用户名: 密码: 验证码:
CDK5磷酸化Raf激酶抑制蛋白在帕金森病中的研究进展
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口老龄化的加重,神经退行性疾病得到了越来越多的重视。在包括阿尔兹海默式症(Alzheimer’s disease, AD)、帕金森病(Parkinson’s disease,PD)及亨廷顿病(Huntinton’s disease, HD)等的多种神经退行性疾病中,神经元的过度死亡是疾病的共同表现,也是出现多种神经系统病理症状的主要原因。神经退行性疾病中关于神经元死亡增多的机制研究已经获得了一些结论,但在分子机制方面仍有许多问题尚未得到回答。在研究神经元死亡机制的过程中,神经元细胞周期再进入(cell cycle re-entry)这一概念的重要性逐渐浮现出来。细胞周期是可分裂细胞维持其生长与增殖状态的重要生理事件,但成熟神经元是无法进入细胞周期的。当神经元在病理状态下进入了细胞周期时,即被称为细胞周期再进入。神经元无法通过细胞周期来进行分裂,因此细胞周期再进入后可直接通过凋亡相关的分子机制来介导神经元发生死亡。
     细胞周期的运行受到多条信号通路的调控,而丝裂原激活的激酶信号通路(ERK/MAPK cascade)是其中的重要部分。在可增殖细胞中,ERK/MAPK通路主要介导了细胞由G1期进入S期以及纺锤体形成等过程;而对神经元来说,进入S期即代表发生了细胞周期再进入,细胞会难以避免地走向死亡。因此,研究ERK/MAPK通路的活性调控对研究神经元的细胞周期及死亡是具有重要意义的。
     在关注ERK通路活性时,我们将Raf激酶抑制蛋白(Raf kinase inhibitorprotein,RKIP)作为目的分子,后者是ERK通路的生理性抑制因子,通过结合并抑制Raf-1活性来发挥作用。RKIP表达的下调已被证实参与多种恶性肿瘤发生与发展过程,但其下调的分子机制尚不明确。RKIP在脑组织中高表达,但在神经系统及神经退行性疾病中的作用也报道不多。
     为了研究RKIP蛋白影响ERK通路活性的方式,我们又注意到另一个重要分子,细胞周期素依赖性蛋白激酶5(cyclin-dependent kinase5, CDK5)。CDK5的活性呈神经系统特异性分布,通过磷酸化多种底物来调控神经元的发育、轴突导向、突触形成、迁移等多种重要事件。因此,本论文拟以帕金森病为神经退行性疾病模型,研究在其病变过程中,CDK5对RKIP蛋白是否存在调节作用,以及该调节机制是否对ERK/MAPK通路的活性和多巴胺能神经元存活的情况产生影响。
     本文首先在体外和细胞水平验证了RKIP蛋白是CDK5的磷酸化底物,且磷酸化RKIP与Raf-1的结合能力显著低于未磷酸化时,表明RKIP的T42位磷酸化可介导RKIP与Raf-1解离。一方面,磷酸化修饰可以诱导RKIP蛋白自身通过分子伴侣介导的自噬途径(chaperone-mediated autophagy, CMA)降解,且RKIP序列中的“179KLYEQ183”结构域是CMA的作用靶点,由分子伴侣Hsc70识别并结合该结构域,并将RKIP携带至溶酶体进行降解。另一方面,在与磷酸化RKIP解离后,Raf-1的激酶活性得到解放,对神经元的检测表明此时磷酸化MEK、磷酸化ERK的表达都上调,说明ERK通路下游信号出现了级联式激活,并最终会产生细胞学效应。
     接下来,实验结果表明ERK通路激活时,进入S期的神经元数量增多,表明出现了细胞周期再进入现象。此时,神经元也出现了死亡增多,而抑制CDK5活性或ERK通路活性均对神经元有保护作用,表明细胞周期再进入现象参与介导了神经元的死亡。在帕金森病的神经元模型中,我们同样发现多巴胺能神经元也会出现RKIP磷酸化增强、ERK通路激活相关的细胞周期再进入,以及继发的神经元死亡。最后,无论是MPTP诱导的还是转基因的帕金森病模型鼠,其中脑组织都出现了RKIP磷酸化水平上调,ERK通路过度激活,且在老年PD鼠中存在明显的RKIP水平降低。这些结果表明,RKIP磷酸化介导的ERK通路激活导致了多巴胺能神经元细胞周期再进入,并参与了神经元死亡的过程。
     帕金森病中神经元的死亡机制一直受到关注,而此处我们以RKIP这一分子为线索,将CDK5激酶、ERK/MAPK通路、自噬途径及细胞周期再进入等概念在PD中的作用串联起来,提出了以CDK5异常激活、RKIP磷酸化增多为前提,继之以RKIP自噬增强、ERK通路过度激活和细胞周期再进入这一神经元死亡的新机制,拓展了对PD中神经元死亡机制的理解,也为PD这一神经退行性疾病的治疗靶点的探索提供了新的研究思路和理论基础。
Neurodegenerative diseases catch more and more attentions in these years,accompanied with the aging of population. Loss of neurons is a common pathologicalevent in all neurodegenerative diseases such as Alzheimer's disease (AD),Parkinson's disease (PD) and Huntington's disease (HD), and the neuronal loss isresponsible for many behavioral symptoms of these diseases. There were a lot ofreports about the mechanisms involved in the neuronal loss of neurodegenerativediseases, but the details are still under exploration. The significance of neuronal cellcycle re-entry has been noticed in the studies of neuronal death recently. Cell cycle isa crucial event in normal division and differentiation of proliferative cells, but post-mitotic neurons are not allowed to enter cell cycle in physiological circumstances.Once a neuron enters cell cycle in a stimulated situation, it is called “cell cycle re-entry”, and the neuron is doomed because the entry of cell cycle would triggerapoptotic signals rather than cell division signals in a post-mitotic neuron.
     Cell cycle must be delicately regulated by several signaling pathways together, andmitogen-activated protein kinases cascade (ERK/MAPK cascade) plays an improtantrole in this process. ERK/MAPK pathway normally mediates the G1/S transition andspindle assembly checkpoint in proliferative cells, but cell death is usually inevitableonce a neuron enters the S-phase. So the study of the regulation of ERK cascade isquite valuable for the understanding of cell cycle re-entry and cell death in neurons.
     Raf kinase inhibitor protein (RKIP) is a physiological inhibitor of ERK/MAPKpathway, interacting with Raf-1and blocking its activity. Downregulation of RKIPhas been reported to correlate with many cancers, but the mechanisms that underliethis downregulation is still poorly understood. Plus, the expression of RKIP is high inthe brain, but its functions in the nervous system and neurodegenerative diseases arenot clear yet.
     To explore the regulation of RKIP in neurons, we added another protein in thesystem, cyclin-dependent kinase5(CDK5). The activity of CDK5is highly specific inthe nervous system, and CDK5controls many important events in neurons such asdifferentiation, axon guidance, synaptic plasticity and migration by means ofphosphorylating a string of substrates. In this research, we studied the interaction between CDK5and RKIP, discussed the influence of this interaction on the activity ofERK cascade and mortality of dopaminergic neurons in Parkinson's disease.
     Firstly, we identified RKIP as a substrate of CDK5, and the phosphorylation ofRKIP at T42attenuated its affinity to Raf-1, so the phosphorylation of RKIP mediatedthe release of Raf-1from RKIP. On one hand, T42phosphorylation promotes theexposure and recognition of the target motif “179KLYEQ183” in C-terminus of RKIPby chaperone Hsc70and the subsequent degradation of RKIP itself via chaperone-mediated autophagy (CMA). On the other hand, the release of Raf-1rescued itskinase activity, and the signals of p-MEK and p-ERK were both increased in neuronsin such circumstance, suggesting the activation of downstream signals of ERKcascade.
     In the next section, we demonstrated that the number of BrdU+neurons increasedwhen ERK cascade was activated, indicating the neuronal cell cycle re-entry. Theneuronal mortality also rised in the mean time, while inhibition of CDK5or ERKpathway was helpful in cell survival. So the phenomenon of cell cycle re-entryparticipated in the neuronal death. Furthermore, in the cellular model of Parkinson'sdisease, we also observed the upregulation of phosphorylated RKIP, the cell cycle re-entry related to activation of ERK cascade, and subsequent cell death in dopaminergicneurons. And in the brain of both MPTP-induced and transgenic models of PD, wefound an increase in p-RKIP and activation of ERK cascade, plus a downregulation ofRKIP in PD mice of old age. Taken together, we demonstrate that phosphorylation ofRKIP is involved in the overactivation of the ERK/MAPK cascade, leading to S-phase re-entry and neuronal loss in Parkinson's disease.
     The mechanisms that underlie neuronal loss in Parkinson's disease have attractedattention for years, and in the current study we supplied a system which united RKIP,CDK5, ERK cascade, autophagy, cell cycle re-entry together in the context of PD. Wedemostrated that after overactivation of CDK5and enhanced phosphorylation ofRKIP, the degradation of RKIP was induced and ERK cascade was overactivated,followed by neuronal cell cycle re-entry and neuronal death. These findings provideevidence for the role of the CDK5/RKIP/ERK pathway in PD pathogenesis andsuggest that this pathway may be a suitable therapeutic target in PD.
引文
[1]. Huang, Y.,Mucke, L. Alzheimer mechanisms and therapeutic strategies[J].Cell, Mar16,2012,148(6):1204-22.
    [2]. Park, N. H. Parkinson disease[J]. JAAPA: official journal of the AmericanAcademy of Physician Assistants, May,2012,25(5):73-4.
    [3]. Becker, E. B.,Bonni, A. Cell cycle regulation of neuronal apoptosis indevelopment and disease[J]. Progress in neurobiology, Jan,2004,72(1):1-25.
    [4]. King, K. L.,Cidlowski, J. A. Cell cycle and apoptosis: common pathways tolife and death[J]. Journal of cellular biochemistry, Jun,1995,58(2):175-80.
    [5]. Tian, B.,Yang, Q.,Mao, Z. Phosphorylation of ATM by Cdk5mediates DNAdamage signalling and regulates neuronal death[J]. Nature cell biology, Feb,2009,11(2):211-8.
    [6]. Herrup, K.,Neve, R.,Ackerman, S. L.,Copani, A. Divide and die: cell cycleevents as triggers of nerve cell death[J]. The Journal of neuroscience: the officialjournal of the Society for Neuroscience, Oct20,2004,24(42):9232-9.
    [7]. Meloche, S.,Pouyssegur, J. The ERK1/2mitogen-activated protein kinasepathway as a master regulator of the G1-to S-phase transition[J]. Oncogene, May14,2007,26(22):3227-39.
    [8]. Bonni, A.,Brunet, A.,West, A. E.,Datta, S. R.,Takasu, M. A.,Greenberg, M. E.Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms[J]. Science, Nov12,1999,286(5443):1358-62.
    [9]. Yeung, K.,Seitz, T.,Li, S.,Janosch, P.,McFerran, B.,Kaiser, C.,Fee,F.,Katsanakis, K. D.,Rose, D. W.,Mischak, H.,Sedivy, J. M.,Kolch, W. Suppressionof Raf-1kinase activity and MAP kinase signalling by RKIP[J]. Nature, Sep9,1999,401(6749):173-7.
    [10]. Afonso, J.,Longatto-Filho, A.,Martinho, O.,Lobo, F.,Amaro, T.,Reis, R.M.,Santos, L. L. Low RKIP expression associates with poor prognosis in bladdercancer patients[J]. Virchows Archiv: an international journal of pathology, Mar6,2013.
    [11]. Beshir, A. B.,Ren, G.,Magpusao, A. N.,Barone, L. M.,Yeung, K. C.,Fenteany,G. Raf kinase inhibitor protein suppresses nuclear factor-kappaB-dependent cancercell invasion through negative regulation of matrix metalloproteinase expression[J].Cancer letters, Dec28,2010,299(2):137-49.
    [12]. Escara-Wilke, J.,Yeung, K.,Keller, E. T. Raf kinase inhibitor protein (RKIP)in cancer[J]. Cancer metastasis reviews, Dec,2012,31(3-4):615-20.
    [13]. Keller, E. T. Role of Raf Kinase Inhibitor Protein in Pathophysiology ofProstate Cancer[J]. Forum on immunopathological diseases and therapeutics,2011,2(1):89-94.
    [14]. Keller, E. T.,Fu, Z.,Brennan, M. The role of Raf kinase inhibitor protein(RKIP) in health and disease[J]. Biochemical pharmacology, Sep15,2004,68(6):1049-53.
    [15]. Fougner, S. L.,Bollerslev, J.,Latif, F.,Hald, J. K.,Lund, T.,Ramm-Pettersen,J.,Berg, J. P. Low levels of raf kinase inhibitory protein in growth hormone-secretingpituitary adenomas correlate with poor response to octreotide treatment[J]. TheJournal of clinical endocrinology and metabolism, Apr,2008,93(4):1211-6.
    [16]. Baritaki, S.,Huerta-Yepez, S.,Sahakyan, A.,Karagiannides, I.,Bakirtzi,K.,Jazirehi, A.,Bonavida, B. Mechanisms of nitric oxide-mediated inhibition of EMTin cancer: inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP[J]. Cell cycle, Dec15,2010,9(24):4931-40.
    [17]. Ruan, L.,Wang, G. L.,Yi, H.,Chen, Y.,Tang, C. E.,Zhang, P. F.,Li, M. Y.,Li,C.,Peng, F.,Li, J. L.,Chen, Z. C.,Xiao, Z. Q. Raf kinase inhibitor protein correlateswith sensitivity of nasopharyngeal carcinoma to radiotherapy[J]. Journal of cellularbiochemistry, Jul1,2010,110(4):975-81.
    [18]. Yun, J.,Frankenberger, C. A.,Kuo, W. L.,Boelens, M. C.,Eves, E. M.,Cheng,N.,Liang, H.,Li, W. H.,Ishwaran, H.,Minn, A. J.,Rosner, M. R. Signalling pathway forRKIP and Let-7regulates and predicts metastatic breast cancer[J]. The EMBO journal,Nov2,2011,30(21):4500-14.
    [19]. Theroux, S.,Pereira, M.,Casten, K. S.,Burwell, R. D.,Yeung, K. C.,Sedivy, J.M.,Klysik, J. Raf kinase inhibitory protein knockout mice: expression in the brain andolfaction deficit[J]. Brain research bulletin, Mar30,2007,71(6):559-67.
    [20]. Maki, M.,Matsukawa, N.,Yuasa, H.,Otsuka, Y.,Yamamoto, T.,Akatsu,H.,Okamoto, T.,Ueda, R.,Ojika, K. Decreased expression of hippocampal cholinergicneurostimulating peptide precursor protein mRNA in the hippocampus in Alzheimerdisease[J]. Journal of neuropathology and experimental neurology, Feb,2002,61(2):176-85.
    [21]. George, A. J.,Holsinger, R. M.,McLean, C. A.,Tan, S. S.,Scott, H.S.,Cardamone, T.,Cappai, R.,Masters, C. L.,Li, Q. X. Decreasedphosphatidylethanolamine binding protein expression correlates with Abetaaccumulation in the Tg2576mouse model of Alzheimer's disease[J]. Neurobiology ofaging, Apr,2006,27(4):614-23.
    [22]. Hellmann, J.,Rommelspacher, H.,Muhlbauer, E.,Wernicke, C. Raf kinaseinhibitor protein enhances neuronal differentiation in human SH-SY5Y cells[J].Developmental neuroscience, Mar,2010,32(1):33-46.
    [23]. Lorenz, K.,Lohse, M. J.,Quitterer, U. Protein kinase C switches the Raf kinaseinhibitor from Raf-1to GRK-2[J]. Nature, Dec4,2003,426(6966):574-9.
    [24]. Dhavan, R.,Tsai, L. H. A decade of CDK5[J]. Nature reviews. Molecular cellbiology, Oct,2001,2(10):749-59.
    [25]. Cheung, Z. H.,Ip, N. Y. Cdk5: a multifaceted kinase in neurodegenerativediseases[J]. Trends in cell biology, Mar,2012,22(3):169-75.
    [26]. Xue, Y.,Liu, Z.,Cao, J.,Ma, Q.,Gao, X.,Wang, Q.,Jin, C.,Zhou, Y.,Wen,L.,Ren, J. GPS2.1: enhanced prediction of kinase-specific phosphorylation sites withan algorithm of motif length selection[J]. Protein engineering, design&selection:PEDS, Mar,2011,24(3):255-60.
    [27]. Meuer, K.,Suppanz, I. E.,Lingor, P.,Planchamp, V.,Goricke, B.,Fichtner,L.,Braus, G. H.,Dietz, G. P.,Jakobs, S.,Bahr, M.,Weishaupt, J. H. Cyclin-dependentkinase5is an upstream regulator of mitochondrial fission during neuronalapoptosis[J]. Cell death and differentiation, Apr,2007,14(4):651-61.
    [28]. Graham, J. M. Isolation of lysosomes from tissues and cells by differential anddensity gradient centrifugation[J]. Current protocols in cell biology/editorial board,Juan S. Bonifacino...[et al.], May,2001, Chapter3Unit36.
    [29]. Qu, D.,Rashidian, J.,Mount, M. P.,Aleyasin, H.,Parsanejad, M.,Lira, A.,Haque,E.,Zhang, Y.,Callaghan, S.,Daigle, M.,Rousseaux, M. W.,Slack, R. S.,Albert, P.R.,Vincent, I.,Woulfe, J. M.,Park, D. S. Role of Cdk5-mediated phosphorylation ofPrx2in MPTP toxicity and Parkinson's disease[J]. Neuron, Jul5,2007,55(1):37-52.
    [30]. Smith, P. D.,Crocker, S. J.,Jackson-Lewis, V.,Jordan-Sciutto, K. L.,Hayley,S.,Mount, M. P.,O'Hare, M. J.,Callaghan, S.,Slack, R. S.,Przedborski, S.,Anisman,H.,Park, D. S. Cyclin-dependent kinase5is a mediator of dopaminergic neuron loss ina mouse model of Parkinson's disease[J]. Proceedings of the National Academy ofSciences of the United States of America, Nov11,2003,100(23):13650-5.
    [31]. Wisniewski, J. R.,Nagaraj, N.,Zougman, A.,Gnad, F.,Mann, M. Brainphosphoproteome obtained by a FASP-based method reveals plasma membraneprotein topology[J]. Journal of proteome research, Jun4,2010,9(6):3280-9.
    [32]. Dephoure, N.,Zhou, C.,Villen, J.,Beausoleil, S. A.,Bakalarski, C. E.,Elledge, S.J.,Gygi, S. P. A quantitative atlas of mitotic phosphorylation[J]. Proceedings of theNational Academy of Sciences of the United States of America, Aug5,2008,105(31):10762-7.
    [33]. Olsen, J. V.,Vermeulen, M.,Santamaria, A.,Kumar, C.,Miller, M. L.,Jensen, L.J.,Gnad, F.,Cox, J.,Jensen, T. S.,Nigg, E. A.,Brunak, S.,Mann, M. Quantitativephosphoproteomics reveals widespread full phosphorylation site occupancy duringmitosis[J]. Science signaling,2010,3(104): ra3.
    [34]. Bejarano, E.,Cuervo, A. M. Chaperone-mediated autophagy[J]. Proceedings ofthe American Thoracic Society, Feb,2010,7(1):29-39.
    [35]. Kaushik, S.,Cuervo, A. M. Chaperone-mediated autophagy: a unique way toenter the lysosome world[J]. Trends in cell biology, Aug,2012,22(8):407-17.
    [36]. Majeski, A. E.,Dice, J. F. Mechanisms of chaperone-mediated autophagy[J].The international journal of biochemistry&cell biology, Dec,2004,36(12):2435-44.
    [37]. Wong, A. S.,Lee, R. H.,Cheung, A. Y.,Yeung, P. K.,Chung, S. K.,Cheung, Z.H.,Ip, N. Y. Cdk5-mediated phosphorylation of endophilin B1is required for inducedautophagy in models of Parkinson's disease[J]. Nature cell biology, May,2011,13(5):568-79.
    [38]. Cuervo, A. M.,Stefanis, L.,Fredenburg, R.,Lansbury, P. T.,Sulzer, D. Impaireddegradation of mutant alpha-synuclein by chaperone-mediated autophagy[J]. Science,Aug27,2004,305(5688):1292-5.
    [39]. Corbit, K. C.,Trakul, N.,Eves, E. M.,Diaz, B.,Marshall, M.,Rosner, M. R.Activation of Raf-1signaling by protein kinase C through a mechanism involving Rafkinase inhibitory protein[J]. The Journal of biological chemistry, Apr11,2003,278(15):13061-8.
    [40]. Tang, H.,Park, S.,Sun, S. C.,Trumbly, R.,Ren, G.,Tsung, E.,Yeung, K. C.RKIP inhibits NF-kappaB in cancer cells by regulating upstream signalingcomponents of the IkappaB kinase complex[J]. FEBS letters, Feb19,2010,584(4):662-8.
    [41]. Cheung, Z. H.,Fu, A. K.,Ip, N. Y. Synaptic roles of Cdk5: implications inhigher cognitive functions and neurodegenerative diseases[J]. Neuron, Apr6,2006,50(1):13-8.
    [42]. Patrick, G. N.,Zukerberg, L.,Nikolic, M.,de la Monte, S.,Dikkes, P.,Tsai, L. H.Conversion of p35to p25deregulates Cdk5activity and promotesneurodegeneration[J]. Nature, Dec9,1999,402(6762):615-22.
    [43]. Granovsky, A. E.,Rosner, M. R. Raf kinase inhibitory protein: a signaltransduction modulator and metastasis suppressor[J]. Cell research, Apr,2008,18(4):452-7.
    [44]. Shin, S. Y.,Rath, O.,Zebisch, A.,Choo, S. M.,Kolch, W.,Cho, K. H. Functionalroles of multiple feedback loops in extracellular signal-regulated kinase and Wntsignaling pathways that regulate epithelial-mesenchymal transition[J]. Cancerresearch, Sep1,2010,70(17):6715-24.
    [45]. Poma, P.,Labbozzetta, M.,Vivona, N.,Porcasi, R.,D'Alessandro,N.,Notarbartolo, M. Analysis of possible mechanisms accounting for raf-1kinaseinhibitor protein downregulation in hepatocellular carcinoma[J]. Omics: a journal ofintegrative biology, Nov,2012,16(11):579-88.
    [46]. Wang, Y.,Martinez-Vicente, M.,Kruger, U.,Kaushik, S.,Wong, E.,Mandelkow,E. M.,Cuervo, A. M.,Mandelkow, E. Synergy and antagonism of macroautophagy andchaperone-mediated autophagy in a cell model of pathological tau aggregation[J].Autophagy, Jan,2010,6(1):182-3.
    [47]. Bauer, P. O.,Goswami, A.,Wong, H. K.,Okuno, M.,Kurosawa, M.,Yamada,M.,Miyazaki, H.,Matsumoto, G.,Kino, Y.,Nagai, Y.,Nukina, N. Harnessingchaperone-mediated autophagy for the selective degradation of mutant huntingtinprotein[J]. Nature biotechnology, Mar,2010,28(3):256-63.
    [48]. Cuervo, A. M.,Gomes, A. V.,Barnes, J. A.,Dice, J. F. Selective degradation ofannexins by chaperone-mediated autophagy[J]. The Journal of biological chemistry,Oct27,2000,275(43):33329-35.
    [49]. Yang, Q.,She, H.,Gearing, M.,Colla, E.,Lee, M.,Shacka, J. J.,Mao, Z.Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy[J].Science, Jan2,2009,323(5910):124-7.
    [50]. Arnold, K.,Bordoli, L.,Kopp, J.,Schwede, T. The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling[J].Bioinformatics, Jan15,2006,22(2):195-201.
    [51]. Schwede, T.,Kopp, J.,Guex, N.,Peitsch, M. C. SWISS-MODEL: Anautomated protein homology-modeling server[J]. Nucleic acids research, Jul1,2003,31(13):3381-5.
    [52]. Guegan, J. P.,Fremin, C.,Baffet, G. The MAPK MEK1/2-ERK1/2Pathwayand Its Implication in Hepatocyte Cell Cycle Control[J]. International journal ofhepatology,2012,2012328372.
    [53]. Eves, E. M.,Rosner, M. R. MAP kinase regulation of the mitotic spindlecheckpoint[J]. Methods in molecular biology,2010,661497-505.
    [54]. Rosner, M. R. MAP kinase meets mitosis: a role for Raf Kinase InhibitoryProtein in spindle checkpoint regulation[J]. Cell division,2007,21.
    [55]. Eves, E. M.,Shapiro, P.,Naik, K.,Klein, U. R.,Trakul, N.,Rosner, M. R. Rafkinase inhibitory protein regulates aurora B kinase and the spindle checkpoint[J].Molecular cell, Aug,2006,23(4):561-74.
    [56]. Folch, J.,Junyent, F.,Verdaguer, E.,Auladell, C.,Pizarro, J. G.,Beas-Zarate,C.,Pallàs, M.,Camins, A. Role of Cell Cycle Re-Entry in Neurons: A CommonApoptotic Mechanism of Neuronal Cell Death[J]. Neurotoxicity research,2011,22(3):195-207.
    [57]. Folch, J.,Junyent, F.,Verdaguer, E.,Auladell, C.,Pizarro, J. G.,Beas-Zarate,C.,Pallas, M.,Camins, A. Role of cell cycle re-entry in neurons: a common apoptoticmechanism of neuronal cell death[J]. Neurotoxicity research, Oct,2012,22(3):195-207.
    [58]. Yang, Q.,Mao, Z. Parkinson disease: a role for autophagy?[J]. TheNeuroscientist: a review journal bringing neurobiology, neurology and psychiatry,Aug,2010,16(4):335-41.
    [59]. Zhu, J. H.,Guo, F.,Shelburne, J.,Watkins, S.,Chu, C. T. Localization ofphosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewybody diseases[J]. Brain pathology, Oct,2003,13(4):473-81.
    [60]. Hellmann, J.,Rommelspacher, H.,Wernicke, C. Long-term ethanol exposureimpairs neuronal differentiation of human neuroblastoma cells involvingneurotrophin-mediated intracellular signaling and in particular protein kinase C[J].Alcoholism, clinical and experimental research, Mar,2009,33(3):538-50.
    [61]. Cui, W.,Li, W.,Han, R.,Mak, S.,Zhang, H.,Hu, S.,Rong, J.,Han, Y. PI3-K/Aktand ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronalapoptosis[J]. Neurochemistry international, Nov,2011,59(6):945-53.
    [1]. Yeung, K.,Seitz, T.,Li, S.,Janosch, P.,McFerran, B.,Kaiser, C.,Fee, F.,Katsanakis, K.D.,Rose, D. W.,Mischak, H.,Sedivy, J. M.,Kolch, W. Suppression of Raf-1kinase activity andMAP kinase signalling by RKIP[J]. Nature, Sep9,1999,401(6749):173-7.
    [2]. Simister, P. C.,Banfield, M. J.,Brady, R. L. The crystal structure of PEBP-2, ahomologue of the PEBP/RKIP family[J]. Acta crystallographica. Section D, Biologicalcrystallography, Jun,2002,58(Pt6Pt2):1077-80.
    [3]. Fougner, S. L.,Bollerslev, J.,Latif, F.,Hald, J. K.,Lund, T.,Ramm-Pettersen, J.,Berg, J.P. Low levels of raf kinase inhibitory protein in growth hormone-secreting pituitary adenomascorrelate with poor response to octreotide treatment[J]. The Journal of clinical endocrinologyand metabolism, Apr,2008,93(4):1211-6.
    [4]. Xu, Y. F.,Yi, Y.,Qiu, S. J.,Gao, Q.,Li, Y. W.,Dai, C. X.,Cai, M. Y.,Ju, M. J.,Zhou,J.,Zhang, B. H.,Fan, J. PEBP1downregulation is associated to poor prognosis in HCC relatedto hepatitis B infection[J]. Journal of hepatology, Nov,2010,53(5):872-9.
    [5]. Huang, L.,Dai, T.,Lin, X.,Zhao, X.,Chen, X.,Wang, C.,Li, X.,Shen, H.,Wang, X.MicroRNA-224targets RKIP to control cell invasion and expression of metastasis genes inhuman breast cancer cells[J]. Biochemical and biophysical research communications, Aug24,2012,425(2):127-33.
    [6]. Bevilacqua, E.,Frankenberger, C. A.,Rosner, M. R. RKIP Suppresses Breast CancerMetastasis to the Bone by Regulating Stroma-Associated Genes[J]. International journal ofbreast cancer,2012,2012124704.
    [7]. Birner, P.,Jesch, B.,Schultheis, A.,Schoppmann, S. F. RAF-kinase inhibitor protein(RKIP) downregulation in esophageal cancer and its metastases[J]. Clinical&experimentalmetastasis, Aug,2012,29(6):551-9.
    [8]. Martinho, O.,Granja, S.,Jaraquemada, T.,Caeiro, C.,Miranda-Goncalves, V.,Honavar,M.,Costa, P.,Damasceno, M.,Rosner, M. R.,Lopes, J. M.,Reis, R. M. Downregulation ofRKIP is associated with poor outcome and malignant progression in gliomas[J]. PloS one,2012,7(1): e30769.
    [9]. Afonso, J.,Longatto-Filho, A.,Martinho, O.,Lobo, F.,Amaro, T.,Reis, R. M.,Santos, L.L. Low RKIP expression associates with poor prognosis in bladder cancer patients[J].Virchows Archiv: an international journal of pathology, Mar6,2013.
    [10]. Koelzer, V. H.,Karamitopoulou, E.,Dawson, H.,Kondi-Pafiti, A.,Zlobec, I.,Lugli, A.Geographic analysis of RKIP expression and its clinical relevance in colorectal cancer[J].British journal of cancer, Apr30,2013.
    [11]. Cardile, V.,Malaponte, G.,Loreto, C.,Libra, M.,Caggia, S.,Trovato, F. M.,Musumeci,G. Raf kinase inhibitor protein (RKIP) and phospho-RKIP expression in melanomas[J]. Actahistochemica, Apr17,2013.
    [12]. Zhang, X. M.,Gu, H.,Yan, L.,Zhang, G. Y. RKIP inhibits the malignant phenotypesof gastric cancer cells[J]. Neoplasma,2013,60(2):196-202.
    [13]. Keller, E. T. Role of Raf Kinase Inhibitor Protein in Pathophysiology of ProstateCancer[J]. Forum on immunopathological diseases and therapeutics,2011,2(1):89-94.
    [14]. Goel, R.,Baldassare, J. Killing two birds with one RKIP[J]. Trends in Endocrinologyand Metabolism,2004,15(3):91-92.
    [15]. Keller, E. T.,Fu, Z.,Brennan, M. The role of Raf kinase inhibitor protein (RKIP) inhealth and disease[J]. Biochemical pharmacology, Sep15,2004,68(6):1049-53.
    [16]. Al-Mulla, F.,Hagan, S.,Al-Ali, W.,Jacob, S. P.,Behbehani, A. I.,Bitar, M. S.,Dallol,A.,Kolch, W. Raf kinase inhibitor protein: mechanism of loss of expression and associationwith genomic instability[J]. Journal of clinical pathology, Apr,2008,61(4):524-9.
    [17]. Granovsky, A. E.,Rosner, M. R. Raf kinase inhibitory protein: a signal transductionmodulator and metastasis suppressor[J]. Cell research, Apr,2008,18(4):452-7.
    [18]. Escara-Wilke, J.,Yeung, K.,Keller, E. T. Raf kinase inhibitor protein (RKIP) incancer[J]. Cancer metastasis reviews, Dec,2012,31(3-4):615-20.
    [19]. Theroux, S.,Pereira, M.,Casten, K. S.,Burwell, R. D.,Yeung, K. C.,Sedivy, J.M.,Klysik, J. Raf kinase inhibitory protein knockout mice: expression in the brain andolfaction deficit[J]. Brain research bulletin, Mar30,2007,71(6):559-67.
    [20]. Corbit, K. C.,Trakul, N.,Eves, E. M.,Diaz, B.,Marshall, M.,Rosner, M. R. Activationof Raf-1signaling by protein kinase C through a mechanism involving Raf kinase inhibitoryprotein[J]. The Journal of biological chemistry, Apr11,2003,278(15):13061-8.
    [21]. Lorenz, K.,Lohse, M. J.,Quitterer, U. Protein kinase C switches the Raf kinaseinhibitor from Raf-1to GRK-2[J]. Nature, Dec4,2003,426(6966):574-9.
    [22]. Deiss, K.,Kisker, C.,Lohse, M. J.,Lorenz, K. Raf kinase inhibitor protein (RKIP)dimer formation controls its target switch from Raf1to G protein-coupled receptor kinase(GRK)2[J]. The Journal of biological chemistry, Jul6,2012,287(28):23407-17.
    [23]. Tang, H.,Park, S.,Sun, S. C.,Trumbly, R.,Ren, G.,Tsung, E.,Yeung, K. C. RKIPinhibits NF-kappaB in cancer cells by regulating upstream signaling components of theIkappaB kinase complex[J]. FEBS letters, Feb19,2010,584(4):662-8.
    [24]. Luo, J. Glycogen synthase kinase3beta (GSK3beta) in tumorigenesis and cancerchemotherapy[J]. Cancer letters, Jan18,2009,273(2):194-200.
    [25]. Carlyle, B. C.,Mackie, S.,Christie, S.,Millar, J. K.,Porteous, D. J. Co-ordinated actionof DISC1, PDE4B and GSK3beta in modulation of cAMP signalling[J]. Molecular psychiatry,Jul,2011,16(7):693-4.
    [26]. Al-Mulla, F.,Bitar, M. S.,Al-Maghrebi, M.,Behbehani, A. I.,Al-Ali, W.,Rath,O.,Doyle, B.,Tan, K. Y.,Pitt, A.,Kolch, W. Raf kinase inhibitor protein RKIP enhancessignaling by glycogen synthase kinase-3beta[J]. Cancer research, Feb15,2011,71(4):1334-43.
    [27]. Iliopoulos, D.,Hirsch, H. A.,Struhl, K. An epigenetic switch involving NF-kappaB,Lin28, Let-7MicroRNA, and IL6links inflammation to cell transformation[J]. Cell, Nov13,2009,139(4):693-706.
    [28]. Yun, J.,Frankenberger, C. A.,Kuo, W. L.,Boelens, M. C.,Eves, E. M.,Cheng,N.,Liang, H.,Li, W. H.,Ishwaran, H.,Minn, A. J.,Rosner, M. R. Signalling pathway for RKIPand Let-7regulates and predicts metastatic breast cancer[J]. The EMBO journal, Nov2,2011,30(21):4500-14.
    [29]. Kim, S. Y. RKIP Downregulation Induces the HBx-Mediated Raf-1MitochondrialTranslocation[J]. Journal of Microbiology and Biotechnology,2011,21(5):525-528.
    [30]. Jin, S.,Zhuo, Y.,Guo, W.,Field, J. p21-activated Kinase1(Pak1)-dependentphosphorylation of Raf-1regulates its mitochondrial localization, phosphorylation of BAD,and Bcl-2association[J]. The Journal of biological chemistry, Jul1,2005,280(26):24698-705.
    [31]. Chen, J.,Siddiqui, A. Hepatitis B virus X protein stimulates the mitochondrialtranslocation of Raf-1via oxidative stress[J]. Journal of virology, Jun,2007,81(12):6757-60.
    [32]. Meloche, S.,Pouyssegur, J. The ERK1/2mitogen-activated protein kinase pathway asa master regulator of the G1-to S-phase transition[J]. Oncogene, May14,2007,26(22):3227-39.
    [33]. Rosner, M. R. MAP kinase meets mitosis: a role for Raf Kinase Inhibitory Protein inspindle checkpoint regulation[J]. Cell division,2007,21.
    [34]. Eves, E. M.,Rosner, M. R. MAP kinase regulation of the mitotic spindlecheckpoint[J]. Methods in molecular biology,2010,661497-505.
    [35]. Guegan, J. P.,Fremin, C.,Baffet, G. The MAPK MEK1/2-ERK1/2Pathway and ItsImplication in Hepatocyte Cell Cycle Control[J]. International journal of hepatology,2012,2012328372.
    [36]. Eves, E. M.,Shapiro, P.,Naik, K.,Klein, U. R.,Trakul, N.,Rosner, M. R. Raf kinaseinhibitory protein regulates aurora B kinase and the spindle checkpoint[J]. Molecular cell,Aug,2006,23(4):561-74.
    [37]. Mc Henry, K. T.,Montesano, R.,Zhu, S.,Beshir, A. B.,Tang, H. H.,Yeung, K.C.,Fenteany, G. Raf kinase inhibitor protein positively regulates cell-substratum adhesionwhile negatively regulating cell-cell adhesion[J]. Journal of cellular biochemistry, Feb15,2008,103(3):972-85.
    [38]. Matsukawa, N.,Furuya, Y.,Ogura, H.,Ojika, K. HCNP precursor protein transgenicmice display a depressive-like phenotype in old age[J]. Brain research, Aug19,2010,1349153-61.
    [39]. Maki, M.,Matsukawa, N.,Yuasa, H.,Otsuka, Y.,Yamamoto, T.,Akatsu, H.,Okamoto,T.,Ueda, R.,Ojika, K. Decreased expression of hippocampal cholinergic neurostimulatingpeptide precursor protein mRNA in the hippocampus in Alzheimer disease[J]. Journal ofneuropathology and experimental neurology, Feb,2002,61(2):176-85.
    [40]. George, A. J.,Holsinger, R. M.,McLean, C. A.,Tan, S. S.,Scott, H. S.,Cardamone,T.,Cappai, R.,Masters, C. L.,Li, Q. X. Decreased phosphatidylethanolamine binding proteinexpression correlates with Abeta accumulation in the Tg2576mouse model of Alzheimer'sdisease[J]. Neurobiology of aging, Apr,2006,27(4):614-23.
    [41]. Ojika, K.,Mitake, S.,Tohdoh, N.,Appel, S. H.,Otsuka, Y.,Katada, E.,Matsukawa, N.Hippocampal cholinergic neurostimulating peptides (HCNP)[J]. Progress in neurobiology,Jan,2000,60(1):37-83.
    [42]. Uematsu, N.,Matsukawa, N.,Kanamori, T.,Arai, Y.,Sagisaka, T.,Toyoda, T.,Yoshida,M.,Ojika, K. Overexpression of hippocampal cholinergic neurostimulating peptide inheterozygous transgenic mice increases the amount of ChAT in the medial septal nucleus[J].Brain research, Dec11,2009,1305150-7.
    [43]. Ojika, K.,Mitake, S.,Kamiya, T.,Kosuge, N.,Taiji, M. Two different molecules, NGFand free-HCNP, stimulate cholinergic activity in septal nuclei in vitro in a different manner[J].Brain research. Developmental brain research, May13,1994,79(1):1-9.
    [44]. Tsugu, Y.,Ojika, K.,Matsukawa, N.,Iwase, T.,Otsuka, Y.,Katada, E.,Mitake, S. Highlevels of hippocampal cholinergic neurostimulating peptide (HCNP) in the CSF of somepatients with Alzheimer's disease[J]. European journal of neurology: the official journal ofthe European Federation of Neurological Societies, Nov,1998,5(6):561-569.
    [45]. Mitake, S.,Ojika, K.,Katada, E.,Otsuka, Y.,Matsukawa, N.,Fujimori, O.Accumulation of hippocampal cholinergic neurostimulating peptide (HCNP)-relatedcomponents in Hirano bodies[J]. Feb,1995,21(1):35-40.
    [46]. Mitake, S.,Katada, E.,Otsuka, Y.,Matsukawa, N.,Iwase, T.,Tsugu, T.,Fujimori,O.,Ojika, K. Possible implication of hippocampal cholinergic neurostimulating peptide(HCNP)-related components in Hirano body formation[J]. Neuropathology and appliedneurobiology, Oct,1996,22(5):440-5.
    [47]. Hellmann, J.,Rommelspacher, H.,Muhlbauer, E.,Wernicke, C. Raf kinase inhibitorprotein enhances neuronal differentiation in human SH-SY5Y cells[J]. Developmentalneuroscience, Mar,2010,32(1):33-46.
    [48]. Hellmann-Regen, J. D. N. Effects of raf kinase inhibitor protein on neuronaldifferentiation and its role in ethanol-impaired neuronal development of human SH-SY5Yneuroblastoma cells[J].2011.
    [49]. Ruan, L.,Wang, G. L.,Yi, H.,Chen, Y.,Tang, C. E.,Zhang, P. F.,Li, M. Y.,Li, C.,Peng,F.,Li, J. L.,Chen, Z. C.,Xiao, Z. Q. Raf kinase inhibitor protein correlates with sensitivity ofnasopharyngeal carcinoma to radiotherapy[J]. Journal of cellular biochemistry, Jul1,2010,110(4):975-81.
    [50]. Zuo, H. Y.,Wang, D. W.,Peng, R. Y.,Wang, S. M.,Gao, Y. B.,Zhang, Z. Y.,Xiao, F. J.[The role of RKIP mediated ERK pathway in hippocampus neurons injured byelectromagnetic radiation][J]. Xi bao yu fen zi mian yi xue za zhi=Chinese journal ofcellular and molecular immunology, Jul,2008,24(7):660-2.
    [51]. Murga-Zamalloa, C. A.,Ghosh, A. K.,Patil, S. B.,Reed, N. A.,Chan, L. S.,Davuluri,S.,Peranen, J.,Hurd, T. W.,Rachel, R. A.,Khanna, H. Accumulation of the Raf-1kinaseinhibitory protein (Rkip) is associated with Cep290-mediated photoreceptor degeneration inciliopathies[J]. The Journal of biological chemistry, Aug12,2011,286(32):28276-86.
    [52]. Travaglini, L.,Brancati, F.,Attie-Bitach, T.,Audollent, S.,Bertini, E.,Kaplan,J.,Perrault, I.,Iannicelli, M.,Mancuso, B.,Rigoli, L.,Rozet, J. M.,Swistun, D.,Tolentino,J.,Dallapiccola, B.,Gleeson, J. G.,Valente, E. M.,International, J. S. G.,Zankl, A.,Leventer,R.,Grattan-Smith, P.,Janecke, A.,D'Hooghe, M.,Sznajer, Y.,Van Coster, R.,Demerleir, L.,Dias,K.,Moco, C.,Moreira, A.,Kim, C. A.,Maegawa, G.,Petkovic, D.,Abdel-Salam, G. M.,Abdel-Aleem, A.,Zaki, M. S.,Marti, I.,Quijano-Roy, S.,Sigaudy, S.,de Lonlay, P.,Romano,S.,Touraine, R.,Koenig, M.,Lagier-Tourenne, C.,Messer, J.,Collignon, P.,Wolf, N.,Philippi,H.,Kitsiou Tzeli, S.,Halldorsson, S.,Johannsdottir, J.,Ludvigsson, P.,Phadke, S. R.,Udani,V.,Stuart, B.,Magee, A.,Lev, D.,Michelson, M.,Ben-Zeev, B.,Fischetto, R.,Benedicenti,F.,Stanzial, F.,Borgatti, R.,Accorsi, P.,Battaglia, S.,Fazzi, E.,Giordano, L.,Pinelli, L.,Boccone,L.,Bigoni, S.,Ferlini, A.,Donati, M. A.,Caridi, G.,Divizia, M. T.,Faravelli, F.,Ghiggeri,G.,Pessagno, A.,Briguglio, M.,Briuglia, S.,Salpietro, C. D.,Tortorella, G.,Adami, A.,Castorina,P.,Lalatta, F.,Marra, G.,Riva, D.,Scelsa, B.,Spaccini, L.,Uziel, G.,Del Giudice, E.,Laverda, A.M.,Ludwig, K.,Permunian, A.,Suppiej, A.,Signorini, S.,Uggetti, C.,Battini, R.,Di Giacomo,M.,Cilio, M. R.,Di Sabato, M. L.,Leuzzi, V.,Parisi, P.,Pollazzon, M.,Silengo, M.,De Vescovi,R.,Greco, D.,Romano, C.,Cazzagon, M.,Simonati, A.,Al-Tawari, A. A.,Bastaki,L.,Megarbane, A.,Sabolic Avramovska, V.,de Jong, M. M.,Stromme, P.,Koul, R.,Rajab,A.,Azam, M.,Barbot, C.,Martorell Sampol, L.,Rodriguez, B.,Pascual-Castroviejo, I.,Teber,S.,Anlar, B.,Comu, S.,Karaca, E.,Kayserili, H.,Yuksel, A.,Akcakus, M.,Al Gazali, L.,Sztriha,L.,Nicholl, D.,Woods, C. G.,Bennett, C.,Hurst, J.,Sheridan, E.,Barnicoat, A.,Hennekam,R.,Lees, M.,Blair, E.,Bernes, S.,Sanchez, H.,Clark, A. E.,DeMarco, E.,Donahue, C.,Sherr,E.,Hahn, J.,Sanger, T. D.,Gallager, T. E.,Dobyns, W. B.,Daugherty, C.,Krishnamoorthy, K.S.,Sarco, D.,Walsh, C. A.,McKanna, T.,Milisa, J.,Chung, W. K.,De Vivo, D. C.,Raynes,H.,Schubert, R.,Seward, A.,Brooks, D. G.,Goldstein, A.,Caldwell, J.,Finsecke, E.,Maria, B.L.,Holden, K.,Cruse, R. P.,Swoboda, K. J.,Viskochil, D. Expanding CEP290mutationalspectrum in ciliopathies[J]. American journal of medical genetics. Part A, Oct,2009,149A(10):2173-80.
    [53]. Moradi, P.,Davies, W. L.,Mackay, D. S.,Cheetham, M. E.,Moore, A. T. Focus onmolecules: centrosomal protein290(CEP290)[J]. Experimental eye research, May,2011,92(5):316-7.
    [54]. Ribas, C.,Penela, P.,Murga, C.,Salcedo, A.,Garcia-Hoz, C.,Jurado-Pueyo,M.,Aymerich, I.,Mayor, F., Jr. The G protein-coupled receptor kinase (GRK) interactome:role of GRKs in GPCR regulation and signaling[J]. Biochimica et biophysica acta, Apr,2007,1768(4):913-22.
    [55]. Evron, T.,Daigle, T. L.,Caron, M. G. GRK2: multiple roles beyond G protein-coupledreceptor desensitization[J]. Trends in pharmacological sciences, Mar,2012,33(3):154-64.
    [56]. Lymperopoulos, A.,Rengo, G.,Koch, W. J. GRK2inhibition in heart failure:something old, something new[J]. Current pharmaceutical design,2012,18(2):186-91.
    [57]. Faramawy., Y. e.,Fu., X.,Agwa., S. H.,Langer., A.,Elzahwy., S. S.,Quitterer., U.RKIP Enhances Angiotensin II–Stimulated Signaling[J]. Forum on immunopathologicaldiseases and therapeutics,2011,2(1):71-78.
    [58]. Melle, C.,Camacho, J. A.,Surber, R.,Betge, S.,Von Eggeling, F.,Zimmer, T. Region-specific alterations of global protein expression in the remodelled rat myocardium[J].International journal of molecular medicine, Dec,2006,18(6):1207-15.
    [59]. Chang, H. R.,Tsao, D. A.,Tseng, W. C. Hexavalent chromium inhibited theexpression of RKIP of heart in vivo and in vitro[J]. Toxicology in vitro: an internationaljournal published in association with BIBRA, Feb,2011,25(1):1-6.
    [60]. Moffit, J. S.,Boekelheide, K.,Sedivy, J. M.,Klysik, J. Mice lacking Raf kinaseinhibitor protein-1(RKIP-1) have altered sperm capacitation and reduced reproduction rateswith a normal response to testicular injury[J]. Journal of andrology, Nov-Dec,2007,28(6):883-90.
    [61]. Gibbons, R.,Adeoya-Osiguwa, S. A.,Fraser, L. R. A mouse sperm decapacitationfactor receptor is phosphatidylethanolamine-binding protein1[J]. Reproduction, Oct,2005,130(4):497-508.
    [62]. Nixon, B.,MacIntyre, D. A.,Mitchell, L. A.,Gibbs, G. M.,O'Bryan, M.,Aitken, R. J.The identification of mouse sperm-surface-associated proteins and characterization of theirability to act as decapacitation factors[J]. Biology of reproduction, Feb,2006,74(2):275-87.
    [63]. Ciarmela, P.,Marzioni, D.,Islam, M. S.,Gray, P. C.,Terracciano, L.,Lorenzi, T.,Todros,T.,Petraglia, F.,Castellucci, M. Possible role of RKIP in cytotrophoblast migration:immunohistochemical and in vitro studies[J]. Journal of cellular physiology, May,2012,227(5):1821-8.
    [64]. Ciarmela, P.,Marzioni, D.,Islam, M. S.,Gray, P. C.,Terracciano, L.,Lorenzi, T.,Todros,T.,Petraglia, F.,Castellucci, M. RKIP and cytotrophoblast motility[J]. Journal of cellularphysiology, Dec,2012,227(12):3895.
    [65]. Sas, K. M.,Janech, M. G.,Favre, E.,Arthur, J. M.,Bell, P. D. Cilia movement regulatesexpression of the Raf-1kinase inhibitor protein[J]. American journal of physiology. Renalphysiology, May,2011,300(5): F1163-70.
    [66]. Ahn, J. K.,Hwang, J. W.,Bae, E. K.,Lee, J.,Jeon, C. H.,Koh, E. M.,Cha, H. S. Therole of Raf kinase inhibitor protein in rheumatoid fibroblast-like synoviocytes invasivenessand cytokine and matrix metalloproteinase expression[J]. Inflammation, Apr,2012,35(2):474-83.
    [67]. Schuierer, M. M.,Heilmeier, U.,Boettcher, A.,Ugocsai, P.,Bosserhoff, A. K.,Schmitz,G.,Langmann, T. Induction of Raf kinase inhibitor protein contributes to macrophagedifferentiation[J]. Biochemical and biophysical research communications, Apr21,2006,342(4):1083-7.
    [68]. Huang, J.,Mahavadi, S.,Sriwai, W.,Grider, J. R.,Murthy, K. S. Cross-regulation ofVPAC2receptor desensitization by M3receptors via PKC-mediated phosphorylation of RKIPand inhibition of GRK2[J]. Am J Physiol Gastrointest Liver Physiol,2007,292G867-G874.
    [69]. Katada, E.,Ojika, K.,Mitake, S.,Ueda, R. Neuronal distribution and subcellularlocalization of HCNP-like immunoreactivity in rat small intestine[J]. Journal ofneurocytology, Mar,2000,29(3):199-207.
    [70]. Zhang, L.,Fu, Z.,Binkley, C.,Giordano, T.,Burant, C. F.,Logsdon, C. D.,Simeone, D.M. Raf kinase inhibitory protein inhibits beta-cell proliferation[J]. Surgery, Sep,2004,136(3):708-15.
    [71]. Jonkers, Y. M.,Ramaekers, F. C.,Speel, E. J. Molecular alterations during insulinomatumorigenesis[J]. Biochimica et biophysica acta, Jun,2007,1775(2):313-32.
    [72]. Kim, S. O.,Ives, K. L.,Wang, X.,Davey, R. A.,Chao, C.,Hellmich, M. R. Raf-1kinaseinhibitory protein (RKIP) mediates ethanol-induced sensitization of secretagogue signaling inpancreatic acinar cells[J]. The Journal of biological chemistry, Sep28,2012,287(40):33377-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700