用户名: 密码: 验证码:
分子内环合反应合成N-取代吲哚的新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对已知吲哚环化合物用途认识的深入和大量新型吲哚环化合物的发现,需要不断开发吲哚类衍生物的合成新方法。本文即针对N-取代吲哚衍生物的合成方法进行研究,主要包含以下几方面:
     1.为了将苯环侧链上的氮原子在最后一步与芳环碳原子直接键连(C-H官能团化)形成C-N键来构建吲哚环,设计了新型氮正离子中间体并合成了其前体化合物:主要研究了α-芳基-β-酮腈和α-芳基-β-羰基羧酸酯分别与烷基胺、芳胺和烷氧基胺的缩合反应,并对其产物的结构和构型进行了判断。
     2.在高价碘有机氧化剂—二(三氟乙酰氧)碘苯(PIFA)作用下,2-芳基-3-取代胺基(芳胺或烷基胺)-烯腈类化合物能够在短时间(5 min)内发生分子内环合反应生成N-取代-吲哚-3-腈类衍生物。此外,底物中苄位的氰基还可以替换为酯基,从而使该方法还可以用来合成N-取代(芳基或烷基)-吲哚-3-羧酸酯类衍生物。反应时间和反应收率不明显受苯环取代基团电子效应及空间位阻的影响。反应条件温和,后处理简单。氮正离子历程不能合理解释一些实验结果,故又提出了新的可能反应机理,包括一个氮自由基机理。
     3.在单电子氧化剂三氯化铁作用下,PIFA作用下不能有效环合的3-烷氧亚胺基-2-芳基-烷腈类化合物能够顺利发生分子内环合反应生成N-烷氧基-吲哚-3-腈类衍生物。反应条件温和,后处理简单。对比实验表明底物中苄位腈基为该反应的必需基团,相同条件下,2-芳基-3-取代胺基-烯腈类化合不能发生分子内环合生成N-取代吲哚化合物。对反应的可能机理进行了研究。
     4.实验过程中发现3-烷氧亚胺基-2-芳基-烷基腈类化合物在二氧化锰作用下发生苄位碳碳键相连的分子间偶联反应,高产率生成二聚体。当苯环的邻位或对位有甲氧基的时候,该二聚体在三氯化铁作用下发生苄位相连的C-C键(即偶联的碳碳键)断裂,经分子内环合反应生成N-甲氧基-吲哚-3-腈类衍生物,提出了一个可能的反应机理。三氯化铁作用下的类似碳碳键断裂反应未见相关文献报道。
With the increased understanding of the existed indole derivatives′application and the continuous discovery of new indole compounds in natural products, there is a demand to develop novel methods for the construction of indole compounds. This paper launches an investigation on the synthetic methodology of N-substituted indole derivatives and covers the following aspects:
     1. In order to construct the indole compounds by joining the N-moiety on the side chain to the benzene ring, which enables the formation of C-N bond via direct C-H functionalization, several new-type nitrenium ion intermediates were designed and synthesized: the condensation reaction betweenα-aryl-β-ketonitriles andα-aryl-β-carbonyl-carboxylates with alkylamines, arylamines, or alkoxyamines respectively were mainly studied. Furthermore, the structure and the configuration of the final products were established.
     2. Mediated by hypervalent organoiodine reagent, i.e. phenyliodine bis(trifluoroacetate) (PIFA), 2-aryl-3-arylamino-2-alkenenitriles and 2-aryl-3-alkylamino-2-alkenenitriles were found to undergo intramolecular cyclization to afford N-subustituted (arylated or alkylated)-indole-3-carbonitrile derivatives within a short period of time (5 mins). In addition, the benzylic cyano group in such substrates can be replaced by an ester group, which makes the method applicable to the synthesis of N-aryl or N-alkyl-indole-3-carboxylic ester derivatives. The electronic effects of the substituents on the benzene ring and the steric hindrance do not significantly alter the reaction time and yield. The reaction condition is mild and the work up procedure is simple. Owing to the fact that the nitrenium ion mechanism could not explain well some experimental result, several other mechanisms were proposed, including a nitrogen radical pathway.
     3. 3-Alkoxyimino-2-aryl-alkylnitriles, which could not efficiently cyclize by PIFA, could undergo intramolecular cyclization to furnish N-alkoxyindole- indole-3-carbonitrile derivatives, mediated by single electron oxidant, i.e. ferric chloride. The reaction condition is mild and the work up procedure is simple. The results of comparative experiments indicate that the benzylic cyano group in the sustrate is indispensable. Under the same reaction condition, 2-aryl-3-amino-2-alkenenitriles were unable to cyclize to give N-substituted indole derivatives.
     4. In the presence of manganese dioxide, 3-alkoxyimino-2-ary-alkylnitriles can undergo intermolecular coupling to give dimer in high yields by joining the two benzylic carbons. The formed dimers substituted with methoxy group in the para or ortho positions of the benzene ring will lead to the cleavage of the formed carbon-carbon bond and the subsequent intramolecular cyclization in the presence of ferric chloride, which results in the building of N-alkoxyindole skeleton. A possible mechanism was proposed for the process. To our knowledge, the similar FeCl3-mediated carbon-carbon bond cleavage was not reported before.
引文
[1] [德]艾歇尔(Eicher, T.),[德]豪普特曼(Hanptmann, S.)著:李润涛,葛泽梅,王欣译,杂环化学—结构、反应、合成与应用(第 2 版),北京:化学工业出版社,2005,90-92。
    [2] Nicolaou, K. C.; Lee, S. H.; Estrada, A. A.; Zak, M. Construction of Substituted N-Hydroxyindoles: Synthesis of a Nocathiacin I Model System. Angew. Chem. Int. Ed. 2005, 44, 3736
    [3] Soledade, M.; Pedras, C.; Sorenson, J. I. Phytoalexin Accumulation and Antifungal Compounds from the Crucifer Wasabi. Phytochemistry 1998, 49, 1959-1965.
    [4] Slevakumar, N.; Reddy, Y.; Azhagan, M.; Khera, M. K.; Babu, J. M.; Iqbal, J. A Direct Entry to the 1-Methoxyindole Skeleton and to the Corresponding Indoles by a Novel Rearrangement: General Synthesis of Substituted 1-Methoxyindoles. Tetrahedron Lett. 2003, 44, 7065-7069.
    [5] Slevakumar, N.; Khera, M. K.; Reddy, Y.; Srinivas, D.; Azhagan, A. M.; Iqbal, J. An Efficeint Total Synthesis of 9-Methoxycarbazole-3- carboaldehyde Based on a Novel Methodology for the Preparation of Methoxyindoles. Tetrahedron Lett. 2003, 44, 7071-7074.
    [6] Kutschy, P.; Dzurilla, M.; Takasugi, M.; T?r?k, M.; Achbergerová, H. R.; Rária, M. New Synthesis of Inodel Phytoalexins and Related Compounds. Tetrahedron Lett. 1998, 54, 3549-3566.
    [7] Narkowicz, C. K.; Blackman, A. J.; Lacey, E.; Gill, J. H.; Heiland, K. Convolutindole A and Convolutamine H, New Nematocidal Brominated Alkaloids from the Marine Bryozoan Amathia convolute. J. Nat. Prod. 2002, 65, 938-941.
    [8] Buchanan, J. G.; Stoddard, J.; Wightman, R. H. Synthesis of the Indole Nucleoside Antibiotics Neosidomycin and SF-2140, J. Chem, Soc. Perkin Trans, I 1994, 1417-1428.
    [9] Schumacher, R. W.; Harrigan, B. L.; Davidson, B. S. Kahakamides A and B. New Neosidemycin Metabolite4s from a Marine-derived Actinomycete. Tetrahedron Lett. 2001, 42, 5133-5135.
    [10] 任进民, 樊德厚,吲哚美辛的临床应用, 中国医院药学杂志 ,1993,13(11),492-493。
    [11] 宋艳玲,赵燕芳,宫平,N-取代-5-羟基-1H-吲哚-3-羧酸酯类衍生物的合成,中国新药杂志,2004,13(4),335-337。
    [12] 李正化,药物化学(第三版),北京:人民卫生出版社出版,1993,p329
    [13] 彭司勋,药物化学进展(第一卷),北京:中国医药科技出版社,2000,29-29。
    [14] King, F. D.; Dabbs, S.; Bermudez, J.; Sanger, G. J. Benzotriazinones as Virtual-ring Mimics of o-Methoxybenzamides: Novel and Potent 5-HT3 Rceptor Antagonists. J Med. Chem. 1990, 33, 2942-2944.
    [15] 刘国卿,药理学,北京:中国医药科技出版社,2002,170-171。
    [16] 郑虎,药物化学(第四版),北京:人民卫生出版社,2000,50,162-162。
    [17] 张建革,哈耶特,闻韧, 食物防癌剂—吲哚-3-甲醇的研究进展,中国基层医药,2002,9(3),268-269。
    [18] Neave, A. S.; Sarup, S. M.; Seidelin, M.; Duus, F.; Vang, O. Characterization of the N-Mehtoxyindole-3-carbinol (NI3C)-Induced Cell Cycle Arrest in Human Colon Cancer Cell Lines. Toxicological Sciences 2005, 83(1), 126-135.
    [19] Stephensen, P. U.; Bonnesen, C.; Schaldach, C.; Andersen, O.; Bjeldanes, L. F.; Vang, O. N-Methoxyindole-3-carbinol is a More Efficient Inducer of Cytochrome P-450 1A1 in Cultured Cells than Indole-3-carbinol. Nutrition and Cancer 2000, 36(1), 112-121.
    [20] Tsotinis, A.; Eleutheriades, A.; Hough, K.; Sugden, D. Design and Synthesis of Potent N1-Substituted Indoles Melatonin Receptor Agonist. Chem. Commun. 2003, 382-383.
    [21] Wacker, D. A.; Kasireddy, P. Efficient Solid-phase Synthesis of 2,3-Substituted indoles. Tetrahedron Lett. 2002, 43, 5189-5191.
    [22] Miller, C. P.; Tran, B. D.; Collini, M. D. Estrogenic Agents. USA, Eng., EP 0802183A1, 1997/04/15.
    [23] Smart, B. P.; Oslund, R. C.; Walsh, L. A.; Gelb, M. H. The First Potent Inhibitor of Mammalian Group X Secreted Phospholipase A2: Elucidation of Sites for Enhanced Binding. J. Med. Chem. 2006, 49, 2858-2860.
    [24] Andersen, K.; Liljefors, T.; Hyttel, J.; Perregaard J. Serotonin 5-HT2 Receptor, Dopamine D2 Receptor, and α1 Adrenoceptor Antagonists. Conformationally Flexible Analogues of the Atypical Antipsychotic Sertindole. J. Med. Chem. 1996, 39, 3723-3738
    [25] 李文军,吴延晖,降脂新药—氟伐他汀,天津药学,1992,11(1),9-10。
    [26] Cacchi, S.; Fabrizi, G. Synthesis and Functionalization of Indoles Through Palladium-catalyzed Reactions. Chem. Rev. 2005, 105(7), 2873-2920.
    [27] Gribble, G. W. Recent Developments in Indoles Ring Synthesis-methodology and Applications. J. Chem. Soc., Perkin Trans. 1 2000, 1045-1075.
    [28] Humphrey, G. R.; Kuethe, J. T. Practical Methodologies for the Synthesis ofIndoles. Chem. Rev. 2006, 106, 2875-2911.
    [29] Hughes, D. L. Progress in the Fisher Indole Reactions. Org. Prep. Proc. Int. 1993, 25, 607-632.
    [30] Street, L. J.; Baker, R.; Castro, J. L.; Chambers, M. S.; Guiblin, A. R., Sarah C. et al. Synthesis and Serotonergic Activity of 5-(Oxadiazolyl)tryptamines: Potent Agonists for 5-HT1D Receptors. J. Med. Chem. 1993, 36(11), 1529-1538.
    [31] Wagaw, S.; Yang, B. H.; Buchwald, S. L. A Palladium-Catalyzed Strategy for the Preparation of Indoles: A Novel Entry into the Fischer Indole Synthesis. J. Am. Chem. Soc. 1998, 120(26), 6621-6622.
    [32] Cao, C.; Shi, Y.; Odom, A. L. Intermolecular Alkyne Hydroaminations Involving 1,1-Disubstituted Hydrazines, Org. Lett. 2002, 4(17), 2853-2856.
    [33] Kohling, P.; Schmidt, A. M.; Eilbracht, P. Tandem Hydroformylation/Fischer Indole Synthesis: A Novel and Convenient Approach to Indoles from Olefins. Org. Lett. 2003, 5(18), 3213-3216.
    [34] Sugasawa, T.; Adachi, M.; Sasakura, K.; Kitagawa, A. Aminohaloborane in Organic Synthesis. 2. Simple Synthesis of Indoles and 1-Acyl-3-indolinones Using Specific ortho. alpha.-Chloroacetylation of Anilines. J. Org. Chem. 1979, 44(4), 578-586.
    [35] Gassman, P. G.; Roos, J. J.; Lee, S. J. Use of [2,3]-Ssigmatropic Rearrangements in a One-step Conversion of Tetrahydroquinoline to Substituted 1,2,5,6-Tetrahydro-4N-pyrrolo[3,2,1-ij]quinolin-2-one and 5,6-Dihydro-4H-pyrrolo[3,2,1-ij]quinoline. J. Org. Chem. 1984, 49(4), 717-718.
    [36] Houlihan, W. J.; Parrino, V. A.; Uike, Y. Lithiation of N-(2-Alkylphenyl)alkanamides and Related Compounds. A Modified Madelung Indole Synthesis. J. Org. Chem. 1981, 46(22), 4511-4515.
    [37] Fürstner, A.; Ernst, A. Syntheses of Camalexin, Indolopyridocoline and Flavopereirine. Tetrahedron 1995, 51, 773-786.
    [38] Magnus, P.; Mitchell, I. S.; Synthesis of 3-methylindoles from N-aryl-N-(3-triisopropylsilylpropargyl)sulfonamides. Tetrahedron Lett. 1998, 39, 4595-4598.
    [39] Yue, D.; Yao, T.; Larock, R. C. Synthesis of 3-Iodoindoles by the Pd/Cu-Catalyzed Coupling of N, N-Dialkyl-2-iodoanilines and Termianl Acetylenes, Followed by Electrophilic Cyclization. J. Org. Chem. 2006, 71, 62-69.
    [40] Witulski, B.; Alayrac, C.; Tevzadze-Saeftel L. Palladium-Catalyzed Synthesis of 2-Aminoindoles by a Heteroanulation Reaction. Angew. Chem.Int. Ed. 2003, 42, 4257-4260.
    [41] Hegedus, L. S.; Allen, G. F.; Waterman, E. L. Palladium Assisted Intramolecular Amination of Olefins. A New Synthesis of Indoles, J. Am. Chem. Soc. 1976, 98(9), 2674-2676.
    [42] Hegedus, L. S.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. Palladium-assisted Intramolecular Amination of Olefins. Synthesis of Nitrogen Heterocycles. J. Am. Chem. Soc. 1978, 100(18), 5800-5807.
    [43] Jia, Y.; Zhu, J. Palladium-Catalyzed, Modular Synthesis of Highly Functionalized Indoles and Tryptophans by Direct Annulation of Substituted o-Haloanilines and Aldehydes. J. Org. Chem. 2006, 71, 7826-7834.
    [44] 石雷,王新平,蔡天锡,吲哚环化合物合成方法的进展,有机化学 2001, 21(3),200-204。
    [45] Nakao, K.; Murata, Y.; Koike, H.; Uchida, C.; Kawamura, K.; Mihara, S.; Hayashi, S.; Stevens, R. W. Synthesis of 2-Acylindole-3-acetic Acids: A Novel Base-mediated Indole Synthesis. Tetrahedron Lett. 2003, 44, 7269-7271.
    [46] Noland, W. E.; Baude, F. J. Org. Synth., Coll. Vol. V, 1973, 567-571.
    [47] Soderberg, B. C.; Shriver, J. A.Palladium-Catalyzed Synthesis of Indoles by Reductive N-Heteroannulation of 2-Nitrostyrenes J. Org. Chem. 1997, 62(17), 5838-5845.
    [48] Kulkarni, M. G.; Davawala, S. I.; Dhondge, A. P.; Gaikwad, D. D.; Borhade, A. S.; Chavhan, S. W. An Efficient Two-step Synthesis of 3-Allylindole. Tetrahedron Lett. 2006, 47, 1003-1005.
    [49] Ragaini, F.; Rapetti, A.; Visentin, E.; Monzani, M.; Caselli, A.; Cenini, S. Synthesis of Indoles by Intermolecular Cyclization of Unfunctionalized Nitroarenes and Alkynes, Catalyzed by Palladium-Phenanthroline Complexes. J. Org. Chem. 2006, 71, 3748-3753.
    [50] Wong, A.; Kuethe, J. T.; Davies, I. W. A General Synthesis of N-Hydroxyindoles. J. Org. Chem. 2003, 68, 9865-9566.
    [51] Selvakumar, N.; Rajulu, G. G. Efficient Total Synthesis of Phytoalexin and ( ± )-Paniculidine B and C Base on the Novel Methodology for the Preparation of 1-Methoxyindoles. J. Org. Chem. 2004, 69, 4429-4432.
    [52] Penoni, A.; Palmisano, G.; Broggini, G.; Kadowaki, A.; Nicholas, K. M. Efficient Synthesis of N-Methoxyindoles via Alkylative Cycloaddition of Nitrosoarenes with Alkynes. J. Org. Chem. 2006, 71, 823-825.
    [53] Penoni, A.; Volkmann, J.; Nicholas, K. M. Regioselective Synthesis of Indoles via Reductive Annulation of Nitrosoaromatics with Alkynes. Org. Lett. 2002, 4(6), 699-701.
    [54] Onitsuka, K.; Suzuki, S.; Takahashi, S. A Novel Route to 2,3-Disubstituted Indoles via Palladium-catalyzed Three-component Coupling of Aryl Iodine, O-Alkenylphenyl Isocyanide and amine. Tetrahedron Lett. 2002, 43, 6197-6199.
    [55] Tokuyama, H.; Yamashita, T.; Reding, M. T.; Kaburagi, Y.; Fukuyama, T. Radical Cyclization of 2-Alkenylthioanilides: A Novel Synthesis of 2, 3-Disubstituted Indoles. J. Am. Chem. Soc. 1999, 121, 3791-3792.
    [56] Pelkey,E. T.; Gribble, G. W. Synthesis of 2-Nitroindiles via the Sundberg indole Synthesis. Tetrahedron Lett. 1997, 38, 5603-5606.
    [57] Kamijo,S.; Yamamoto, Y. A. A Bimetallic Catalyst and DualRole Catalyst:Synthesis of N-(Alkoxycarbony1)indoles from 2-(Alkyny1) Phenyl Isocyanates. J.Org.Chem.2003,68(12), 4764-4771.
    [58] Toyota, M.; Fukumoto, K. Tandem Michael addition–[3,3]sigmatropic rearrangement processes. Part 2. Construction of Cyclopropa[3,4]pyrrolo[3,2-e]indol-4-one (CPI) Unit of Antitumour Antibiotic CC-1065. J. Chem. Soc. Perkin Trans. 1 1992, 547-552
    [59] Brown, J. A. Synthesis of N-Aryl Indole-2-carboxylates via an Intramolecular Palladium-catalysed Annulation of Didehydrophenylanine Derivatives. Tetrahedron Lett. 2000, 41, 1623-1626.
    [60] Willis, M. C.; Brace, G. N.; Holmes, I. P. Palladium-Catalyzed Tandem Alkenyl and Aryl C-N Bond Formation: A Cascade N-Annulation Route to 1-Functionalized Indoles. Angew. Chem. Int. Ed. 2005, 44, 403-406.
    [61] Watanabe, M.; Yamamoto, T.; Nishiyama, M. A New Palladium-Catalyzed Intramolecular Cyclization: Synthesis of 1-Aminoindole Derivatives and Functionalization of their Carbocylic Rings. Angew. Chem. Int. Ed. 2000, 39(14), 2501-2504.
    [62] Foucaud, A.; Razorilalan-Rabearivony, C.; Loukakou, E.; Person, H. [1+4]Cycloaddition of Isocyanides with 1-Aryl-2-nitro-1-propenes, Methyl 2-Nitro-3-arylpropenoates, and Methyl 2-nitro-2,4-pentadienoates Synthesis of 1-Hydroxyindoles and 1-Hydroxypyrroles. J. Org. Chem. 1983, 48, 3639-3644.
    [63] Zhang, R.; Liao, X.; Gao, Z. A Facile One-Pot Synthesis of 3-Dialkoxyphosphoryl- and 3-[Alkoxy(phenyl)phosphoryl]-1-hydroxyl indoles. Synthesis 1990, 801-802.
    [64] Tercel, M.; Gieseg, M. A.; Denny, W. A.; Wilson, W. R. Synthesis and Cytotoxicity of Amino-seco-DSA: An Amino Analogue of the DNA Alkylating Agent Duocarmycin SA. J. Org. Chem. 1999, 64(16), 5946-5953.
    [65] Taber, D. F.; Tian, W. The Neber Route to Substituted Indoles. J. Am. Chem. Soc. 2006, 128, 1058-1059.
    [66] Muratake, H.; Natsume, M. Preparation of Alkyl-Substituted Indoles in the Benzene Portion. Part 2. Heterocycles 1989, 29(4), 783-794.
    [67] Somei, M.; Tanimoto, A.; Yamada, F.; Ohta, T. Synthesis of Wasabi Phytoalexin (Methyl 1-Methoxyindole-3-carboxylate) and Its 5-Indo Derivative. Heterocycles 2001, 54, 425–432.
    [68] Pawlak, J. M.; Khau, V. V.; Hutchison, D. R.; Martinelli, M. J. A Practical, Nenitzescu-Based Synthesis of LY311727, the First Potent and Selective s-PLA2 Inhibitor J. Org. Chem. 1996; 61(25), 9055-9059
    [69] Greshock, T. J.; Funk, R. L. Synthesis of Indoles via 6π-Electrocyclic Ring Closures of Trienecarbamates. J. Am. Chem. Soc. 2006, 128, 4946-4947
    [70] Banfield, S. C.; England, D. B.; Kerr, M. A. The Diels-Alder Reactions of Quinone Imine Ketals: A Versatile Synthesis of Highly Substituted 5-Methoxyindoles. Org. Lett. 2001; 3(21), 3325-3327.
    [71] England, D. B.; Kerr, M. A. Synthesis and Cross-Coupling Reactions of Substituted 5-Triflyloxyindoles. J. Org. Chem. 2005, 70, 6519-6522.
    [72] Falvey, D. E. Singlet and Triplet States in the Reactions of Nitrenium Ions. J. Phys. Org. Chem. 1999, 12, 589–596.
    [73] Liard, A.; Nguyen, T.; Smir, A. I.. D.; Vaultier, M.; Derdour, A.; Mortier, J. Evidence for the Intermediacy of Arylbenzylnitrenium Ions in the Thermal Rearrangement of Isoxazolidines Derived from C, N-Diarylnitrones and 2-Morpholin-4-yl-acrylonitrile. Chem. Eur. J. 2003, 9(4), 1001-1007.
    [74] Boche, G.; Andrews, P.; Harms, K.; Marsch, M.; Rangappa, K. S.; Schimeczek, M.; Willeke, C. Crystal and Electronic Structure of Stable Nitrenium Ions. A Comparison with Structurally Related Carbenes. J. Am. Chem. Soc. 1996, 118, 4925- 4930.
    [75] Srivastava, S.; Falvey, D. E. Reactions of a Triplet Arylnitrenium Ion: Laser Flash Photolysis and Product Studies of N-tert-Butyl(2-acetyl-4-nitrophenyl) nitrenium Ion. J. Am. Chem. Soc. 1995, 117, 10186-10193.
    [76] Brooks, M. E.; Synthesis and Reactivity of Food Derived Promutagens and Procarcinogens IQx and Trp-P-2. [PhD dissertation], USA, Miami University, 2002.
    [77] Chiapperino, D.; Falvey, D. E. N-Methyl-N-Phenylnitrenium Ion from Photolysis of N-(Methylphenylamino)-2,4,6-Trimethylpyridinium Tetrafluoroborate. J. Phys. Org. Chem. 1997, 10, 917-924.
    [78] Hoffman, R. V.; Kumar, A.;. Buntain, G. A Ionization of N-Arylsulfonyloxy Amines: The Nitrenium Ion. J. Am. Chem. Soc. 1985, 107, 4731-4736.
    [79] Hobson, J. D.; and Riddell, W. D. Transannular Cyclisations of Cyclo-olefinic N-chloro-amines. Chem. Commun. 1968, 1178-1180.
    [80] Edwards, O. E.; Bernath, G.; Dixon, J.; Paton, J. M.; Vocelle, D. Reactions of Aralkyl and Unsaturated Chloramines: The Nitrenium Ion Question. Can. J. Chem. 1974, 52, 2123-2135.
    [81] Simonova, T. P.; Nefedov, V. D.; Toropova, M. A.; Kirillov, N. F. Current Approach to the Problem of Nitrenium Ions. Russ. Chem. Rev. 1992, 61(6), 584-589.
    [82] Hiyam, T.; Koide, H..; Nozaki, H. Oxidation of Cyclopropylamines and 2-Phenylaziridine with Lead Tetraacetate. Tetrahedron Lett. 1973, 2143-2144.
    [83] Chiapperino, D.; McIlroy, S.; Falvey D. E.; Reactions of N-Methyl-N- (4-biphenylyl)nitrenium Ion with Electron-Rich Arenes: Laser Flash Photolysis and Product Studies. J. Am. Chem. Soc. 2002, 124, 3567-3577.
    [84] Potts, K. T.; Kutz, A. A.; Nachod, F. C. Aromatic Substitution by N-Arylhydroxylamines-II: Generation of Nitrenes from Arylhydroxylamines and N-Benzenesulfonylhydroxylamines and Phosphorous Pentoxide. Tetrahedron 1975, 31, 2171-2174.
    [85] Patrik, T. B.; Shield. T. A. Conversion of o-Biphenylhydroxylamine to Carbazole. Tetrahedron Lett. 1973, 445-446.
    [86] Greci, L.; Rossetti, M.; Galeazzi, R.; Stipa, P.; Sgarabotto, P.; Cozzini, P. Nitrenium ions. Part 4.1 Reactivity and Crystal Structure of 1-Methyl-2-phenyl-3-N-benzoyl Oxyindole Iminium Perchlorate and Reactivity of N, N-Dimethylamino-p-N-benzoyloxy Aniline Nitrenium Chloride with 2-Phenylindole. J. Chem. Soc., Perkin Trans. 2 1998, 2683–2687.
    [87] Kikugawa, Y.; Kawase, M. Electrophilic Aromatic Subsitution with a Nitrenium Ion Generated From N-Chloro-N-methoxyamides. Application to the Synthesis of 1-Methoxy-2-oxindoles. J. Am. Chem. Soc. 1984, 106, 5728-5729.
    [88] Glover, S. A.; Goosen, A.; McCleland, C. W.; Schoonraad, J. L. N-Alkoxy-N-acylnitrenium Ions as Possible Intermediates in Intramolecular Aromatic Substitution: Novel Formation of N-Acyl-3,4-dihydro-1H-2,1- benzoxazines and N-Acyl-4,5-dihydro-1H,3H -2,1-benzoxazepine. J. Chem. Soc., Perkin Trans 1 1984, 2255-2260.
    [89] Kikugawa, Y.; Shimada, M. Intramolecular Cyclization with Nitrenium Ions Generated from N-Chloro-N-methoxyamides in Neutral Conditions. Chemistry Lett. 1987, 1771-1774.
    [90] Glover, S. A.; Goosen, A.; McCleland, C. W.; Schoonraad, J. L. N-Alkoxy-N-acylnitrenium Ions in Intramolecular Aromatic Addition Reactions. Tetrahedron 1987, 43(11), 2577-2592.
    [91] Kawase, M.; Kitamura, T.; Kikugawa, Y. Eletrophilic Aromatic Substitution with N-Methoxy-N-acylnitrenium Ions Generated from N-Chloro-N-methoxyamides: Syntheses of Nitrogen Heterocyclic Compounds Bearing a N-Methoxyamide Group. J. Org. Chem. 1989, 54, 3394-3403.
    [92] Kikugawa, Y.; Kawase, M. An Electrophilic Aromatic Subsitution by N-Methoxyamides via Hypervalent Iodine Intermediates. Chemistry Lett. 1990, 581-582.
    [93] Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Versatile Hypervalent-Iodine(III)-Catalyzed Oxidations with m-Chloroperbenzoic Acid as a Cooxidant. Angew. Chem. Int. Ed. 2005, 44, 6193-6196.
    [94] Richardson, R. D.; Wirth, T. Hypervalent Iodine Goes Catalytic. Angew. Chem. Int. Ed. 2006, 45, 4402-4404.
    [95] Wirth, T. Hypervalent Iodine Chemistry in Synthesis: Scope and New Directions. Angew. Chem. Int. Ed. 2005, 44, 3656-3665.
    [96] Moriarty, R. M. Organohypervalent Iodine: Development, Applications, and Future Directions. J. Org. Chem. 2005, 70, 2893- 2903
    [97] Varvoglis, A. Polyvalent Iodine Compounds in Organic Synthesis. Synthesis 1984, 9, 709-726.
    [98] Stang, P. J.; Zhdankin, V. V. Organic Polyvalent Iodine Compounds. Chem. Rev. 1996, 96(3), 1123~1178.
    [99] Stang, P. J.; Zhdankin, V. V. Recent Developments in the Chemistry of Polyvalent Iodine Compounds. Chem. Rev. 2002, 102(7),: 2523~2584.
    [100] Pohnert, G. Phenyliodine(III) Bis(trifluoroacetate) (PIFA). J. Prakt. Chem. 2000, 342(7), 731-734.
    [101] Correa, A.; Herrero, M. T.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartin, R. An Alternative Approach towards Novel Heterocycle-fused 1,4-Diazepine-2-ones by an Aromatic Amidation Protocol. Tetrehedron 2003, 59, 7103-7110.
    [102] Correa, A.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartin, R. An Efficient, PIFA Mediated Approach to Benzo-, Naphtho-, and Heterocycle-fused Pyrrolo[2,1-c][1,4]diazepines. An Advantageous Acess to the Antitumor Antibiotic DC-81. J. Org. Chem. 2005, 70, 2256-2264.
    [103] (a) Romero, A. G.; Darlington, W. H.; McMillan, M. Synthesis of the Selective D2 Receptor Agonist PNU-95666E from D-Phenylalanine Using a Sequential Oxidative Cyclization Strategy. W. J. Org. Chem. 1997, 62(19), 6582-6587. (b) Romero, A. G.; Darlington, W. H.; Jacobsen, E. J.;Mickelson, J. W. Oxidative Cyclization of Acyclic Ureas with Bis(trifluoroacetoxy)iodobenzene to Generate N-Substituted 2-Benzimidazolinones. Tetrahedron Lett. 1996, 37(14), 2361-2364.
    [104] Herrero, M. T.; Tellitu, I.; Domínguez, E. D.; Hernández, S.; Moreno, I.; SanMartín, R. A General and Efficient PIFA Mediated Synthesis of Heterocycle-fused Quinolinone Derivatives. Tetrahedron 2002, 58, 8581-8589.
    [105] Glover, S. A.; Goosen, A.; McCleland, C. W.; Schoonraad, J. L. N-Alkoxy-N-nitrenium ions in Intramolecular Aromatic Additon Reactions. Tetrahedron 1987, 43(11), 2571-2592.
    [106] Wardrop, D. J.; Basak, A. N-Methoxy-N-acylnitrenium Ions: Application to the Formal Synthesis of (-)-TAN1251A. Org. Lett. 2001; 3(7), 1053-1056.
    [107] Wardrop, D. J.; Zhang, W.; Landrie, C. L. Stereoselective Nitrenium Ion Cyclizations: Asymmetric Synthesis of the (±)-Kishi Lactam and an Intermediate for the Preparation of Fasicularin. Tetrehedron Lett. 2004, 45, 4229-4231.
    [108] Serna, S.; Tellitu, I. ; Domínguez, E.; Moreno, I.; SanMartín, R. Expeditious Approach to 5-Aroyl-pyrrolidinones by a Novel PIFA-Mediated Alkyne Amidation Reaction. Org. Lett. 2005, 7(14), 3073-3076.
    [109] Serna, S.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartín, R. Iodine(III)-mediated Aromatic Amidation vs Olefin Amidohydroxylation. The Amide N-Substituent Makes the Difference. Tetrahedron 2004, 60, 6533-6539.
    [110] Correa, A.; Tellitu, I.; Domínguez, E.; SanMartín, R. Novel Alternative for the C-N Bond Formation through a PIFA-Mediated Oxidative Cyclization and Its Application to the Synthesis of Indazole-3-ones. J. Org. Chem. 2006, 71, 3501-3505.
    [111] Correa, A.; Tellitu, I.; Domínguez, E.; SanMartín, R. Novel Alternative for the N-S Bond Formation and Its Application to the Synthesis of Benzisothiazole-3-ones. Org. Lett. 2006, 8(21), 4811-4813.
    [112] Glover, S. A.; Scott, A. P. MNDO Properties of Heteroatom and Phenyl Ssubstituted Nitrenium Ions. Tetrahedron 1989, 45, 1763-1776.
    [113] Scott, A. P. Chemical and Theoretical Studies on Nitrenium Ions, University of New England, 1991.
    [114] Kikugawa, Y.; Nagashima, A.; Sakamoto, T.; Miyazawa, E.; Shiiya, M. Intramolecular Cyclization with Nitrenium Ions Generated by Treatment of N-Acylaminophtahlimides with Hypervalent Iodine Compounds: Formation of Lactams and Spiro-Fused Lactams. J. Org. Chem. 2003, 68, 6739-6744.
    [115] Clemente, D. V.; Lobo, A. M.; Prabhakar, S. A New Synthesis of Quinoline Derivatives. Tetrahedron Lett. 1994, 35(13), 2043-2046.
    [116] Kenneth, N. F.; Shaw, A. M.; Ariel, G. G.; Marvin, D. A. Preparation and Properties of β-3-Indolyl Compounds Related to Tryptophan Metabolism. J. Org. Chem. 1958, 23(8), 1171-1178.
    [117] Snyder, H. R.; Eliel, E. L. An Alkylation with the Methiodide of 1-Methyl-3-dimethylaminomethylindole (1-Methylgramine). J. Am. Chem. Soc. 1948, 70, 1703-1705.
    [118] Balakrishnan P.; Baumstark A L.; Boykin D W. 17O NMR Spectroscopy: Unusual Substituent Effects in para-Substitued Benzyl Alcohols and Acetates. Tetrahedron Lett. 1984, 25, 169-172.
    [119] Carreno, M. C.; Mazery, R. D.; Urbano, A.; Colobert, F.; Solladie, G.. Reductive Cyclizations of Hydroxysulfinyl Ketones: Enantioselective Access to Tetrahydropyran and Tetrahydrofuran Derivatives. J. Org. Chem. 2003, 68, 7779-7787.
    [120] Aboul-Enein, M. N.; El-Azzouny, A.; Maklad ,Y. A.; Attia, M. I.; Wiese, M. Synthesis, Selective Aldose Reductase Inhibitory Profile and Antihyperglycaemic Potential of Certain Parabenic Acid Derivatives. Sci. Pharm. 2001, 69, 329-350.
    [121] Adams, R.; Thal. A. F. Benzyl Cyanide. Organic Syntheses, CV 1 1941,107-109.
    [122] Christine, B.; Rene, R.; Pierre, D.; A Convenient One-Pot Synthesis of Aralkyl Bromides and Iodides by Reductive Halogenation of Aromatic Carbonyl Compounds. Synthesis 1988, 11, 902-904.
    [123] Grummitt, O.; Buck, A. 1-Chloromethylnaphthalene. Org. Synth.; Coll. Vol. III 1955, 195-197.
    [124] Cordi, A. A.; Berque-Bestel, I.; Persigand, T.; Lacoste, J.; Newman-Tancredi, A.; Audinot, V.; Millan, M. J. Potential Antidepressants Displayed Combined r2-Adrenoceptor Antagonist and Monoamine Uptake Inhibitor Properties. J. Med. Chem. 2001, 44, 787-805.
    [125] Chen, C.; Wilcoxen, K. M.; Huang, C. Q.; McCarthy, J. R.; Chen, T.; Grigoriadis, D. E. Optimization of 3-Phenylpyrazolo[1,5-a]pyrimidines as Potent Corticotropin-releasing Factor-1 Antagonists with Adequate Lipophilicity and Water Solubility. Bioorg. Med. Chem. Lett. 2004, 14, 3669-3674.
    [126] Al-Omran, F.; Khalik, M. M. A.; Al-Awadhi H.; Elnagdi, M. H. Reactivity of Condensed Thiophenes in the Diels-Alder Reaction: The Reactivity of 3-Aminothieno [3,4:3′,4′]benzo[b]pyranone; 3-Aminothieno[3,4-c]quinoline and of 5-Amino-7-substituted Thieno[3,4-d]pyridazinone TowardElectron-poor Olefins and Acetylenes. Tetrahedron 1996, 52, 11915-11928.
    [127] Yu-Qing, C.; Bao-Hua, C.; Ben-Gao, P. Cyanidation of Halogen Compounds and Esters Catalyzed by PEG400. Synth. Commun. 2001, 31(14), 2203-2208.
    [128] Kimball, R. H.; Jefferson, G. D.; Pike, A. B. Ethyl α-Phenylacetaoacetate. Org. Synth.; Coll. Vol. II 1943, 284-286.
    [129] (a) Kim, J. N.; Kim, K. M.; Ryu, E. K. Improved Synthesis of N-Alkoxyphthalimides. Synth. Commun. 1992, 22(10), 1427-1423. Chern, J. H.; Lee, C. C.; Chang, C. S.; Lee, Y. C.; Tai, C. L.; Lin, Y. T.; Shia, K. S.; Lee, C. Y.; Shih, S. R. Synthesis and Antienteroviral Activity of a Series of Novel, Oxime Ether-Containing Pyridyl Imidazolidinones. Bioorg. Med. Chem. Lett. 2004, 14 (20), 5051-5056.
    [130] 尚振华,三价有机碘试剂对芳香醛腙及醛连氮氧化反应的研究,博士论文,天津:天津大学,2002。
    [131] Loudon, G. M.; Radhakrishna, A. S.; Almond, M. R.; Blodgett, J. K.; Boutin, R. H. Conversion of Aliphatic Amides into Amines with [I,I,-Bis(trifluoroacetoxy)iodo] benzene. 1. Scope of the Reaction. J. Org. Chem. 1984, 49, 4212-4216.
    [132] Hauser, C. R.; Murray, J. G. Certain 4-Hydroxyquinolines from Aniline and β-Ketonitriles. Cyclization of Nitriles through Amides by Means of Polyphophoric Acid. J. Am. Chem. Soc. 1955, 77, 2851-2852.
    [133] Vedernikova, I. V.; Haemers, A.; Ryabukhin, Y. I.; Synthesis of 4-Oxopyrimidinium and 4-Oxo-1,4-dihydropyrimidines. J. Heterocycl. Chem. 1999, 36(1), 97-104.
    [134] Miyata, O.; Nishiguchi, A.; Ninomiya, I.; Aoe, K.; Okamura, K.; Naito, T. Radical Cyclization in Heterocycles Synthesis, 11. 1 A Novel Synthesis of α, β-Disubstituted-γ-Lactones via Sulfanyl Radical Addition-Cyclization Using Hydroximates as a Tether. J. Org. Chem. 2000, 65, 6922-6931.
    [135] Casarrubios, L.; Pérez, J. A.; Brookhart, M.; Templeton, J. L. Lewis Acid-Catalyzed Synthesis of Aziridines. J. Org. Chem. 1996, 61, 8358-8359.
    [136] Tellitu, I.; Serna, S.; Herrero, M. T.; Moreno, I.; Domínguez, E.; SanMartin, R. Intramolecular PIFA-Mediated Alkyne Amidation and Carboxylation Reaction. J. Org. Chem. 2007, 72, 1526-1529.
    [137] Moreno, I.; Tellitu, I.; Domínguez, E.; SanMartin, R. A Simple Route to New Phenanthro- and Phenanthroid-Fused Thiazoles by a PIFA-Mediated (Hetero)biaryl Coupling Reaction. Eur. J. Org. Chem. 2002, 2126-2135.
    [138] Huang, X.; Shao, N.; Palani, A.; Aslanian, R. Oxidative Entry to α-Oxy-N-acyl Aminals and Hemiaminals: Efficient Formation of2-(N-Acylaminal) Substituted Tetrahydropyrans. Tetrahedron Lett. 2007, 48, 1967-1971.
    [139] Old, D. W.; Harris, M. C.; Buchwald, S. L. Efficient Palladium-Catalyzed N-Arylation of Indoles. Org. Lett. 2000, 2(10), 1403-1403.
    [140] Smith III, W. J.; Sawyer, J. S. A Novel and Selective Method for the N-Arylation of Indoles Mediated by KF/Al2O3. Tetrahedron Lett. 1996, 37(3), 299-302.
    [141] Snider, B. B. Manganese(III)-Based Oxidative Free-Radical Cyclizations. Chem. Rev. 1996, 96, 339-363.
    [142] Togo, H.; Hoshina, Y.; Muraki, T.; Nakayama, H.; Yokoyama, M. Study on Radical Amidation onto Aromatic Rings with (Diacyloxyiodo)arenas. J. Org. Chem. 1998, 63, 5193-5200.
    [143] Tsuritani, T.; Shinokubo, H.; Oshima, K. Radical [3+2] Annulation of N-Allyl-N-chlorotosylamide with Alkenes via Atom-Transfer Process. Org. Lett. 2001, 3(17), 2709-2711.
    [144] Tormo, J.; Hays, D. S.; Fu, G. C. Diastereoselective Synthesis of β-Amino Alcohols via Bu3SnH-Mediated Reductive Cyclization of Carbonyl-Oxime Ethers. J. Org. Chem. 1998, 63, 201-202.
    [145] Jaime-Figueroa, S.; Kurza, L. J.; Liu, Y.; Cruz, R. Synthesis and Experimental Study of Through-space Hydrogen–fluorine and Carbon–fluorine Spin–spin Coupling in 4, 5-Substituted 1-Acetyl-8- fluoronaphthalenes. Spectrochimica Acta Part A 2000, 56, 1167–1178.
    [146] Miranda, L. D.; Cruz-Almanza, R.; Pavón. Tandem Radical Addition/cyclization of 1-(2-Iodoethyl)indoles and Pyrroles with Methyl Acrylate under Fenton-type Conditions. ARKIVOC 2002, Xii, 15-22.
    [147] (a) Mu, X.; Zou, J.; Zeng, R.; Wu, J. Mn(III)-Promoted Cyclization of Substituted Thioformanilides Under Microwave Irradiation: A New Reagent for 2-Substituted Benzothiazoles. Tetrahedron Lett. 2005, 46, 4345–4347. (b) Stevens, M. F. G.; McCall, C. J.; Lelieveld, P.; Alexander, P.; Richter, A.; Daviess, D. E. Structural Studies on Bioactive Compounds. 23. Synthesis of Polyhydroxylated 2-Phenylbenzothiazoles and a Comparison of Their Cytotoxicities and Pharmacological Properties with Genistein and Quercetin. J. Med. Chem. 1994, 37, 1689-1695.
    [148] Toshiya, K.; Atsushi, K.; Tokiko, N.; Kazuhisa, S.; Masanori, S. Preparation of 1-Hydroxyindole Derivatives and A New Route to 2-Substituted Indoles. Heterocycles 1991, 32(2), 221-227.
    [149] Creary, X.; Burtch, E. A.; Jiang, Z. Carbocation-Forming Reactions in Dimethyl Sulfoxide. J. Org. Chem. 2003, 68, 1117-1127.
    [150] Acheson, R. M.; Aldridge, G. N.; Choi, M. C. K.; Nwankwo, J. O.; Ruscoe, M . A.; Wallis, J. D. The Graphical Abstract is from Beilstein. J. Chem. Res.(M) 1984, 4, 1301-1319.
    [151] Taber, D. F.; Tian, W. The Neber Routes to Subsituted Indoles. J. Am. Chem. Soc. 2006, 128, 1058-1059.
    [152] Raciocchi, E.; BiettI, M.; Lanzalunga, O. Mechanistic Aspects of β-Bond-Cleavage Reactions of Aromatic Radical Cations. Acc. Chem. Res. 2000, 33, 243-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700