. Resistance would be developed when the activities of any of these three enzymes are increased. The three insecticide target-sites are acetylcholinesterase (AChE) for organophosphate and carbamate insecticides, voltage-gated sodium channels: knockdown resistance (kdr or kdr-type) for DDT & pyrethroids and y-aminobutyric acid (GABA) receptors for cyclodienes. The resistance mechanisms have been particularly studied in fruit fly, housefly, cotton bollworm, diamond back moth and mosquitoes, which have rendered abundan
    t references for the research in this field.
    This dissertation studied biochemical characters of enzymes associated to OP resistance in field populations of Locusta migratoria manilensis (Meyen) from Huanghua-Hebei, Pingshan-Hebei, Beidagang-Tianjin and Wudi-Shandong, where the insecticide selection pressures are considered different. Huanghua-Hebei, Beidagang-Tinjin and Wudi-Shandong are close to Bohai Bay, classified in sea-coast locust area with the similar ecological characteristics. Pingshan-Hebei, on the other hand is at the verge of Gangnan reservoir, classified in river-flood area. The two areas are important in locust control in China because of the frequent massive outbreaks of Locusta migratoria manilensis (Meyen). The selection pressure of OP was found higher in Huanghua-Hebei and Beidagang-Tianjin than in Pingshan-Hebei and Wudi-Shandong. LD50 values for malathion of Huanghua-Hebei and Beidagang-Tianjin are higher than those of Pingshan-Hebei and Wudi-Shandong. LD50 values for malathion of Beidagang-Tianjin, Huanghua-Hebei and
    
    
    Pingshan-Hebei were each 1.96-, 1.8- and 1.02-fold higher than that of Wudi-Shandong.
    General esterases of oriental migratory locust collected from the four locations were compared. General esterases were most concentrated in the thorax and abdomen, which showed 46.1% and 36.1% of total esterase activity in females, and 42.7 and 36.0% in males, when using -NA as substrate. Kinetic studies demonstrated that general esterases in four oriental migratory locust populations hydrolyze -NA, -NB, P-NA and p-NA as substrate. Among the four substrates, -NA seemed to be the most favorable substrate for general esterases of the locust. In contrast, p-NA is not a preferred substrate for these esterases, with the lowest Vmax and the highest Km in both Huanghua-Hebei and Pingshan-Hebei populations. Inhibition studies of the esterases using four inhibitors (i. e., paraoxon, malaoxon, eserine, and carbaryl) indicated that most of general esterases in the four populations were B-type. Moreover, significant difference in general esterases activities was observed among four populations. Wudi-Shandong population
引文
1.陈永林.蝗虫和蝗灾.生物学通报,1991,11:9-12.
    2.陈永林.蝗虫灾害的特点、成因和生态学治理.生物学通报,2000b,35(7):1-5.
    3.陈永林.中国的飞蝗研究及其治理的主要成就.昆虫知识,2000a,37(1):50-58.
    4.陈永林.中国的蝗害.北京:中国林业出版社,1999.
    5.邓业成,王荫长,谭福杰.褐飞虱对马拉硫磷的抗性与酯酶的关系.西南农业学报,1995,8(4):74-78.
    6.丁岩钦.中国东亚飞蝗新蝗区—海南热带稀树草原蝗区的研究.生态学报,1995,15(1):12-21.
    7.郭孵.东亚飞蝗的生殖.昆虫学报,1956,6(2):145-168.
    8.郭郛,陈永林,卢宝廉.中国飞蝗生物学.济南:山东,1991,科学技术出版社.
    9.韩召军,王荫长,尤子平.棉蚜对拟除虫菊酯类杀虫剂的抗性机理.南京农业大学学报,1995,18(3):54-59.
    10.景晓红,康乐.光照与飞蝗卵耐寒性的关系.动物学研究,2003,24(3):196-199.
    11.劳什RT,塔巴什尼克B E.害虫的抗药性.北京:化学工业出版社,1995,9-22.
    12.黎云根,唐振华,刘维德.昆虫学研究集刊,1982/83,3:85-92.
    13.李保平,李国有.绿僵菌油剂防治新疆山地草原蝗虫的田间试验.中国生物防治,2000,16(4):145-147.
    14.李保平,宋国庆,李国有.绿僵菌油剂防治草原蝗虫的田间试验.中国草地,1999,5:53-56.
    15.李春选,段毅豪,郑先云,马恩波.山西省8种蝗虫8个种群的遗传学研究.遗传学报,2003b,30(2):119-127.
    16.李春选,马恩波,郭亚平,段毅豪.宽翅曲背蝗两个地理种群等位酶的比较.遗传学报,2004b,31(1):26-30.
    17.李春选,马恩波,郭亚平.中国东亚飞蝗两个种群遗传分化的研究.遗传学报,2003d,30(11):1027-1033.
    18.李春选,马恩波,郑先云,郭亚平.中国4个东亚飞蝗自然种群的遗传结构.昆虫学报,2004a,47(1):73-79.
    19.李春选,马恩波,郑先云.中国4种蝗虫不同种群的遗传分化研究.遗传学报,2003c,30(3):234-244.
    20.李春选,马恩波.飞蝗研究进展.昆虫知识,2003a,40(1):23-30.
    21.李春选.中国重要农业蝗虫种群遗传结构的研究.山西大学2003届博士学位论文,2003.
    22.李士根,刘永春.蚊类抗药性机制研究进展.中国媒介生物学及控制杂志,2001,12:76-78.
    23.李松岗,张宗炳,杨俭关.昆虫抗药性的治理策略:一个数学模型的提出.昆虫学报,1990,33(1):21-27.
    
    
    24.梁沛,夏冰,石泰,高希武.阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾谷胱苷肽 S-转移酶的影响.中国农业大学学报,2003,8(3):65-68.
    25.刘维德.蚊虫抗药性及其测定.北京:科学出版社,1979.
    26.刘泽文,韩召军,张玲春.褐飞虱抗甲胺磷品系的交互抗性和抗性生化机制.昆虫学报,2002,45(4):447-452.
    27.刘泽文,韩召军.褐飞虱对马拉硫磷的抗性遗传和交互抗性研究.华东昆虫学报,2003b,12(1):19-23.
    28.刘泽文,王荫长,韩召军,李国清,邓业成,田学志,Toru Nagata.两种稻飞虱对杀虫剂的敏感性比较.南京农业大学学报,2003a,26(2):29-32.
    29.刘珍,李坚强.东亚飞蝗在新乡市出现完整第三代现象.昆虫知识,1999,36(6):348-349.
    30.马世骏,丁岩钦.东亚飞蝗种群数量中的调节机制.动物学报,1965,14(4):261-277.
    31.马世骏.东亚飞蝗蝗区结构与转化.昆虫学报,1962,11(1):17-30.
    32.马世骏.东亚飞蝗在中国的发生动态.昆虫学报,1958,8(1):1-40.
    33.孟涛,任炳忠.蝗虫资源开发与利用的研究进展.北华大学学报,2002,3(6):485-490.
    34.聂秋林,梁沛,高希武,郑炳宗.杀虫药剂混用对棉铃虫乙酰胆碱酯酶和羧酸酯酶的联合抑制作用研究.农药学学报,2002,4(3):43-49.
    35.茹李军,芮昌辉,范贤林,赵建周,魏岑.菜缢管蚜,棉铃虫对杀虫混剂及其单剂的抗性遗传力分析.昆虫学报,1998,41(3):243-249.
    36.施明安,袁建忠,庄佩君,唐振华.植物农药与药剂毒理学研究进展.北京:中国农业科技出版社,2002,231.
    37.孙鲁娟,高希武,郑炳宗.棉蚜抗氧化乐果品系及敏感品系羧酸酯酶性质的比较.昆虫学报,2002,45(6):724-727.
    38.唐振华,韩罗珍,张朝远.抗马拉硫磷淡色库蚊不同基因型的自然内禀增长率及其对抗性演化的影响.昆虫学报,1990,33(4):385-392.
    39.唐振华,韩启发.环境科学报,1989,9(3):284-291.
    40.唐振华,韩启发,庄佩君.镶嵌式交替防治对菜蚜抗性演化的影响.昆虫学报,1994,37(1):25-30.
    41.唐振华,黎云根.昆虫学研究集刊,1982/83,3:55-66.
    42.唐振华,李卫明.昆虫抗药性演化的分子生物学.见:冷欣夫,唐振华,王荫长主编.杀虫药剂分子毒理学及昆虫抗药性.北京:中国农业出版社,1996b,132-147.
    43.唐振华,莫建初.见:王荫长主编.杀虫剂分子毒理学及昆虫抗药性.北京:中国农业出版社,1996a,148-158.
    44.唐振华,吴士雄.昆虫抗药性的遗传与进化.上海:上海科学技术文献出版社,2000,190-216.
    45.唐振华,张朝远.昆虫学研究集刊,1988,8:139-146.
    46.唐振华,张朝远.昆虫学研究集刊,1993,11:11-16.
    
    
    47.唐振华,张朝远.镶嵌式防治对抗性演化影响的论证.昆虫学报,1993,36(2):185-189.
    48.唐振华,周成理,吴世昌,等.上海地区小菜蛾的抗药性及增效剂的作用.植物保护学报,1992,19(2):179-185.
    49.唐振华.昆虫抗药性.北京:中国农业出版社,1993,302-335.
    50.唐振华.昆虫抗药性及其治理.第1版.北京:农业出版社,1993,1-506.
    51.唐振华.我国昆虫抗药性研究的现状及展望.昆虫知识,2000,37(2):97-103.
    52.王建军,韩召军,王荫长.抗性小菜蛾钠离子通道cDNA片段的克隆.见:李典谟主编.走向二十一世纪的中国昆虫学.北京:中国科学技术出版社,2000,326-328.
    53.王杰臣,倪绍祥.国内外蝗虫研究发展动向初探.干旱区研究,2001,18(3):36-41.
    54.王丽英,严毓骅,董雁军.蝗虫微孢子虫对东亚飞蝗及蒙、新草原蝗虫的感染试验.北京农业大学学报,1987,13(4):495-462.
    55.王丽英,严毓骅,管致和.蝗虫微孢子虫对东亚飞蝗的实验感染.昆虫学报,1990,33(1):121-123.
    56.王正军,秦启联,郝树广,陈永林,李鸿昌,李典谟.我国蝗虫暴发成灾的现状及其持续控制对策.昆虫知识,2002,39(2):172-175.
    57.韦成礼,梁可珍.楝科植物杀虫研究概况.广西植保,2000,13(4):26-29.
    58.吴刚,尤民生,赵士熙.抗性和敏感小菜蛾谷胱甘肽-S-转移酶和谷胱甘肽的比较.福建农业大学学报,2000,29(4):478-481.
    59.吴青君,张文吉,张友军,徐宝云,朱国仁.解毒酶系在小菜蛾对阿维菌素抗性中的作用.农药学学报,2001,3(3):23-28.
    60.吴益东,沈晋良,谭福杰等.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度.昆虫学报,1996,39(3):233-237.
    61.严毓骅.微孢子虫治蝗技术进展.见:全国生物防治学术讨论会论文集.北京:中国农科院生防所,1991,21-23.
    62.杨红军,王东升,张立顺,谢建军.东亚飞蝗对马拉硫磷抗性研究初报.植保技术与推广,2002,22(8):11-12,16.
    63.杨素钦,高希武,张子明.锐劲特及其飞机防治蝗虫技术.农药科学与管理,2001,22(6):19-20.
    64.尤其儆,郭孵,陈永林,张福海,尤端苏.东亚飞蝗的生活习性.昆虫学报,1958,8(2):119-135.
    65.张常忠,高希武,郑炳宗.棉铃虫谷胱甘肽S-转移酶的活性分布和发育期变化及植物次生物质的诱导作用.农药学学报,2001,3(1):30-35.
    66.张德兴,闫路娜,康乐,吉亚杰.对中国飞蝗种下阶元划分和历史演化过程的几点看法.动物学报,2003,49(5):675-681.
    67.张国洲.害虫抗药性及其治理.安徽农业科学,2002,30(4):512-514.
    68.张龙,严毓骅.持续治理飞蝗灾害的新对策.昆虫学报,2000,43(增刊):180-185.
    
    
    69.张龙.蝗虫微孢子虫及其在蝗害治理中的作用.生物学通报,1999,34(2):11-12.
    70.张民照,康乐.飞蝗总DNA的抽提及其RAPD分析条件的摸索.动物学研究,2001,22(1):20-26.
    71.张昕,任春红.昆虫细胞色素P450与抗药性关系的分子生物学研究进展.中国寄生虫病防治杂志,2002,15(1):62-64.
    72.张友军,谢丙炎.蔬菜病虫害的综合防治.中国蔬菜,1998,(2):56-58.
    73.张友军,张文吉.击倒抗性(Kdr)的分子机理.昆虫知识,1996,33(1):49-52.
    74.郑先云,段毅豪,李春选,马恩波.华北二蝗区东亚飞蝗种群遗传结构比较研究.遗传学报,2002,29(11):966-971.
    75.朱恩林.中国东亚飞蝗发生与治理.北京:中国农业出版社,1999,3-558.
    76.朱淮民,瞿逢伊,刘维德.用蚊虫酯酶单克隆抗体进行库蚊有机磷抗性的免疫学检测.中国寄生虫学与寄生虫病杂志,1994,12(3):165-168.
    77. Ahmad M, Gladwell RT, McCaffery AR. Decreased nerve sensitivity is a mechanism of resistance in a pyrethroid resistant strain of Heliothis armigera from Thailand. Pestic. Biochem. Physiol., 1989, 35: 165-171.
    78. Aldridge WN, Davison AN. The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. J. Biochem., 1952, 51: 62-70.
    79. Aldridge WN. Serum esterases Ⅰ: Two types of esterases (A and B) hydrolyzing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. J. Biochem., 1953, 53:110-117.
    80. Aldridge WN. The esterases: Perspectives and problems. Chem.-Bio. Interactions, 1993, 87:5-13.
    81. Amichost M, Brun A, Cuamy, et al. Expression study of CYP genes in Drosophila strains resistant or sensitive to insecticide. Paris: John Linney Eurotext, 1994, 689-692.
    82. Amichot M. Target modification as a molecular mechanism of pyrethroid resistance in Drosophila melanogaster. Pestic Biochem Physiol, 1992, 44:183-190.
    83. Argentine JA, Lee SH, Sos MA, Barry SR, Clark JM. Permethrin resistance in a near isogenic strain of Colorado potato bettle. Pestic. Biochem. Physiol., 1995, 53:97-115.
    84. Aronstein K, Ffrench-Constant R. Immunocytochemistry of a novel GABA receptor subunit Rdl in Drosophila melanogaster. Invert Neurosci., 1995, 1(1): 25-31.
    85. Ashima S, Donald MM, Daniel M. Quinn, ZR, Palmer T, Doctor BP. Mutant ascetylcholinesterases as potential detoxification agents for organophosphate poisoning. Biochem. Pharm., 1997, 54:269-274.
    86. Bell JE, Bell ET. Proteins and enzymes. Prentic-Hall, EnglewoodCliffs, NJ, 1988, p.499.
    87. Bergmann F, Segal R, Rimon S. A new type of esterase in hog-kidney extract. J. Biochem., 1957, 67:481-486.
    88. Berrada S, Fournier D. Transposition-mediated transcriptional overexpression as a mechanism of insecticide resistance. Mol. Gen. Genet., 1997, 256: 348-354.
    89. Bloomquist JR, Miller TA. A simple bioassay for detecting and characterizing insecticide resistance. Pestic. Sci., 1985, 16:611-614.
    
    
    90. Borsa P, Coustau C. Single-stranded DNA conformation polymorphism at the Rdl locus in Hypothenemus hampei (Coleoptera: Scolytidae). Heredity, 1996, 76:124-129.
    91. Brogdon WG, Dickinson CM. A microassay system for measuring esterase activity and protein concentration in small samples and high pressure liquid chromatography eluate fractions. Anal. Biochem., 1983, 131: 499-503.
    92. Brown TM, Brodgon WG. Improved detection of insecticide resistance through conventional and molecular techniques. Annu. Rev. Entomol., 1987, 32: 145-162.
    93. Bull DL, Xu G. Characteristics of methylparathion resistance in housefly larvae. J. Economic. Entomol., 1995, 88(1): 27-32.
    94. Busvine JR. Mechanism of resistance to insecticides in house flies. Nature, 1951, 168: 193-195.
    95. Carino FA, Koener JF, Plapp FW. Expression of the cytochrome P450 gene CYP6A1 in the housefly, Musca domestica. ACSSymp.Ser., 1992, 505: 31-40.
    96. Carino FA, Koener JF, Plapp FW, et al. Constitutive overexpression of the Cytochrome P450 gene CYP6A1 in a house fly strain with metablic resistance to insecticide, Insect Biochem Mol Bio, 1994, 24:411-418.
    97. Charpentier A, Fournier D. Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pestic. Biochem. Physiol., 2001, 70:100-107.
    98. Chasseaud LF. The nature and distribution of enzymes catalyzing the conjugation of glutathione with foreign compounds. Drug. Metab. Rev., 1973, 2:185-220.
    99. Chen ZZ, Newcomb R, Forbes E, Mckenzie J, Batterham P. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina, Insect Biochem. Molec. Biol., 2001, 31:805-816.
    100. Cohen MB, Koener JF, Rnen F. Structure and chromosomal localization of CYP6A1, a Cytochrome P450 responsible for pyrithroid resistance in house fly, M. domestixa, Insect Mol Biol, 1995, 4:135.
    101. Cohen SG, Chishti SB, Bell DA, Howard SI, Salih E, Cohen JB. General occurrence of binding to acetylcholinesterase-substrate complex in noncompetitive inhibition and in inhibition by substrate. Biochem. Biophys. Acta, 1991, 1076:112-122.
    102. Comius MN. AgricEcosystems Environ., 1986, 16: 129-135.
    103. Conyers CM, MacNicoll AD, Price NR. Purification and characterization of an esterase involvedin resistance to organophosphorus insecticides in the saw-toothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae). Insect Biochemistry and Molecular Biology. 1998, 28: 435-448.
    104. Curtis CF. Theoretical models of the use of insecticide mixtures for management of resistance. Bull Entomol. Res., 1985, 75: 259-265.
    105. Delpuech JM, Aquadro CF, Roush RT. Noninvolvement of the long terminal repeat of transportable element 17.6 in insecticide resistance in Drosophila. Proc Natl Acad Sci USA, 1993, 90: 5643-5647.
    106. Danielson PB, MacIntyre RT, Foglerman JC. Molecular cloning of family of xenobiotic inducible Drosophila Cytochrome P450: evidence for involvement in host plant alleochem ical resistance. Proc NatlAcda Sci USA, 1997, 94: 10797-10802.
    
    
    107. Devonshire AL, Field LM. Gene amplification and insecticide resistance. Ann. Rev. Entomol, 1993, 36: 1.
    108. Devonshire AL, Field LM. Gene amplification and insecticide resistance. Annu Rev Entomol. 1991, 36:1-23.
    109. Devonshire AL, Moores GD, ffrench-Constant RH. Detection of insecticide resistance of immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humuli (Schrank) (Hemiptera: Aphididea). Bull. Entomol. Res., 1986, 76: 97-107.
    110. Devonshire AL, Moores GD. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate, and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic. Biochem. Physiol., 1982, 18: 235-246.
    111. Devonshire AL, Moores GD. Characterization of insecticide-insensitive acetylcholinesterase: Microcomputer-based analysis of enzyme inhibition in homogenates of individual house fly (Musca domestica) heads. Pestic. Biochem. Physiol., 1984, 21: 341-348.
    112. Devonshire AL. The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.) and its role in conferring insecticide resistance. J. Biochem., 1977, 167: 675-683.
    113. Dong K. A single amino acid change in the para sodiumprotein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in the German cockroach, Insect Biochem. Mol. Biol., 1997, 27: 93-100.
    114. Doyle KE, Knipple DC. PCR based phylogenetic walking: isolation of para homologous gene sequences from seven insect species and an arachnid, Insect Biochem., 1991, 21: 689-696.
    115. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7: 88-95.
    116. Farnham AW, Murray AWA, Sawicki RM, Denholm I, White JC. Characterization of the structure activity relationship of kdr and two variants of super2kdr to pyrethroids in the house fly (Musca domestica). Pestic. Sci., 1987, 19: 209-220.
    117. Feyereisen R, Carino FA, Koener J F. Insect cytochrome P450: Diversity, regulation and inhibition. Rev Pestic Toxicol, 1991, 1:163-171.
    118. Feyereisen R, Fkoener J, Farnsauth DE, et al. Cytochrome P450. Heiddelberg: Springer-Verlag Press, 1993, 311-324.
    119. Feyereisen R, Koener J F, Carino F A. Biochemistry and molecular biology of insect cytochrome P450. In: Hagedorn H H, et al. Molecular Insect Science, New York: Plenum Press, 1990, 263-272.
    120. Feyereisen R, Koener JF, Farnsworth DE, et al. Isolation and sequence of cDNA encoding a Cytochrome P450 from an insecticide-Resistant strain of the house fly, M. domestica. Proc Natl Acad Sci USA, 1989, 86: 1465-1469.
    121. ffrench-Constant RH, Steichen JC, Rocheleau TA, Aronstein K, Roush RT. A single-amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations. Proc. Natl. Acad. Sci. USA, 1993, 90(5):1957-1961.
    
    
    122. Fournier D, Bride J.-M, Hoffman F, Karch F. Acetylcholinesterase: two types of modifications confer resistance to insecticide. J Biol. Chem., 1992, 267: 14270-14274.
    123. Fukami J. Metabolism of several insecticides by glutathion S-transferase. Pharmac. Ther., 1980, 10(3): 473-514.
    124. Gao J-R, Rao JV, Wilde GE, Zhu KY. Purification and kinetic analysis of acetylcholinesterase from western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Arch. Insect Biochem. Physiol., 1998, 39:118-125.
    125. Gao J-R, Zhu KY. An acetylcholinesterase purified from the greenbug (Schizaphis graminum) with some unique enzymological and pharmacological characteristics. Insect Biochem. Mol. Biol., 2001, 31: 1095-1104.
    126. Gao J-R, Zhu KY. Comparative toxicity of selected organophosphate insecticides against resistant and susceptible clones of the greenbug, Schizaphis graminum (Homoptera: aphididae). J Agricultural and Food Chemistry, 2000, 48(10):4717-4722.
    127. Gao J-R, Zhu KY. Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic. Biochem. Physiol., 2002, 73: 164-173.
    128. Georghiu GP, Jaylor CE. Factors influencing the evolution of resistance in Pesticide Resistance: Strategies and Tactics for Management. Washington D C: National Academy Press, 1986, 157-168.
    129. Ghorpade SA. Esterase activity and associated resistance of the rice brown planthopper, Nilaparvata lugens (Stl) to insecticides. J Insect Sci, 1990, 3(2): 152-157.
    130. Grant DF, Hammock BD. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-expression in Aedes aegypti. Molecular and General Genetics, 1992, 234: 169-176.
    131. Guedes RNC, Kambhampati S, Dover BA, Zhu KY. Biochemical mechanisms of organophosphate resistance in Rhyzopertha dominica (Coleoptera: Bostrichidae) from the United States and Brazil. Bulletin of Entomological Research, 1997, 87:581-586
    132. Guedes RNC, Zhu KY, Kambhampati S, Dover BA. Characterization of acetylcholinesterase purified from the lesser grain borer, Rhizopertha dominica (Coleoptera: Bostrichidae). Comp. Biochem. Physiol., 1998, 119C: 205-210.
    133. Guerrero FD, Jamroz RC, Kammlah D, Kunz SE. Toxicological and molecular characterization of pyrethroid resistant horn flies, Haematobia irritans: Identification of kdr and super2kdr point mutations. Insect Biochem. Mol. Biol., 1997, 27: 745-755.
    134. Gurban EM, et al. Insecticide resistance in cotton aphid Aphis goddypii in the Sudan Gezir. Pestic. Sci., 1992, 35(2): 101-107.
    135. Guzov VM, Unnithan GC, Chernogolov AA, Feyereisen R. CYP12A1: a mitochondrial Cytochrome P450 from the house fly. Arch Biochem Biophys, 1998, 359 (2): 231-240.
    136. Head DJ, McCaffery AR, Callaghan A. Novel mutations in the para-homologous sodium channel gene associated with phenotypic expression of nerve insensitivity resistance to pyrethroids in Heliothine lepidoptera, Insect Mol. Biol., 1998, 7(2): 191-196.
    137. Hemingway J. Genetics of insecticide resistance in mosquito vectors of disease. Parasitol Today, 1992, 8: 296.
    
    
    138. Henderson PJF. Statistic analysis of enzyme kinetic data. in: R. Eisenthal, M.J. Danson (Eds.), Enzyme Assays: A Practical Approach. New York: Oxford University Press, 1992, pp. 227-316.
    139. Herath PRJ, Hemingway J, Weerasinghe IS, Jayawardena KGI. The detection and characterization of malathion resistance in field populations of Anopheles culicifacies B in Sri Lanka. Pestic. Biochem. Physiol., 1987, 29: 157-162.
    140. He Y-P, Ma E-B, Zhu KY. Comparative studies on general esterases in two field populations of the oriental migratory locust, Locusta migratoria manilensis (Meyen) (Orthoptera: Acrididae). Pestic. Biochem. Physiol., 2004, 78:103-113.
    141. Hoffmann F, Fournier D, Spierer P. Minigene rescues acetylcholinesterase lethal mutations in Drosophila melanogaster. J. Molec. Biol., 1992, 223:17-22.
    142. Huang Y, Qiao C, Williamson MS, Devonshire AL. Characterization of the acetylcholinesterase gene from insecticide-resistant houseflies (Musca domestica).Chin J Biotechnol., 1997, 13(3): 177-183.
    143. Karunaratne SHPP, Hemingway J, Weerasinghe IS, Jayawardena KGI, Dassanayaka V, Vaughan A. Kinetic and molecular differences in the amplified and nonamplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes. J. Biol. Chem., 1995, 270:31124-31128.
    144. Ketterman AJ, Karunaratne SHPP, Jayawardena KGI, Hemingway J. Qualitative differences between populations of Culex quinquefasciatus in both the esterase A2 and B which are involved in insecticide resistance. Pestic. Biochem. Physiol., 1993, 47:142-148.
    145. Kim CS, Kim WT, Boo KS, Kim SI. Cloning, mutagenesis, and expression of the acetylcholinesterase gene from a strain ofMusca domestica; the change from a drug-resistant to a sensitive enzyme. Mol Cells., 2003, 15(2):208-215.
    146. Kim JW, Hwang TG. Studies on resistance to organophosphorus insecticides in the brown planthopper, Nilaparvata lugens (Stl) (Ⅱ) Difference of the biochemical characteristic. Korean J Plant Protection, 1987, 26 (3):165-170.
    147. Knipple DC, Payne LL, Soderlund DM. PCR generated sodium channel gene probe for the housefly. Arch. Insect Biochem. Physiol., 1991, 16: 45-53.
    148. Korytko PJ, Scott JG. CYP6D1 protects thoracic ganglica of house flies from the neurotoxic insecticide cypermethrin. Arch Insect Biochem Physiol, 1998, 37(1): 57-63.
    149. Kostaropoulos Ⅰ, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E. Glutathione S-transferase in the defense against pyrethroid insecticides. Insect Mol. Biol., 2001, 31: 313-319.
    150. Krupka RM, Laidler KJ. Molecular mechanisms for hydrolytic enzyme action: Ⅱ. Inhibition of acetylcholinesterase by excess substrate. J. Am. Chem. Soc., 1961, 83: 1448-1454.
    151. Lee CY, Hemingway J, Yap HH, et al. Biochemical characterization of insecticide resistance in the German cockroach, Blattella germanica, from Malaysia. Med. Vet. Entomol. 2000, 14: 11-18.
    152. Lee SH, Dunn J, Clark JM, Soderlund DM. Molecular analysis of kdr-like resistance in a permethrin resistant strain of Colorado bettle. Pestic. Biochem. Physiol., 1999, 63: 63-75.
    
    
    153. Levitin E, Cohen E. The involvement of acetylcholinesterase in resistance of the California red scale Aonidiella aurantii to organophosphorus pesticides. Entomol. Exp. Appl., 1998, 88: 115.
    154. Liu N, Scott JG. Genetic analysis of factors controlling high-level expression of Cytochrome P450, CYP6D1, Cytochrome b5, P450 reductase, and monooxygenases activitis in LDR house flies, Musca domestica. Biochem Genet, 1996, 34(3-4): 133-148.
    155. Liu N, Scott JG. Increased transcription of CYP6D1 causes Cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem Mol Biol, 1998, 28(11): 531-535.
    156. Liu N, Scott JG. Inheritance of CYP6D1 mediated pyrethoid resistance in house fly (Diptera: Muciae). J Econ Entomol, 1997, 90(6): 1478-1481.
    157. Liu N, Tomita T, Scott JG. Allel-specific PCR reveals that CYP6D1 is on chromosome 1 in the house fly, Musca domestica. Experientia, 1995, 51(2): 164-167.
    158. Malkenson de NC, Wood EJ, Zerba EN. Isolation and characterization of an esterase of Triatoma infestans with a critical role in the degradation of organophosphorus esters. Insect Biochem., 1984, 14: 481-486.
    159. Ma E-B, He Y-P, Zhu KY. Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locust (Locusta migratoria manilensis): implications of insecticide resistance. Pestic. Biochem. Physiol., 2004, 78: 67-77.
    160. Manchenko GP. Handbook of detection of enzymes on electrophoretic gels. CRC Press, Boca Raton, FL, 1994, p.341.
    161. Mannervick B. Adv. Fnzylol., 1985, 57: 347-417.
    162. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s. s. Insect Mol. Biol., 1998, 7(2): 179-184.
    163. Martinez-Torres D, Devonshire AL, Williamson MS. Molecular studies of knockdown resistance to pyrethroid: cloning of domain Ⅱ sodium channel gene sequences from insects. Pestic. Sci., 1997, 51: 265-270.
    164. Martinez-Torres D, Foster SP, Field LM, Devonshire AL, Williamson MS. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the Peach potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Mol. Biol., 1999, 8(3): 339-346.
    165. Matsumura F. Toxicology of Insecticides. second ed., New York: Plenum Press, 1985, p. 620.
    166. Melander PH, Sawicki RM. Diagnosis of resistance to organaphosphorus insecticides in Myzus persicae. Nature, 1971, 230:125.
    167. Menguelle J., Fuzeau B. S., Papin C. The influence of glutathione on the resistance to lindane of the migratory locust Locusta migratoria cinerascens. Comp. Biochem. Phys. Pharmacol. Toxicol & Endocrinol., 1985, 80 (2): 401-406.
    168. Miyazaki M, Ohyama K, Dunlap DY, Matsumura F. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol. Gen. Genet., 1996, 252: 61-68.
    
    
    169. Molberg WK. Understanding and combating agrochemical resistance. In: Green MB, Lebaron HM, Moberg M Keds. Managing Resistance to Agrochemicals. Washington: American Chemical Society, 1990, 1-15.
    170. Moorman JR, Kirsch GE, Brown AM, Joho RH. Changes in sodium channel gating produced by point mutations in a cytoplasmic linker. Science, 1990, 250: 688-691.
    171. Moreteau B, Chaminade N. Annales de la Societe Entomologique de France, 1988, 24 (1):103-109.
    172. Moreteau B, Chaminade N. The effects of lindane poisoning on N-acetyldopamine and N-acetyl 5-hydroxytryptamine concentrations in the brain of Locusta migratoria L. Ecotoxicol. Environ. Safety, 1990, 20(1):115-120.
    173. Mossoulié J, Bon S. Affinity chromatography of acetylcholinesterase: the importance of hydrophobic interactions. Eur. J. Biochem., 1976, 68:531-539.
    174. Motoyama N, Dauterman WC. The role of nonoxidative metabolism in organophosphorus resistance. J. Agr. Food. Chem., 1974, 22: 350-356.
    175. Mouches C, Magnin M, Berge JB, de Silvestri M, Beyssat V, Pasteur N, Georghiou GP. Overproduction of detoxifying esterases in organophosphate-resistant Culex mosquitoes and their presence in other insects. Proc Natl Acad Sci USA, 1987, 84:2113-2116.
    176. Mutero A, Pralavorio M, Bride JM, Fournier D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci U S A., 1994, 91(13): 5922-5926,
    177. Narciso R, Guedes C, Zhu KY. Organophosphate resistance in Rhyzopertha dominica: survey and biochemical mechanisms. Recent Res. Devel. In Entomol., 1998, 2: 1-7.
    178. Oppenoorth FJ. Biochemistry and genetics of insecticide resistance. In: Kwehut G A, Gilleert L I eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology, Oxford: Pergamon Press, 1985, 12:731-774.
    179. Ozaki K. The resistance to organophosphorus of the green rice leafhopper, Nephotetti xcincticeps, and the smaller brown planthopper. Rev Plant Prot Res, 1969, 2: 1-13.
    180. Park Y, Taylor MFJ. A novel mutation L1029H in sodium channel gene hscp associated with pyrethroid resistance for Heliothis virescens (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol., 1997, 27: 9-13.
    181. Pasteur N, Georghiou GP. Filter paper test for rapid determination of phenotypes with high esterase activity in organophosphate resistant mosquitoes. Mosq. News, 1981, 41:181-183.
    182. Pasteur N, Georghiou GP. Improved filter paper test for detectiong and quantifying increased esterase activity in organophosphate-resistant mosquitoes (Diptera: Culicidae). J. Econ. Entomol., 1989, 82: 347-353.
    183. Pepper DR, Osborne MP. Electrophysiological identification of site insensitive mechanisma in knockdown resistant strains (kdr, super 2kdr) of the housefly larva (Musca domestica). Pestic. Sci., 1993, 39: 279-286.
    184. Pittendrigh B, Aronstein K, Zinkovsky E, et al. Cytochrome P450 genes from Helicoverpa armigera: expression in a pyrethoid-susceptible and-resistant strain, Insect Biochem Mol Biol, 1997, 27 (6): 507-512.
    185. Poly Software International, ProStat Version 3 User's Handbook, Poly Software International, Pearl River, New York, 2002, p.339.
    
    
    186. Qiao CL, Raymond M. The same esterase B1 haplotype is amplified in insecticide-resistant mosquitoes of the Culex pipiens complex from the Americas and China. Heredity, 1995, 74: 339-345.
    187. Radio Z, Reiner E, Taylor P. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivative. Mol. Pharmacol., 1991, 39: 98-104.
    188. Ramaswami M, Tanouye MA. Two sodium channel genes in Drosophila: Implications for channel diversity. Proc. Natl. Acad. Sci. USA., 1989, 86: 2079-2082.
    189. Ren XX, Han ZJ, Wang YC. Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hübner). Arch Insect Biochem Physiol., 2002, 51(3): 103-110.
    190. Saleh MA, Motoyama N, Dauterman WC. Insect Biochem., 1978, 8:311-316.
    191. Sawicki RM, Devonshire AL, Payne RW, Petzing SM. Stability of insecticide resistance in the peach-potato aphid Myzus persicae (Sulzer). Pestic. Sci., 1980, 11: 33-42.
    192. Sawicki RM. Unusual response of DDT-resistant house flies to carbinol analogues of DDT. Nature, 1978, 275: 443-444.
    193. Schuler TH, Martinez-Torres D, Thompson AJ, Denholm I, Devonshire AL, Duce IR, Williamson MS. Toxicological, electrophysiological, and molecular characterization of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic. Biochem. Physiol., 1998, 59: 169-182.
    194. Scott JG, Lee SS. Purification and characterization of a Cytochrome P450 from insecticide susceptible and resistant strains of house fly, Musca. domestica L. before and after phenobarbital exposure. Arch Insect Biochem Physiol, 1993, 24(4): 1-19.
    195. Scott JG, Lee SS. Tissue distribution of microsomal Cytochrome P450 monooxygenase and their inducibility by phenobarbital in the insecticide resistant strain (LPR) of house fly, Musca domestica L. Insect Biochem. Mol. Biol., 1993, 236: 729-738.
    196. Scott JG, Liu N, Wen Z, Smith FF, Kasai S, Horak CE. House fly Cytochrome P450 CYP6D1: 5'flanking sequences and comparison of alleles. Gene, 1999, 226(2): 347-353.
    197. Scott JG, Sriddar P, Liu N. Adult specific expression and induction of Cytochrome P450 1pr in house flies. Arch Insect Biochem Physiol, 1996, 31(3): 313.
    198. Siegfried BD, Ono M. Mechanisms of parathion resistance in the greenbug, Schizaphis graminum (Rondani). Pestic. Biochem. Physiol., 1993a, 45: 24-33.
    199. Siegfried BD, Ono M. Parathion toxicokinetics in resistant and susceptible strains of the greenbug (Homoptera: Aphididae). J. Econ. Entomol., 1993b, 86:1317-1323.
    200. Siegfried BD, Zera AJ. Partial purification and characterization of a greenbug (Homoptera: Aphididae) esterase associated with resistance to parathion. Pestic. Biochem. Physiol., 1994, 49: 132-137.
    201. Silver AR et al. A biochemical mechanism of resistance to pirimicarb in two glasshouse clones of Aphis gossypii. Pestic. Sci., 1995, 43(1): 21-29.
    202. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Provenzano FH, Fujimoto EK, Goeke NM, Olson B J, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem., 1985, 150: 76-85.
    203. Soderlund DM et al. Molecular neurology: implications for insecticide action and resistance. Pest. Sci., 1989, 26(4): 359-374.
    
    
    204. Song S et al. Insecticide resistance mechanism in the spiraea, Aphis citricola Korean. J. Appl. Entomol., 1995, 34(2): 89-94.
    205. Spiegelman VS, Fuchs SY, Belitsky GA. The expression of insecticide resistance-related Cytochrome P450 forms is regulated by molting hormone in Drosophila melanogaster. Biochem Biophys Res Commun, 1991, 232(2): 304-307.
    206. Staetz CA. Susceptibility of Heliothis virescens (F.) (Lepidoptera: Noctuidae) to permethrm from across the cotton belt: a five year study. J. Econ. Entomol., 1985, 78: 505-510.
    207. Sudderuddin KI. An in vitro study of esterases, hydrolyzing non-speci.c substrates, of an OP-resistant strain of the green peach aphid, Myzus persicae, Comp. Biochem. Physiol., 1973, 44B: 1067-1076.
    208. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 1991, 253: 872-879.
    209. Taylor MF. Linkage of pyrethroid insecticide resistance to a sodium channel locus in the tobacco budworm. Insect Biochem. Molec. Biol., 1993, 7: 763-775.
    210. Tomita T, Liu N, Smith FF, Sridhar P, Scott JG. Molecular mechanism involved in increased expression of Cytochrome P450 responsible for pyrethroid resistance in the house fly, M. domestica. Insect Mol Biol, 1995b, 4(3): 135-140.
    211. Tomita T, Scott JG. cDNA and deduced p rotein sequence of CYP6D1: the putative gene for a Cytochrome P450 responsible for Pyrethroid resistance in house fly. Insect Biochem Mol Biol, 1995a, 25 (2): 275-283.
    212. Toshinori Kozaki, Toshio Shono, Takashi Tomita, Yoshiaki Kono. Fenitroxon insensitivite acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem. Molec. Biol., 2001, 31:991-997.
    213. van Asperen K. A study of house fly esterases by means of a sensitive colorimetric method. J. Insect Physiol., 1962, 8: 401-416.
    214. Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Janes RW, Hemingway J. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae, Insect Molec. Biol., 2002, 11(4):329-336. Erratum in: Insect Molec. Biol., 2003, 12(4):413.
    215. Wang JY, McCommas S, Syvanen M. Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). Mol. Geno Genet., 1991, 227(2): 260-266.
    216. Wang XP, Hobbs AA. Isolation and sequence analysis of cDNA clone for a pyrethoid inducible Cytochrome P450 Helicoverpa Armigera. Insect Biochem Mol Biol, 1995, 25(9): 1001-1009.
    217. Waters LC, Zelhof AC, Shav BJ, et al. Possible involvement of the long terminal repeat of transportable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. Proc Natl Acad Sci USA, 1992, 89: 4855.
    218. Williamson MS, Denholm I, Bell CA. Cloning of a housefly sodium channel gene linked to pyrethroid resistance. In: Abstr Second Int. Symp. Mol. Insect Sci, 1993, 182.
    
    
    219. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet., 1996, 252:51-60.
    220. Xu G, Bull DL. Acetylcholinesterase from the horn fly (Diptera: Muscidae): distribution and purification. J. Econ. Entomol., 1994, 87: 20-26.
    221. Yang XM, Buschman LL, Zhu KY, et al. Susceptibility and detoxifying enzyme activity in two spider mite species (Acari: Tetranychidae) after selection with three insecticides. J. Econ. Entomol., 2002, 95 (2): 399-406.
    222. Yu SJ. Host plant induction of glutathione S-transferases in the fall armyworm. Pestic. Biochem. Physiol., 1982, 18: 101-106.
    223. Zhao GY et al. Diazinon resistance mechanisms in western flower thrips. Resistant Pest Management, 1993, 5: 2-6.
    224. Zhou X, Scharf ME, Parimi S, Meinke LJ, Wright RJ, Chandler LD, Siegfried BD. Diagnostic assays based on esterase-mediated resistance mechanisms in western corn rootworms (Coleoptera: Chrysomelidae). J. Econ. Entomol., 2002, 95: 1261-1266.
    225. Zhu KY, Brindley WA, Hsiao TH. Isolation and partial purification of acetylcholinesterase from Lygus hesperus (Hemiptera: Miridae). J. Econ. Entomol., 1991, 84: 790-794.
    226. Zhu KY, Brindley WA. Enzymological and inhibitory properties of acetylcholinesterase purified from Lygus hesperus Knight (Hemiptera: Miridae). Insect Biochem. Mol. Biol., 1992, 22: 245-251.
    227. Zhu KY, Brindley WA. Properties of esterases from Lygus hesperus knight (Hemiptera: Miridae) and the roles of the esterases in insecticide resistance. J. Econ. Entomol., 1990, 83: 725-732.
    228. Zhu KY, Clark JM. Comparison of kinetic properties of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Pestic. Biochem. Physiol., 1995, 51: 57-67.
    229. Zhu KY, Clark JM. Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol., 1994, 24: 453-461.
    230. Zhu KY, Gao JR, Starkey SR. Organophosphate resistance mediated by alterations of acetylcholinesterase in a resistant clone of the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic. Biochem. Physiol., 2000b, 68:138-147.
    231. Zhu KY, Gao J-R. Increased activity associated with reduced sensitivity of acetylcholinesterase in organophosphate-resistant greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic. Sci., 1999, 55:11-17.
    232. Zhu KY, Gao J-R. Kinetic properties and variability of esterases in organophosphate-susceptible and -resistant greenbugs, Schizaphis graminum (Homoptera: Aphididae). Pestic. Biochem. Physiol., 1998, 62: 135-145.
    233. Zhu KY, He FQ. Elevated esterases exhibiting arylesterase-like characteristics in an organophosphate-resistant clone of the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic. Biochem. Physiol, 2000a, 67:155-167.
    
    
    234. Zhu KY, Lee SH, Clark JM. A Point Mutation of Acetylcholinesterase Associated with Azinphosmethyl Resistance and Reduced Fitness in Colorado Potato Beetle. Pestic Biochem Physiol., 1996, 55(2):100-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700