用户名: 密码: 验证码:
三维椭圆振动辅助切削装置及控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维椭圆振动辅助切削(EVAC)是一种十分有发展潜力的加工方法,不仅在改善切削加工性等方面获得了验证、而且可形成微加工运动创成表面,受到了国内外的学术界和工程界的高度关注。三维EVAC能否在加工中实现最佳的性能,其关键还在于三维EVAC装置及其控制。迄今为止,前人的研究在三维EVAC装置及其控制等方面还存在着一些问题有待研究解决,例如三维EVAC装置的设计、三维椭圆运动轨迹的可控制性、以及三维椭圆运动对驱动的非线性等问题。本学位论文将主要针对这几个方面的问题进行深入研究。
     论文详细评述了三维EVAC装置及其控制方法的国内外研究现状。在此基础上,系统研究了三维EVAC装置的设计,三维EVAC装置的辨识方法、三维EVAC装置的控制方法,通过离线实验测试、在线切削加工实验,理论分析以及仿真进行了考证,具体包括如下五个方面。
     (1)研制了一种基于柔性铰链的并联驱动三维EVAC装置
     针对当前已有的三维椭圆振动辅助切削装置存在的问题,研制了一种能够满足要求的三维EVAC装置,该装置采用四个压电叠堆平行驱动,两两对称,装置刀座与柔性铰链采用一体式加工,减小了由于装配造成的误差,在装置的底座上增加了楔形块式高度微调设计,根据三维EVAC装置中压电叠堆的空间运动配置,所研制的装置可以实现普通车削、二维椭圆振动辅助车削和三维椭圆振动辅助切削,本文对装置的柔性铰链刚度进行了计算、关键部件进行有限元分析,然后对装置简化模型进行刀位点轨迹建模,并通过仿真分析研究了三维椭圆运动参数对于三维椭圆轨迹的影响,通过调整椭圆生成参数使其能够满足三维椭圆运动轨迹的要求。
     (2)对所研制的三维EVAC装置进行了相关性能测试
     针对所研制的三维EVAC装置进行了性能测试,测试的内容主要包括静刚度测试、固有频率测试、阶跃响应和正弦响应测试、分辨率测试和最大行程测试、串扰测试。装置的静刚度测试结果与设计值和仿真结果接近;固有频率测试的结果与仿真值差别较小,满足本实验的使用要求;阶跃响应和正弦响应测试可以看出装置的响应速度和跟踪误差都满足设计要求;分辨率测试和最大行程测试可以看出所研制的三维EVAC装置分辨率为100nm以下,可以实现的最大行程为13.97μm;最后对各个压电叠堆驱动时产生的串扰情况进行测试。通过对三维EVAC装置的各项性能测试,对所设计三维EVAC装置的整体性能进一步熟悉,为后续控制研究打下基础。
     (3)提出了一种基于非线性Wiener系统的三维EVAC装置辨识方法
     对三维椭圆振动辅助切削系统进行了描述,针对压电驱动装置的特点和压电自身的非线性迟滞特性,本文的系统描述选择的是非线性Wiener系统,同时提出了有针对性的辨识策略,研究了系统的辨识方法,对memetic算法进行了改进,本文改进的memetic算法在全局搜索过程中能够避免出现局部受限问题,在局部细化过程中能够提高搜索效率和精度,通过两个常用的算法测试函数对本文改进memetic算法进行了测试,将测试结果与GA、CMA、PSO的测试结果进行对比,从全局收敛几率,搜索的时间上能够看出改进的memetic算法具有一定的优越性。
     采用基于改进memetic算法的系统辨识器对三维椭圆振动辅助切削系统进行了系统辨识,辨识的数据是实验采集的真实数据,辨识的信号有常用的正弦信号和方波信号,辨识的结果拟合度高达97.55%。
     (4)针对辨识的三维EVAC系统设计了一种模糊自适应滑模控制器
     针对三维椭圆振动辅助切削系统的非线性特征,对系统辨识结果采用模糊自适应滑模控制器来进行控制,设计了滑模控制律,并用Lyapunov定律证明了所设计控制器的稳定性,最后进行了控制器的仿真,仿真的结果显示,模糊自适应滑模控制器可以有效的抑制抖振问题,具有很强的鲁棒性。
     (5)搭建三维EVAC实验平台进行切削实验
     首先搭建了三维EVAC加工实验平台,通过参数设定后实际采集的数据,合成了加工使用的三维椭圆运动轨迹,验证了第二章中刀位点建模的理论的正确性;采用普通车削、二维椭圆振动辅助车削、三维椭圆振动辅助切削各加工同一类样件,然后对切削痕迹、表面粗糙度以及刀具磨损这三个方面进行检测,并进行了对比分析,结果表明三维椭圆振动辅助切削在提高表面粗糙度和减小刀具磨损方面具有优越性,同时也进一步验证了本文设计装置的加工性能。
Three-dimensional elliptical vibration assisted cutting (EVAC) is a very potentialprocessing methods, not only be verified to improving material machinability,but alsocan formed into a surface by micromachining movement,and then,3D EVAC gets highconcerned by academic and engineering all of the world.The ability to obtain the bestperformance of3D EVAC in actual processing based on the develop of3D EVACappratus and its control.State-of-the-art,there are still some issues of the previous studiesin3D EVAC appratus and its control to be resolved by studies,such as the controllabilityof three-dimensional elliptical trajectory,the nonlinear motion of three-dimensionalelliptical trajectory,and so on.This dissertation will focus on the problem of these twoaspects in-depth study.
     This dissertation detailed reviews the research status of three-dimensional EVACappratus and its control method. On this basis, the design of three-dimensional EVACappratus,the identification method of three-dimensional EVAC system and the controlmethod for three-dimensional EVAC appratus was studied,and the theories were verifiedthrough offline experimental testing,cutting experiments,theoretical analysis andsimulation.This dissertation contains the following five parts.
     (1) Designed a three-dimensional EVAC appratus based on parallel driver the parallelflexible hinge
     Aimed to solve the current problems existing in3D EVAC appratus,developed athree-dimensional EVAC appratus to meet the requirements.The developedthree-dimensional EVAC appratus uses four piezoelectric actuators place parallelly andsymmetrically.The knife block in the appratus and the flexible hinges integratedprocessing to reduce the errors caused assembly,the appratus has a wedge-block designto fine-tune the height of the diamond tool.According to the movement of thepiezoelectric actuators configuration,the appratus can achieve cutting experiment bycommon turning, two-dimensional and three-dimensional elliptical vibration assisted turning. This dissertation calculate the stiffness of the flexible hinge portion in thedeveloped appratus and the finite element analysis of key components.Modeling theknife sites trajectory by simplify the designed appratus and simulation analysis theaffecting of the trajectory parameters on the trajectory shape, and generate athree-dimensional elliptical trajectory by adjusting the parameters of the trajectoryparameters to meet the processing requirements.
     (2) Carried ou the performance test of the developed3D EVAC apparatus
     This dissertation carried out the performance test of the developed3D EVACapparatus to enable it to meet requirements of the precision ultra-precision machining.The test content includes the static stiffness test, the test of natural frequency,the testingof step response and sinusoidal response, the test of resolution testing and maximumstroke and the test of crosstalk.The test results of the Static stiffness is close to the designvalue and the simulation results,the test Results of natural frequency is not very differentfrom the simulated values,basically meet the requirements of this experiment. The stepresponse and sinusoidal response testing of the developed appratus can be seen that thedriving motion error of the piezoelectric stack satisfies the design requirements.Theresults of the resolution test can be seen that the resolution of the developed appratus is100nm or less.The maximum stroke test reaults of the developed appratus can be seenthat the maximum stroke can be achieved as13.97μm, the crosstalk test between thepiezoelectric stacks was carried out finally.The overall performance of the designedthree-dimensional EVAC appratus have a comprehensive grasp by the performancetest,can be targeted the subsequent control process.
     (3) Proposed a system identification method for three-dimensional EVAC appratus basedon nonlinear Wiener system.
     This dissertation described the developed three-dimensional EVAC appratus systemusing a nonlinear Wiener system due to the nonlinear hysteresis characteristics of thepiezoelectric actuators, and proposed a targeted identification strategy,researchidentification of the system, improved the memetic algorithm.This paper improvedmemetic algorithm framework global search strategy chosen is genetic particle swarm optimization algorithm,the local refinement strategy uses a only perception mode ofparticle swarm algorithm.So that not only the local convergence problems ofconventional algorithms can be solved,but also improve the chances of search efficiencyand success.The improved algorithm was tested through two commonly used algorithmstest functions,the test results were compared with GA, CMA and PSO,verified thesuperiority of the improved algorithm. This dissertation proposed a system identifierbased on the improved memetic algorithm and carried ou the system identification of thedeveloped three-dimensional EVAC appratus.The data for identification was collectedby experimental,the signals for identification selected as sinusoidal signal and the squarewave signal.The fit of the system identification result can be up to97.55%.
     (4) Proposed a adaptive fuzzy sliding control method for three-dimensional EVACappratus
     A fuzzy adaptive sliding mode controller was proposed to control the developedthree-dimensional EVAC appratus according to the nonlinear characteristics of theEVAC system. The control law of sliding mode was designed through the results ofsystem identification,and system stability was proved by Lyapunov law,finally thesimulation of fuzzy adaptive sliding mode controller was carried out.The simulationresults shows that the fuzzy adaptive sliding mode controller can effectively suppresschattering problem, which has strong robustness.
     (5) Carried out the processing experiments by the developed three-dimensional EVACappratus
     This dissertation carried out the processing experiments by the developedthree-dimensional EVAC appratus.Firstly, introduced the experimental conditions of thecutting experiment.Synthesis three-dimensional elliptic trajectory through the parametersetting of three-dimensional elliptical trajectory,also to verify the theoretical ofmodeling knife sites modeling in the chapter2.The cutting experiments results of by thedeveloped three-dimensional EVAC appratus were comparison with the conventionalcutting and two-dimensional EVAC of YOZ plane.The photo of machined parts weregiven firstly,then described the advantages of three-dimensional EVAC by cut traces,surface roughness and tool wear,also authentication the theoretical research in thefront.
引文
[1] F.Z. Fang, X.D. Zhang,A. Weckenmann, G.X.Zhang,C.Evans.Manufacturing andmeasurement of freeform optics[J].CIRP Annals-Manufacturing Technology,2013,62:823-846.
    [2] Fang FZ,Wu H,Liu YC. Modeling and Investigation on Machining Mechanism ofNano-cutting Monocrystalline Silicon[J].International Journal of Machine Tools andManufacture.2005,45:1681-1686.
    [3]Fang FZ, Venkatesh VC.Diamond Cutting of Silicon with Nanometric Finish[J].CIRPAnnals-Manufacturing Technology.1998,47(1):45-49.
    [4] Cakmakci O, Vo S, Thompson KP, Rolland JP.Application of Radial Basis Functionsto Shape Description in a Dual-element Off-axis Eyewear Display:Field-of-viewLimit[J]. Journal of the Society for Information Display.2008,16(11):1089-1098.
    [5] Cheng DW, Wang YT, Hua H, Talha MM.Dedsign of an Optical See-throughHead-mounted Display with a Low f-number and Large Field of View Using aFreeform Prism[J].Applied Optics.2009,48(14):2655-2668.
    [6]Savio E,de Chiffre L, Schmitt R.Metrology of Freeform Shaped Parts[J].CIRPAnnals-Manufacturing Technology.2007,56(2):810-835.
    [7] Fattal,D.et al.A multi-directional backlight for a wide-angle, glasses-freethree-dimensional Display[J].Nature.2013,495:348-351.
    [8] Borst,A.&Plett, J.Optical devices: Seeing the world through an insect's eyes[J].Nature.2013,497:47-48.
    [9] Xinrui Tang,Keiichi Nakamoto,Kazushi Obata,Yoshimi Takeuchi. Ultraprecisionmicromachining of hard material with tool wear suppression by using diamond toolwith special chamfer [J]. CIRP Annals-Manufacturing Technology.2013(62):51-54.
    [10] Tohme Y.Slow Slide Servo (S3) machining of freeform optics–abstract. MooreNanotechnology Systems. http://www.nanotechsys.com/technology/technical-papers/.2004.
    [11] Fang FZ, Venkatesh VC.Diamond Cutting of Silicon with NanometricFinish[J].CIRP Annals–Manufacturing Technology.1998,47(1):45–49.
    [12] Arif,M.Rahman M.San, W.Y. An experimental study on the machiningcharacteristics in ductile-mode milling of BK-7glass[J]. International Journal ofAdvanced Manufacturing Technology,2012,60(5-8):487-495.
    [13] Kong LB, Cheung CF, To S, Lee WB.An Investigation into Surface Generation inUltra-precision Raster Milling[J]. Journal of Materials ProcessingTechnology.2009,209(8):4178–4185.
    [14] Brinksmeier E, Glabe R, Flucke C.Manufacturing of Molds for Replica-tion ofMicro Cube Corner Retroreflectors[J]. Production Engineering.2008,2(1):33–38.
    [15] Xie J, Zheng J H, Zhou R M, et al. Dispersed grinding wheel profile for accuratefreeform surfaces [J]. International Journal of Machine Tool&Manufacture,2011,51:536-542.
    [16] T. Puntous,S. Pavan,et,al. Ability of quality controllers to detect standard scratcheson polished surfaces[J]. Precision Engineering,2013(37):924-928.
    [17] Jiang,Guo. Hirofumi Suzuki. Shin-ya Morita.et,al. A real-time polishing forcecontrol system for ultraprecision finishing of micro-optics[J]. PrecisionEngineering,2013(37):787-792.
    [18] Yasuhiro Kakinuma,Keisuke Igarashi, Seiichiro Katsura,Tojiro Aoyama.Development of5-axis polishing machine capable of simultaneous trajectory,posture, and force control[J.Precision Engineering,2013(62):379-382.
    [19] Brinksmeier E, Autschbach L, Weck M, Winterschladen M.Closed LoopManufacturing of Optical Molds Using an Integrated SimulationInterface[C].Proceedings of4th euspen International Conference Glasgow, Scotland,2004:215-217.
    [20] Osmer J, Weinga rtner S, Riemer O, Brinksmeier E, et al. Diamond Machining ofFree-form Surfaces: A Comparison of Raster Milling and Slow Tool ServoMachining[C].Proceedings of the7th euspen International Conference,2007:189–192.
    [21] http://www.itrc.narl.org.tw/Research/Project/ultra-precision-e.php.
    [22]隈部淳一郎,超声波振动切削加工法[M],1957(01).
    [23] Shamoto E,Moriwaki T.Study on Elliptical Vibration Cutting[J].Annals of theCIRP,1994(43):35-38.
    [24] Suzuki, N. Masuda, S. Haritani, M. Shamoto, E. Ultraprecision micromachining ofbrittle materials by applying ultrasonic elliptical vibration cutting[C]. Proceedingsof the2004International Symposium on Micro-Nanomechatronics and HumanScience,2004:133-138.
    [25] Moriwaki T,Shamoto E.Ultrasonic elliptical vibration cutting[J].CIRP Ann,1995(44):31-34.
    [26] Eiji Shamoto, Toshimichi Moriwaki. Ultaprecision Diamond Cutting of HardenedSteel by Applying Elliptical Vibration Cutting[J]. Annals of CIRP.1999,48(1):441-444.
    [27] Shamoto, E.Suzuki, N.Moriwaki, T.Naoi, Y. Development of ultrasonic ellipticalvibration controller for elliptical vibration cutting [J]. Cirp Annals,2002,51(1):327-330.
    [28] Suzuki, N.Nakamura, A.Shamoto, E.et,al. Ultraprecision micromachining ofhardened steel by applying ultrasonic elliptical vibration cutting [J]. Proceedings of2003International Symposium on Micromechatronics and Human Science,2003:221-226.
    [29] Ma, C. X.Shamoto, E.Moriwaki, T.Wang, L. J. Study of machining accuracy inultrasonic elliptical vibration cutting[J]. International Journal of Machine Tools&Manufacture,2004,44(12-13):1305-1310.
    [30] Moriwaki, T.Shamoto, E.Song, Y. C.Kohda, S. Development of a ellipticalvibration milling machine[J]. Cirp Annals,2004,53(1):341-344.
    [31] Suzuki, N.Yan, Z.Hino, R.Shamoto, E.et,al. Ultraprecision micro-machining ofsingle crystal germanium by applying elliptical vibration cutting[J].2006IEEEInternational Symposium on Micro-NanoMechatronics and Human Science,2006:41-46.
    [32] Suzuki, N.Haritani, M.Yang, J.Hino, R.Shamoto, E. Elliptical vibration cutting oftungsten alloy molds for optical glass parts [J]. Cirp Annals,2007,56(1):127-130.
    [33] Eiji Shamoto, Norikazu Suzuki,Rei Hino. Simulation of Elliptical VibrationCutting Process with Thin Shear Plane Model[J]. Cirp Annals,2008,57(1):57-60.
    [34] Ma, C. X.Ma, J.Shamoto, E.Moriwaki, T. Analysis of regenerative chattersuppression with adding the ultrasonic elliptical vibration on the cutting tool [J].Precision Engineering,2011,35(2):329-338.
    [35] Wang, Y. L.Suzuki, N.Shamoto, E.Zhao, Q. L. Investigation of tool wearsuppression in ultraprecision diamond machining of die steel[J]. PrecisionEngineering,2011,35(4):677-685.
    [36] Suzuki, N.Yokoi, H.Shamoto, E. Micro/nano sculpturing of hardened steel bycontrolling vibration amplitude in elliptical vibration cutting[J]. PrecisionEngineering,2011,35(1):44-50.
    [37] Liu, K.Li, X. P.Rahman, M.Liu, X. D. Study of ductile mode cutting in grooving oftungsten carbide with and without ultrasonic vibration assistance[J]. InternationalJournal of Advanced Manufacturing Technology,2004,24(5-6):389-394.
    [38] Nath, C.Rahman, M. Effect of machining parameters in ultrasonic vibrationcutting[J]. International Journal of Machine Tools&Manufacture,2008,48(9):965-974.
    [39] Nath, C.Rahman, M.Neo, K. S. Machinability study of tungsten carbide using PCDtools under ultrasonic elliptical vibration cutting[J]. International Journal ofMachine Tools&Manufacture,2009,49(14):1089-1095.
    [40] Nath, C.Rahman, M.Neo, K. S. A study on the effect of tool nose radius inultrasonic elliptical vibration cutting of tungsten carbide[J]. Journal of MaterialsProcessing Technology,2009,209(17):5830-5836.
    [41] Nath, C.Rahman, M.Neo, K. S. Enhancing the performance of polycrystallinediamond tools for machining WC by ultrasonic elliptical vibration cuttingmethod[J]. Journal of Vacuum Science&Technology B,2009,27(3):1241-1246.
    [42] Nath, C.Rahman, M.Neo, K. S. Modeling of the Effect of Machining Parameters onMaximum Thickness of Cut in Ultrasonic Elliptical Vibration Cutting[J]. Journal ofManufacturing Science and Engineering-Transactions of the Asme,2011,133(1):011007-1-8.
    [43] Ahmed Syed Adnan, Sathyan Subbiah. Experimental investigation of transversevibration-assisted orthogonal cutting of AL-2024[J]. International Journal ofMachine Tools&Manufacture,2010,50(14):294-302.
    [44] D. E. Brehl, T. A. Dow, K. Garrard, and A. Sohn. MICRO-STRUCTUREFABRICATION USING ELLIPTICAL VIBRATION-ASSISTED MACHINING(EVAM)[C]. ASPE Proceedings,1999,39:511-515.
    [45] Thomas A. Dow, Matthew Cerniway, Alex Sohn, Nobu Negishi. Vibration assisteddiamond turning using elliptical tool motion[C]. Proceedings2001ASPE AnnualMeeting,2001,25:92-97.
    [46] Negishi, N. Elliptical Vibration-Assisted Machining with Single-Crystal DiamondTools[D].MS thesis, North Carolina State University,2003.
    [47] Cerniway, M. Elliptical Diamond Milling: Kinematics, Force, and Tool Wear[D].MS thesis, North Carolina State University,2001.
    [48] Brocato, B. Micromachining Using Elliptical Vibration-Assisted Machining[D]. MSthesis, North Carolina State University,2005.
    [49] D. E. Brehl, T. A. Dow. Review of vibration-assisted machining [J]. PrecisionEngineering,2008,32(3):153-172.
    [50] Kim, G. D.Loh, B. G. Characteristics of chip formation in micro V-grooving usingelliptical vibration cutting[J].Journal of Micromechanics and Microengineering,2007,17(8):1458-1466.
    [51] Kim, G. D.Loh, B. G. An ultrasonic elliptical vibration cutting device for microV-groove machining: Kinematical analysis and micro V-groove machiningcharacteristics[J]. Journal of Materials Processing Technology,2007,190(1-3):181-188.
    [52] Kim, G. D.Loh, B. G. Characteristics of elliptical vibration cutting in micro-Vgrooving with variations in the elliptical cutting locus and excitationfrequency[J].Journal of Micromechanics and Microengineering,2008,18(2):025002.
    [53] Kim, G. D.Loh, B. G. Machining of micro-channels and pyramid patterns usingelliptical vibration cutting[J]. International Journal of Advanced ManufacturingTechnology,2010,49(9-12):961-968.
    [54] Kim, G. D.Loh, B. G. Direct Machining of Micro Patterns on Nickel Alloy andMold Steel by Vibration Assisted Cutting[J]. International Journal of PrecisionEngineering and Manufacturing,2011,12(4):581-588.
    [55] Loh, B. G. Kim, G. D. Correcting distortion and rotation direction of an ellipticaltrajectory in elliptical vibration cutting by modulating phase and relative magnitudeof the sinusoidal excitation voltages[J]. Proceedings of the Institution ofMechanical Engineers Part B-Journal of Engineering Manufacture,2012,226(B5):813-823.
    [56] Kim, H. S.Kim, S. I.Lee, K. I.et,al. Development of a programmable vibrationcutting tool for diamond turning of hardened mold steels[J]. International Journal ofAdvanced Manufacturing Technology,2009,40(1-2):26-40.
    [57] Ahn JH,Lim HS,Son SM.Improvement of micromachining accuracy by2-Dimensional vibration cutting.Proc ASPE1999;20:150–153.
    [58] Guo, P.Ehmann, K. F. Development of a tertiary motion generator for ellipticalvibration texturing [J]. Precision Engineering,2013,37(2):364-371.
    [59] Ali H. Ammouri&Ramsey F. Ham ade. BUEVA: a bi-directional ultrasonicelliptical vibrationactuator for micromachining[J]. Int J Adv Manuf Technol (2012)58:991-1001.
    [60]马春翔,胡德金.超声波椭圆振动切削技术[J].机械工程学报,2004,(12):67-70.
    [61]李勋,季远,张德远.基于有限元分析的椭圆振动切削换能器[J].北京航空航天大学学报,2005,31(2):153-156.
    [62] Li, X.Zhang, D. Y. Ultrasonic elliptical vibration transducer driven by singleactuator and its application in precision cutting[J]. Journal of Materials ProcessingTechnology,2006,180(1-3):91-95.
    [63]王跃.超声波椭圆振动切削理论研究与装置设计[D].太原理工大学,2010.
    [64] Shamoto, E.Suzuki, N.Hino, R,et,al. A new method to machine sculptured surfacesby applying ultrasonic elliptical vibration cutting[J]. Proceedings of the2005International Symposium on Micro-NanoMechatronics and Human Science,2005:91-96.
    [65] Shamoto, E.Suzuki, N.Tsuchiya, E.et,al. Development of3DOF ultrasonicvibration tool for elliptical vibration cutting of sculptured surfaces[J]. CirpAnnals,2005,54(1):321-324.
    [66]周晓勤,刘培会,林洁琼,王刚,朱志伟.一种三维椭圆振动切削装置[P].吉林大学,2012.
    [67]王刚.一种三维椭圆振动金刚石切削装置的研制[D].吉林大学,2012.
    [68]林洁琼,周晓勤,刘强,李迎春.一种非共振三维椭圆金刚石飞切光学自由曲面方法及专用装置[P].长春工业大学,2011.
    [69] Wu,Z.G.Wang,B.L.Ma,X.R.Theory and algorithm of optimal control solution todynamic system parameters identification (II)-Stochastic system parametersidentification and application example[J].Applied Mathematics AndMechanics-English Edition,1999,20(3):241-246.
    [70] Boyd S., Chua L O. Fading memory and the problem of approximating nonlinearoperators with Volterra series[J]. Circuits and Systems, IEEE Transactionson,1985;32:1150-1161.
    [71] Wiener, N. Nonlinear problems in random theory[M]. New York: JohnWiley,1958:62.
    [72] J.L. Figueroa, S.I. Biagiola, O.E. Agamennoni, An approach for identification ofuncertain Wiener systems [J], Math. Comput. Model.2008,48(1-2):305–315.
    [73] M. Sznaier, Computational complexity analysis of set membership identification ofHammerstein and Wiener systems [J], Automatica,2009,45(3):701–705.
    [74] M. Kozek, S.Sinanovic′,Identification of Wiener models using optimal local linearmodels, Simul. Model.Pract.Theory,2008,16(8):1055–1066.
    [75]A.M. D’Amato, B. Teixeira, D.S. Bernstein, Semi-parametric identification ofWiener systems using a single harmonic input and retrospective costoptimization[J], Control Theory Appl,2011,5(4):594–605.
    [76] Q. Zhang, A. Iouditski, L.Ljung, Identification of Wiener system with monotonousnonlinearity[J], IFAC Symp. on System Identification,2006:166–171
    [77] E.W.Bai,J.Reyland,Towards identification of Wiener systems with the least amountof a priori information on the nonlinearity[J], Automatica,2008,44:910–919.
    [78] E.W.Bai,J.Reyland,Towards identification of Wiener systems with the least amountof a priori information: II Rcases[J], Automatica,2009,45:956–964.
    [79] Raich, R., Zhou, G. T., Viberg, M. Subspace Based Approaches for Wiener SystemIdentification[J]. IEEE Transactions on Automatic Control2005;50:1629-1634.
    [80] Wang, J. S. Hsu, Y. L. Dynamic Nonlinear System Identification Using AWiener-Type Recurrent Network with OKID Algorithm[J]. Journal of InformationScience And Engineering2008;24:891-905.
    [81] Giri, F., Rochdi, Y. Chaoui, F. Z. An Analytic Geometry Approach to WienerSystem Frequency Identification[J]. IEEE Transactions on Automatic Control2009;54:683-696.
    [82] M. Boutayeb, M. Darouach, Recursive identification method for MISOWiener–Hammerstein model[J], IEEE Transactions on Automatic Control,1995,40:287-291.
    [83] Paduart, J., Lauwers, L., Pintelon, R., et al. Identification of A Wiener-HammersteinSystem Using The Polynomial Nonlinear State Space Approach[J]. ControlEngineering Practice2012;20:1133-1139.
    [84] H.E.E. Shabaik, M.S. Ahmed, K.H. Al-Ajmi, Parameter estimation of Wiener–Hammerstein models[J], JSME International Journal Series-C: MechanicalSystemsMachine Elements and Manufacturing,2004,44:118-124.
    [85] C.H. Chen, S.D. Fassois, Maximum likelihood identification of stochasticWiener–Hammerstein-type non-linear systems[J], Mechanical Systems and SignalProcessing,1992,6:135-153.
    [86] Ade Haryanto, Keum-ShikHong. Maximum likelihood identification of Wiener–Hammerstein models[J]. Mechanical Systems and Signal Processing,2013,41:57-70.
    [87] Peter Merz, Bernd Freisleben. A Comparison of Memetic Algorithms, Tabu Search,and Ant Colonies for the Quadratic Assignment Problem [C]. Proceedings of theCongress on Evolutionary Computation.1999.3:2063-2070.
    [88] Shawki Areibi Medhat, Medhat Moussa, Hussein Abdullah.A comparison ofgenetic/memetic algorithms and other heuristic search techniques[A].InternationalConference on Artificial Intelligence [C]. Las Vegas, Nevada,2001.660-666.
    [89] Xin Xu, Hangen He.A Theoretical Model and Convergence Ana1ysis of MemeticEvo1utionary Algorithms [C]. International Conference on Natura1Computationl.Changsha,China,2005.1035-1043.
    [90] N. Krasnogor, B. Blackburne, J. D. Hirst, and E. K. N. Burke, Multimemealgorithms for the structure prediction and structure comparison of proteins[C], inParallel Problem Solving From Nature,2002, Lecture Notes in Computer Science.
    [91] N. Krasnogor, Studies on the Theory and Design Space of Memetic Algorithms [D].Faculty of Comput., Math., and Eng., Univ. of the West of England, Bristol,U.K.,2002.
    [92] J.E.Smith et,al. Co-evolution of memetic algorithms: Initial investigations[C],inParallel Problem Solving From Nature—PPSN VII,G. Guervos et al., Eds. Berlin,Germany: Springer,2002,(2439):537-548.
    [93] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and MartialArts: Towards Memetic Algorithms[R], Publication Report790, CaltechConcurrent Computation Program,1989.
    [94] A. Muruganandam, G. Prabhaharan, P. Asokan and V. Baskaran.A memeticalgorithm approach to the cell formation problem[J].TheInternational Journal ofAdvanced Manufacturing Technology,2005,25(9-10):988-997.
    [95] Paulo M. Franca, Alexandre Mendes, Pablo Moscato.A memetic algorithm for thetotal tardiness single machine scheduling problem[J]. European Journal ofOperational Research,2001,132(1):224-242.
    [96] Cheng Runwei. Gen Mitsuo. Parallel Machine Scheduling Problems Using MemeticAlgorithms[J].Computers&Industrial Engineering,1997,33(3-4):761-764.
    [97] R.Berretta,L.F.Rodrigues.A memetic algorithm for a multistage capacitatedlot-sizing problem[J].Int.J.Production Economics,2004,87(1):67-81.
    [98] G.W.Klau,I.Ljubic,etc.Combining a Memetic Algorithm with Integer Programmingto Solve the Prize-Collecting Steiner Tree Problem[Z]. Genetic and EvolutionaryComputation-GECCO2004.Springer Verlag Berlin,2004.
    [99] C.M.R.R.Lima, M.C.Goldbarg, E.F.G. Goldbarg. A Memetic Algorithm for theHeterogeneous Fleet Vehicle Routing Problem[J].Electronic Notes in DiscreteMathematics,2004,18:171-176.
    [100] A.Quintero,S.Pierre. Sequential and multi-population memetic algorithms forassigning cells to switches in mobile networks[J]. Computer Networks,2003,43(3):247-261.
    [101] Zhang J, Morris J L. Process modeling and fault diagnosis using fuzzy neuralnetworks[J]. Fuzzy Sets and Systems,1996,79(1):127-140.
    [102] Delyon B, Judtisky A,Benveniste A. Accuracy analysis for waveletapproximation[J]. IEEE Transactions on Neural Networks,1995,6(2):332-348.
    [103] Wei S N, Wang Y N,Zuo Y. Wavelet neural networks robust control of farmtransmission line deicing robot manipulators[J]. Computer standards and interfaces,2012,34(3):327-333.
    [104] Li S T, Wang Y N, Multisensor image fusion based on tree-structure waveledecomposition[J]. Journal of Infrared and Millimeter Waves,2001,20(3):219-222.
    [105]孙炜,王耀南.模糊小波基神经网络的机器人轨迹跟踪控制[J].控制理论与应用,2003,20(1):49-53
    [106] Utkin, V.I. Variable structure system with sliding modes[J], IEEE Trans. AutomaticControl,1977,22(2):212-222.
    [107] Slotine, J.J.E. Sliding controller design for nonlinear systems[J], Int. Journal ofControl,1984,40(2):421-433.
    [108] Slotine, J.J.E. and Li, W. Applied nonlinear control, Prentice-Hall, EnglewoodCliffs[J], New Jersey,1991.
    [109] Erbatur, K., Kaynak, O., and Sabanovic, A. et al. Fuzzy adaptive sliding modecontrol of a direct drive robot[J]. Robotics and Autonomous Systems,1996,19:215-227.
    [110]Wang, J., Rad, A.B. and Chan, P.T. Indirect sdaptive fuzzy sliding modecontrol:Part I: fuzzy switiching[J]. Fuzzy Sets and Systems,2001,122:21-30.
    [111] Fung, R.F., Chen, K.W. and Yen, J.Y. Fuzzy sliding mode controlled sliding-crankmechanism using a PM synchronous servo motor drive[J]. Int. Jour. of MechanicsSciences,1999,41(3):337-355.
    [112] Liang, C.Y. and Su, J.P. A new approach to the design of a fuzzy sliding modecontroller[J]. Fuzzy Sets and Systems,2003,139:111-124.
    [113] Huang, G.C. and Lin, S.C. Stability approach to fuzzy control design for nonlinearsystems[J]. Fuzzy Sets and Systems,1992,48:269-278.
    [114] Kim, S.W. and Lee, J.J. Design of a fuzzy controller with fuzzy slidingsurface[J].Fuzzy Sets and Systems,1995,71:359-367.
    [115] Wang, L.X. Fuzzy systems are universal approximation[J]. Proc. IEEE Internat.Conf.Fuzzy Systems,1992,1163-1170.
    [116] Shamoto, E.Suzuki, N.Hino, R. Analysis of3D elliptical vibration cutting withthin shear plane model[J]. Cirp Annals-Manufacturing Technology.2008(57):57-60.
    [117]段宁华.一种新型两自由度快速刀具伺服装置的研制[D].长春:吉林大学,2011.
    [118] Koseki Y, Tanikawa T, Koyachi N, AraiT. Kinematic analysis of translational3-DOF micro parallel mechanism using matrix method. Intelligent Robots andSystems[C]. Proceedings2000IEEE/RSJ International Conference on: IEEE,2000:786-792.
    [119]吴鹰飞,周兆英.柔性铰链的设计计算[J].工程力学,2002,19(6):136-140.
    [120] J.M.Paros,L Weisbord.How to design a flexure hinge[J].Machine Design,1965(37):151-157.
    [121]吴鹰飞,周兆英.柔性铰链的设计计算[J].工程力学,2002,19(6):136-140.
    [122]刘强.光学自由曲面快速刀具伺服加工若干问题的研究[D].吉林大学,2012.
    [123] Sze-Wei,G., Han-Seok, L., Rahman, M.&Watt, F. A fine tool servo system forglobal position error compensation for a miniature ultra-precision lathe[J].International Journal of Machine Tools and Manufacture2007(47):1302-1310.
    [124]朱志伟.散射抑制车削新方法及装置研究[D].吉林大学,2013.
    [125]http://baike.baidu.com/link?url=3LomepYOmZu4_01TaSuAet1bty24XFUKK1CEVb9TM3Wv1o0ORCxuYQK5EpI7xCTK.
    [126] Liu, X. Modeling and Prediction Using Neural Networks[D]. University of WalesCollege of Cardiff, Cardiff, UK,1993.
    [127] Boyd S., Chua L O. Fading memory and the problem of approximating nonlinearoperators with Volterra series[J]. Circuits and Systems, IEEE Transactions on1985(32):1150-1161.
    [128] Kalinli, A. Simulated Annealing Algorithm-based Elman Network for DynamicSystem Identification[J]. Turk J Elec Eng&Comp Sci2012(20):569-582.
    [129] Tan, K. C., Li, Y., Murray, S., et al. System Identification and Linearization UsingGenetic Algorithms with Simulated Annealing[J]. First IEE/IEEE InternationalConference on GA in Engineering Systems1995:164-169.
    [130] Ursem, R. K., and Vadstrup, P. Parameter Identification of Induction Motors UsingStochastic Optimization Algorithms[J]. Applied Soft Computing2004(4):49-64.
    [131] Zarandi, M., Gamasaee, H. F., Turksen, R., et al. A Type-2Fuzzy C-regressionClustering Algorithm for Takagi-Sugeno System Identification and Its Applicationin The Steel Industry[J]. Information Sciences2012(187):179-203.
    [132] Wang, T. M., Chen, Y., Liang, J. H., et al. Chaos-Genetic Algorithm for theSystem Identification of a Small Unmanned Helicopter[J]. J Intell Robot Syst2012(67):323-338.
    [133] Subudhi, B. and Jena, D. Nonlinear System Identification Using MemeticDifferential Evolution Trained Neural Networks[J]. Neurocomputing2011(74):1696-1709.
    [134] Wang, G. S. Application of Hybrid Genetic Algorithm to System Identification[J].Struct Control Health Monit2009(16):125-153.
    [135] He, P., Wu, K. G., Wen, J. H., et al. Improved Memetic Algorithm for MultilevelRedundancy Allocation[J]. IEEE Transactions on Reliability2012(15):297-305.
    [136] Zhao, F. Q., and Tang, J. X. A Memetic Algorithm Combined Particle SwarmOptimization with Simulated Annealing and Its Application on MultiprocessorScheduling Problem[J]. Przeglad Elektrotechniczny2012(68):292-296.
    [137] Moscato, P. A. On Evolution, Search, Optimization, Genetic Algorithms andMartial Arts: Toward Memetic Algorithms[D]. California Instit.UK.1989.
    [138] Tang, J., Lim, M. H., and Ong, Y. S. Diversity-Adaptive Parallel MemeticAlgorithm for Solving Large Scale Combinatorial Optimization Problems[J]. SoftComputing,2007(11):873-888.
    [139] Ishibuchi, H., Yoshida, T., and Murata, T. Balance between Genetic Search andLocal Search in Memetic Algorithms for Multi-Objective Permutation Flows HopScheduling[J]. IEEE Transactions on Evolution Computation,2003(7):204-223.
    [140] Liu, D., Tan, K. C., Goh, C. K., et al. A Multi-Objective Memetic Algorithm Basedon Particle Swarm Optimization[J]. IEEE Transactions on Systems, Man, andCybernetics-Part B: Cybernetics,2007(37):42-50.
    [141] Wu, Q. H., and Hao, J. K. Memetic Search for The Max-Bisection Problem[J].Computers&Operations Research2013(40):166-179.
    [142] Kennedy, J. and Eberhart, R. Particle Swarm Optimization[C]. In: Proceeding ofthe IEEE International Conference on Neural Networks1995; IV:1942-1948.
    [143] Abbas, H. M. and Bayoumi, M. M. An Adaptive Evolutionary Algorithm forVolterra System Identification[J].Pattern Recognition Letters,2005(26):109-119.
    [144] He, G., and Huang, N. J. A Modified Particle Swarm Optimization Algorithm withApplications[J]. Applied Mathematics and Computation,2012(219):1053-1060.
    [145] BAYRAMOGLU, H.KOMURCUGIL, H. Nonsingular decoupled terminalsliding-mode control for a class of fourth-order nonlinear systems [J].Communications In Nonlinear Science And Numerical Simulation,2013,18(9):2527-2539.
    [146] CHEN, B.,NIU, Y. G.,ZOU, Y. Y. Adaptive sliding mode control for stochasticMarkovian jumping systems with actuator degradation [J]. Automatica,2013,49(6):1748-1754.
    [147] J.Wang, A.B.Rad, P.T.Chan.Indriect Adaptive Fuzzy Sliding Mode Control: PartI:Fuzzy Switching [J].Fuzzy Sets and systems,2001,122(1):21-30.
    [148]刘金焜.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2012.
    [149]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700