用户名: 密码: 验证码:
新型卟啉—苝酰亚胺分子阵列的合成及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉化合物是非常理想的人工光合作用研究中叶绿素分子的替代化合物,具有独特的结构与功能特性。花酰亚胺类化合物具有优良的光热和化学稳定性,化学可修饰强,具有优异的光电性能。将两者通过一定的方式连接起来构筑成卟啉-花酰亚胺分子阵列,有望获得更为优异的光电性能。
     本论文在对国内外卟啉-花酰亚胺分子阵列在近十几年的研究进展进行总结的基础上,展示了卟啉-苝酰亚胺分子阵列在分子光电器件特别是光电转换方面的优异性能,指出该研究领域目前存在的三个主要问题:(1)合成路线长,产率低,分子阵列的品种和数量还比较少;(2)对分子阵列的聚集态结构的研究几乎是空白;(3)目前国内外对卟啉-花酰亚胺分子阵列的光物理和光化学性能研究较多,但对这些分子阵列在光电转换器件如有机太阳能电池方面的研究很少。在此基础上提出本论文的研究思路,着重于卟啉-花酰亚胺分子阵列的设计与合成、电子结构、聚集态结构的研究和探讨,重点研究了分子阵列的电荷转移与能量传递过程,初步研究了其在光电化学电池和有机薄膜太阳能电池方面的光电转换性能。
     本文首先利用Sonogashira偶合反应合成制备了两种卟啉-花酰亚胺分子阵列PDI-ZnPOR2和PDI-ZnPOR4。采用傅立叶红外光谱、氢核磁共振光谱和元素分析等表征手段对中间产物及目标分子阵列的化学结构进行了详细的表征,并初步探索优化了化合物的合成条件。电喷雾电离质谱和X射线光电子能谱的结果进一步确证两种分子阵列的结构。
     用紫外-可见吸收光谱、电化学等方法对合成的分子阵列PDI-ZnPOR2和PDI-ZnPOR4的电子结构进行了研究。研究发现,分子阵列PDI-ZnPOR2主要显示出卟啉生色团的吸收峰,并且在长波长区出现了两个新的特征吸收峰,表明分子阵列中的卟啉基元和花酰亚胺基元在基态下存在着较强的电子相互作用;而在基态下分子阵列PDI-ZnPOR4中的卟啉基元和花酰亚胺基元之间存在弱的电子相互作用,主要表现为卟啉生色团和苝酰亚胺生色团的吸收峰的简单叠加。循环伏安曲线证明分子阵列PDI-ZnPOR2和PDI-ZnPOR4表现出可逆的氧化过程和还原过程;此外,经过计算得出分子阵列PDI-ZnPOR2的能隙为1.57 eV,而PDI-ZnPOR4的能隙为1.59 eV,窄带隙特性使两种分子阵列有望应用于有机半导体和太阳能电池领域。
     重点研究了分子阵列PDI-ZnPOR2(?)口PDI-ZnPOR4在稀溶液中的电荷转移与能量传递过程,并对其激发态衰变机理进行了探讨。采用430 nm单色光激发分子阵列中的卟啉生色团,分子阵列显示出微弱的卟啉生色团的荧光发射,相对于参比单体化合物,分子阵列的荧光强度显著降低,表明分子阵列中存在从卟啉基元到花酰亚胺基元的光诱导电子转移过程。当采用560 nm光激发分子阵列中的花酰亚胺生色团时,发生了苝酰亚胺基元的强烈的荧光猝灭,分子阵列主要显示出卟啉生色团的荧光,且荧光强度明显降低,这揭示了分子阵列中发生了从苝酰亚胺基元到卟啉基元的光诱导能量转移过程,使卟啉生色团处于激发态,紧接着发生了从卟啉基元到花酰亚胺基元的电荷转移过程。这些结果说明无论激发分子阵列的卟啉发色团还是花酰亚胺发色团,从卟啉基元到花酰亚胺基元之间都会发生高效的分子内电荷转移。相对于非极性溶剂甲苯,分子阵列在四氢呋喃中表现出更强烈的荧光猝灭现象,进一步证实了分子阵列在光激发下确实存在由卟啉生色团到花酰亚胺生色团的高效的电荷转移。时间分辨荧光光谱的测试结果表明分子阵列中确实发生了光诱导的分子内电子转移。
     利用SEM和TEM等测试手段对分子阵列在不同溶剂中的聚集态结构进行了初步研究。溶剂的极性不同,分子阵列的聚集态结构也有所不同,发生了溶剂诱导的分子聚集态的变化。XRD结果证明分子阵列是以无定形状态存在。热重分析(TG)和示差扫描量热法(DSC)结果显示出两种分子阵列具有良好的热稳定性和物理稳定性,足以满足制作太阳能电池器件的要求。
     分子阵列PDI-ZnPOR2和PDI-ZnPOR4具有良好的光收集性能,并且光致电子自旋共振结果表明两者在薄膜状态会发生光诱导的分子内电子传递过程,从而使两种分子阵列在光致电荷分离器件上显示出潜在的应用价值。我们利用分子阵列PDI-ZnPOR2和PDI-ZnPOR4制备了光电化学电池和有机薄膜太阳能电池,并对其光电转换性能进行了初步的研究和探讨。研究发现分子阵列PDI-ZnPOR2和PDI-ZnPOR4的膜电极表现出明显的光伏效应,在模拟太阳光照射下能产生快速和稳定的光生电流。在此基础上,采用旋涂法制备了以分子阵列PDI-ZnPOR2和PDI-ZnPOR4为活性层的单层膜太阳能电池。在AM 1.5模拟太阳光照射下,以分子阵列PDI-ZnPOR2和PDI-ZnPOR4为活性层的单层膜器件的光电转换效率很低,这主要是因为在分子阵列中核心的花酰亚胺基元周围被卟啉基元包围,导致电子传输的通道被阻断,造成电子和空穴复合猝灭的几率大大增加。
     对卟啉-花酰亚胺分子阵列在太阳能电池器件方面的研究工作还有待改进,因实验条件及时间限制,未能更深入的研究分子阵列的聚集态结构与器件性能之间的关系;器件的光电转换效率很低,对器件性能的优化工作还有待进一步开展。本论文在此方面的初步研究工作为卟啉-苝酰亚胺分子阵列材料在有机太阳能电池方面的研究提供了基础。
Porphyrin derivatives are ideal substitutes of chlorophyll molecule in study of artificial photosynthesis, which possess unique structural and property characteristics. Perylenediimides exhibit excellent photothermal and chemical stability,they can be easily chemically modified and own outstanding photoelectric properties. Porphyirn-perylene molecular arrays are constructed by linking porphyrin and perylene moieties in a certain way, and excellent photoelectric performances will be obtained.
     On the basis of the recent domestic and foreign progress in the field of porphyirn-perylene molecular arrays were summarized, the review showed the promising applications of these arrays in the molecular photo-electric devices especially in the photo-electric transfer aspect, and raised three existed fundamental problems:(1) the synthetic routes are long and inefficient with low yield, as a result, there are relatively few candidates of the arrays; (2) the reports on the aggregation states of the porphyrin-perylene arrays are rare; (3) the researches on the properties of the arrays focuses on the photophysics and photochemistry characteristics, and researches on the arrays for applications to the photo-electric devices including the organic solar cells are few. A research strategy was accordingly proposed for this thesis:it emphasized on the design and synthesis of porphyrin-perylene arrays, on the investigation of the electronic structures and aggregation states, the research work mainly concerned the charge/energy transfer processes in the arrays, and the photo-to-electricity conversion properties of this arrays in photoelectrochemical cell and organic film solar cell are studied preliminarily.
     Using the Sonogashira coupling reaction, two novel porphyrin-perylene molecular arrays PDI-ZnPOR2 and PDI-ZnPOR4 were synthesized. The intermediate compounds and target molecular arrays was characterized by FT-IR,1HNMR and elemental analysis. The conditons of synthesis were also discussed. The chemical structures of the arrays were further proved by the results of ESI-MS and the X-ray Phtoelectron Spectroscopy.
     The electronic structures of the two porphyrin-perylene arrays have been investigated by the UV-vis absorption spectroscopy and cyclic voltammetry (CV). The absrorption of array PDI-ZnPOR2 mainly exhibits the features of porphyrin absorption, and it shows two additional absorption peaks in the long-wavelength region, which indicates relatively strong electronic interactions exsits between the porphyrin moiety and perylene moiety in the ground state; While the absorption of array PDI-ZnPOR4 is a simple superposion of those of the molecular components, this indicates that the electronic interaction between the molecular components in the array is weak in the ground state. The electrochemistry behavior of the two arrays showed reversible oxidation and reduction processes; In additionally, the band gap of the array PDI-ZnPOR2 and PDI-ZnPOR4 by calculation were 1.57 eV and 1.59 eV, repectively, the low band-gap feature make the the two arrays have potential applications in the fields of organic semiconductor and solar cells.
     Photoinduced electron-transfer and energy transfer processes of arrays PDI-ZnPOR2 and PDI-ZnPOR4 in dilute solutions have been investigated in detail, and the decay mechanism of the excited states were explored. Selectively excited porphyrin chromophore at 430 nm, molecular arrays exhibits weak porphyrin emission, and the fluorescence intensity are considerably reduced compared to the reference compound. This indicated photoinduced electron transfer process from porphyrin units to perylene units in these arrays. Exciting perylene chromophore at 560 nm, significant fluorescence quenching of the perylene moiety was observed, arrays only showed weak porphyrin emission, and compared to reference compound, the fluorescence intensity was considerably decreased. This reveals the existence of the photoinduced energy transfer processes from perylene to porphyrin, following the electron transfer process from the excited porphyrin to the perylene. These results indicated the efficient photoinduced intramolecular electron transfer processes either the porphyrin was excited or the perylene was excited. In polar solvent THF, the array exhibits much stronger queching than that in nonpolar solvent toluene, which further confirmed the existence of the efficient electron transfer porphyrin units to perylene moiety. The results of the time-resolved fluorescence spectroscopy also proved that the light induced intramolecular electron transfer really occurred in these arrays.
     The aggregated states of these arrays in different solvents were researched by SEM and TEM. The structures of the aggregated morphology differ with the variation of the solvents, which indicated the occurrence of the solvent-induced molecular aggregate states variation. The results of the XRD reveal the solid states of the arrays are amorphous. Measurements of thermogravimetry (TG) and differential scanning calorimetry (DSC) exhibits the two arrays has good thermal and physical stability, which satisfy the demand for preparation of organic solar cells.
     Molecular arrays PDI-ZnPOR2 and PDI-ZnPOR4 possess excellent light harvesting performance, the results of the lightinduced electronic spin resonance of arrays in film states indicates that lightinduced intramolecular electron transfer occurs, which makes the two arrays showing their potential applications in lightinduced charge separate devices. On these bases, we fabricated photoelectrochemical cells and organic film solar cells based on the two arrays, and made preliminarily researches on the photo-to-electric properties of these devices. Obvious photovoltaic effect of the film working electrode was discovered in the photoelectrochemical cell, and rapid and steady photocurrent was generated upon illumination by simulated solar light. Single layer solar cells using arrays PDI-ZnPOR2 and PDI-ZnPOR4 as active layer were fabricated by solution spin. Under air mass (AM) 1.5 simulated solar illumination, the power conversion efficiencies (PCE) of the single layer device using PDI-ZnPOR2 and PDI-ZnPOR4 as active layer has a much lower PCE. The reason for this poor PCE lies in that in the arrays, the perylene core was surrounded by porphyrin moieties, therefore, the transporting channel might be disrupted, which increased the recombination probabilities of the electrons and holes.
     The research work on solar cell devices based on the porphyrin-perylene arrays remain to be improved, and due to limits in experiment conditions and time, an in-depth study on relationships between aggregates morphology and device perfomances are needed in future studies; The photoelectric conversion efficiency is rather low, therefore, further experiments concerning optimization of device performances are under way. Preliminary research work in the respect provide basis for study in application of porphyrin-perylene arrays in organic solar cells.
引文
[1]Dalton L R, Benight S J, Johnson L E, Knorr D B, Jr., Kosilkin I, Eichinger B E, Robinson B H, Jen A K-Y, Overney R M. Systematic Nanoengineering of Soft Matter Organic Electro-optic Materials. Chem. Mater.2011,23:430-445.
    [2]Ishi-i T, Murakami K, Imai Y, Mataka S. Self-Assembled Fluorescent Hexaazatriphenylenes That Act as a Light-Harvesting Antenna. J. Org. Chem.2006,71:5752-5760.
    [3]Pron A, Baumgarten M, Mullen K. Phenylene Bridged Boron-Nitrogen Containing Dendrimers. Org. Lett.2010,12:4236-4239.
    [4]Sanchez L, Martin N, Gonzalez-Cantalapiedra E, Echavarren A M, Rahman G M A, Guldi D M. Molecular Panels for Energy Transduction in C60-Based Conjugates. Org. Lett.2006,8:2451-2454.
    [5]Ahn T S, Thompson A L, Bharathi P, Muller A, Bardeen C J. Light-Harvesting in Carbonyl-Terminated Phenylacetylene Dendrimers:The Role of Delocalized Excited States and the Scaling of Light-Harvesting Efficiency with Dendrimer Size. J. Phys. Chem. B 2006,110: 19810-19819.
    [6]Aumanen J, Kesti T, Sundstrom V, Teobaldi G, Zerbetto F, Werner N, Richardt G, van Heyst J, Vogtle F, Korppi-Tommola J. Internal Dynamics and Energy Transfer in Dansylated POPAM Dendrimers and Their Eosin Complexes. J. Phys. Chem. B 2010,114:1548-1558.
    [7]Hargrove A E, Reyes R N, Riddington I, Anslyn E V, Sessler J L. Boronic Acid Porphyrin Receptor for Ginsenoside Sensing. Org. Lett.2010,12:4804-4807.
    [8]Dillman K L, Beck W F. Excited-State Vibrational Coherence in Methanol Solution of ZnⅡ Tetrakis(N-methylpyridyl)porphyrin:Charge-Dependent Intermolecular Mode Frequencies and Implications for Electron-Transfer Dynamics in Photosynthetic Reaction Centers. J. Phys. Chem. B 2010,114:15269-15277.
    [9]Yao H, Sasahara H, Kimura K. Organic Porphyrin Nanoparticles with Induced Optical Activity: Ion-Based Synthesis from Achiral Chromophore and Chiral Counterions. Chem. Mater.2011,23: 913-922.
    [10]Yamazaki S, Yao M, Siroma Z, Ioroi T, Yasuda K. New-Concept CO-Tolerant Anode Catalysts Using a Rh Porphyrin-Deposited PtRu/C. J. Phys. Chem. C 2010,114:21856-21860.
    [11]Nielsen I M B, Leung K. Cobalt Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water.1. A Density Functional Study of Intermediates. J. Phys. Chem. A 2010,114: 10166-10173.
    [12]Bearinger J P, Stone G, Christian A T, Dugan L, Hiddessen A L, Wu K J J, Wu L G, Hamilton J, Stockton C, Hubbell J A. Porphyrin-Based Photocatalytic Lithography. Langmuir 2008,24: 5179-5184.
    [13]Kim P, Lim J M, Yoon M-C, Aimi J, Aida T, Tsuda A, Kim D. Excitation Energy Migration Processes in Self-Assembled Porphyrin Boxes Constructed by Conjugated Porphyrin Dimers. J. Phys. Chem. B 2010,114,9157-9164.
    [14]Takahashi K, Iwanaga I, Yamaguchi T, Komura T, Murata K. Organic solid-state solar cells with a mixture of monomeric porphyrins for light-harvesting and regioregular polythiophene for charge transport. Synth. Met.2001,123:91-94.
    [15]Kuciauskas D, Kiskis J, Caputo G A, Gulbinas V. Exciton Annihilation and Energy Transfer in Self-Assembled Peptide Porphyrin Complexes Depends on Peptide Secondary Structure. J. Phys. Chem. B 2010,114:16029-16035.
    [16]Carvalho C M B, Alves E, Costa L, Tome J P C, Faustino M A F, Neves M G. P M S, Tome A C, Cavaleiro J A S, Almeida A, Cunha A, Lin Z, Rocha J. Functional Cationic Nanomagnet-Porphyrin Hybrids for the Photoinactivation of Microorganisms. ACS Nano 2010,4:7133-7140.
    [17]Kralova J, Kejik Z, Briza T, Pouckova P, Kral A, Martasek P, Kral V. Porphyrin-Cyclodextrin Conjugates as a Nanosystem for Versatile Drug Delivery and Multimodal Cancer Therapy. J. Med. Chem.2010,53:128-138.
    [18]Ikeda C, Satake A, Kobuke Y. Proofs of Macrocyclization of Gable Porphyrins as Mimics of Photosynthetic Light-Harvesting Complexes. Org. Lett.2003,5:4935-4938.
    [19]Roger C, Miiller M G, Lysetska M, Miloslavina Y, Holzwarth A R, Wurthner F. Efficient Energy Transfer from Peripheral Chromophores to the Self-Assembled Zinc Chlorin Rod Antenna: A Bioinspired Light-Harvesting System to Bridge the "Green Gap". J. Am. Chem. Soc.2006,128: 6542-6543.
    [20]Poddutoori P K, Sandanayaka A S D, Hasobe T, Ito O, van der Est A. Photoinduced Charge Separation in a Ferrocene Aluminum(III) Porphyrin Fullerene Supramolecular Triad. J. Phys. Chem. B 2010,114:14348-14357.
    [21]Hoeben F J M, Wolffs M, Zhang J, De Feyter S, Leclere P, Schenning A P H J, Meijer E W. Influence of Supramolecular Organization on Energy Transfer Properties in Chiral Oligo(p-phenylene vinylene) Porphyrin Assemblies. J. Am. Chem. Soc.2007,129:9819-9828.
    [22]Maligaspe E, Kumpulainen T, Lemmetyinen H, Tkachenko N V, Subbaiyan N K, Zandler M E, D'Souza F. Ultrafast Singlet Singlet Energy Transfer in Self-Assembled via Metal Ligand Axial Coordination of Free-Base Porphyrin Zinc Phthalocyanine and Free-Base Porphyrin Zinc Naphthalocyanine Dyads. J. Phys. Chem. A 2010,114:268-277.
    [23]Zhang X Y, Li, Qi D D, Jiang J Z, Yan X Z, Bian Y Z. Linkage Dependence of Intramolecular Fluorescence Quenching Process in Porphyrin-Appended Mixed (Phthalocyaninato)(Porphyrinato) Yttrium(Ⅲ) Double-Decker Complexes. J. Phys. Chem. B 2010,114:13143-13151.
    [24]Lo P-C, Leng X B, Ng D K P. Hetero-arrays of porphyrins and phthalocyanines. Coordin. Chem. Rev.2007,251:2334-2353.
    [25]Wu W T, Wu W H, Ji S M, Guo H M, Wang X, Zhao J. The synthesis of 5,10,15,20-tetraarylporphyrins and their platinum(Ⅱ) complexes as luminescent oxygen sensing materials. Dyes Pigments 2011,89:199-211.
    [26]Maligaspe E, Sandanayaka A S D, Hasobe T, Ito O, D'Souza F. Sensitive Efficiency of Photoinduced Electron Transfer to Band Gaps of Semiconductive Single-Walled Carbon Nanotubes with Supramolecularly Attached Zinc Porphyrin Bearing Pyrene Glues. J. Am. Chem. Soc.2010,132: 8158-8164.
    [27]Gunderson V L, Wilson T M, Wasielewski M R. Excitation Energy Transfer Pathways in Asymmetric Covalent Chlorophyll a Tetramers. J. Phys. Chem. C 2009,113:11936-11942.
    [28]Durr K, Jux N, Zahl A, van Eldik R, Ivanovic-Burmazovic I. Volume Profile Analysis for the Reversible Binding of Superoxide to Form Iron(Ⅱ)-Superoxo/Iron(Ⅲ)-Peroxo Porphyrin Complexes. Inorg. Chem.2010,49:11254-11260.
    [29]Goransson E, Boixel J, Monnereau C, Blart E, Pellegrin Y, Becker H-C, Hammarstrom L, Odobel F. Photoinduced Electron Transfer in Zn(Ⅱ)porphyrin-Bridge-Pt(Ⅱ)acetylide Complexes:Variation in Rate with Anchoring Group and Position of the Bridge. Inorg. Chem.2010,49:9823-9832.
    [30]Umeyama T, Takamatsu T, Tezuka N, Matano Y, Araki Y, Wada T, Yoshikawa O, Sagawa T, Yoshikawa S, Imahori H. Synthesis and Photophysical and Photovoltaic Properties of Porphyrin-Furan and -Thiophene Alternating Copolymers. J. Phys. Chem. C 2009,113:10798-10806.
    [31]Diers J R, Taniguchi M, Holten D, Lindsey J S, Bocian D F. Probing the Rate of Hole Transfer in Oxidized Porphyrin Dyads Using Thallium Hyperfine Clocks. J. Am. Chem. Soc.2010,132: 12121-12132.
    [32]Webster S, Odom S A, Padilha L A, Przhonska O V, Peceli D, Hu H H, Nootz G, Kachkovski A D, Matichak J, Barlow S, Anderson H L, Marder S R, Hagan D J, Van Stryland E W. Linear and Nonlinear Spectroscopy of a Porphyrin Squaraine Porphyrin Conjugated System. J. Phys. Chem. B 2009,113:14854-14867.
    [33]Schmittel M, Samanta S K. Orthogonal Actuation of a Supramolecular Double-Porphyrin Tweezer. J. Org. Chem.2010,75:5911-5919.
    [34]Shetti V S, Ravikanth M. Supramolecular Tetrads Containing Sn(IV) Porphyrin, Ru(II) Porphyrin, and Expanded Porphyrins Assembled Using Complementary Metal-Ligand Interactions. Inorg. Chem. 2011,50:1713-1722.
    [35]Honda T, Nakanishi T, Ohkubo K, Kojima T, Fukuzumi S. Formation of a Long-Lived Photoinduced Electron-Transfer State in an Electron Acceptor Donor Acceptor Porphyrin Triad Connected by Coordination Bonds. J. Phys. Chem. C 2010,114:14290-14299.
    [36]Oar M A, Dichtel W R, Serin J M, Frechet J M J. Light-Harvesting Chromophores with Metalated Porphyrin Cores for Tuned Photosensitization of Singlet Oxygen via Two-Photon Excited FRET. Chem. Mater.2006,18:3682-3692.
    [37]Kozaki M, Uetomo A, Suzuki S, Okada K. A Light-Harvesting Array Composed of Porphyrins and Rigid Backbones. Org. Lett.2008,10:4477-4480.
    [38]Ambroise A, Li J Z, Yu L H, Lindsey J S. A Self-Assembled Light-Harvesting Array of Seven Porphyrins in a Wheel and Spoke Architecture. Org. Lett.2000,2:2563-2566.
    [39]Zhang F, Roznyatovskiy V, Fan F-R F, Lynch V, Sessler J L, Bard A J. A Method for Rapid Screening of Photosensitizers by Scanning Electrochemical Microscopy (SECM) and the Synthesis and Testing of a Porphyrin Sensitizer. J. Phys. Chem. C 2011,115:2592-2599.
    [40]Demel J, Kubat P, Jirka I, Kovar P, Pospisil M, Lang K. Inorganic-Organic Hybrid Materials: Layered Zinc Hydroxide Salts with Intercalated Porphyrin Sensitizers. J. Phys. Chem. C 2010,114: 16321-16328.
    [41]Lo C-F, Hsu S-J, Wang C-L, Cheng Y-H, Lu H-P, Diau E W-G, Lin C-Y. Tuning Spectral and Electrochemical Properties of Porphyrin-Sensitized Solar Cells. J. Phys. Chem. C 2010,114: 12018-12023.
    [42]Mozer A J, Griffith M J, Tsekouras G, Wagner P, Wallace G G, Mori S, Sunahara K, Miyashita M, Earles J C, Gordon K C, Du L, Katoh R, Furube A, Officer D L. Zn-Zn Porphyrin Dimer-Sensitized Solar Cells:Toward 3-D Light Harvesting. J. Am. Chem. Soc.2009,131:15621-15623.
    [43]Wagner K, Griffith M J, James M, Mozer A J, Wagner P, Triani G, Officer D L, Wallace G G. Significant Performance Improvement of Porphyrin-Sensitized TiO2 Solar Cells under White Light Illumination. J. Phys. Chem. C 2011,115:317-326.
    [44]Xiang N, Huang X W, Feng X M, Liu Y J, Zhao B, Deng L J, Shen P, Fei J J, Tan S T. The structural modification of thiophene-linked porphyrin sensitizers for dye-sensitized solar cells. Dyes Pigments.2011,88:75-83.
    [45]Oku T, Noma T, Suzuki A, Kikuchi K, Kikuchi S. Fabrication and characterization of fullerene/porphyrin bulk heterojunction solar cells. J. Phys. Chem. Solids.2010,71:551-555.
    [46]Hizume Y, Tashiro K, Charvet R, Yamamoto Y, Saeki A, Seki S, Aida T. Chiroselective Assembly of a Chiral Porphyrin Fullerene Dyad:Photoconductive Nanofiber with a Top-Class Ambipolar Charge-Carrier Mobility. J. Am. Chem. Soc.2010,132:6628-6629.
    [47]Asir S, Demir A S, Icil H. The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides:Photophysical, electrochemical, chiroptical and intramolecular charge transfer properties. Dyes Pigments 2010,84:1-13.
    [48]Fan L Q, Zhu W H, Li J, Tian H. Novel red-light emitting metal complex based on asymmetric perylene bisimide and 8-hydroxyquinoline dyads. Synth. Met.2004,145:203-210.
    [49]van Herrikhuyzen J, Syamakumari A, Schenning A P H J, Meijer E W. Synthesis of n-Type Perylene Bisimide Derivatives and Their Orthogonal Self-Assembly with p-Type Oligo(p-phenylene vinylene)s. J. Am. Chem. Soc.2004,126:10021-10027.
    [50]Wurthner F, Thalacker C, Diele S. Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes. Chem. Eur. J.2001,7:2245-2253.
    [51]Rybtchinski B, Sinks L E, Wasielewski M R. Combining Light-Harvesting and Charge Separation in a Self-Assembled Artificial Photosynthetic System Based on Perylenediimide Chromophores. J. Am. Chem. Soc.2004,126:12268-12269.
    [52]Kolhe N B, Asha S K, Senanayak S P, Narayan K S. n-Type Field Effect Transistors Based on Rigid Rod and Liquid Crystalline Alternating Copoly(benzobisoxazole) Imides Containing Perylene and/or Naphthalene. J. Phys. Chem. B 2010,114:16694-16704.
    [53]Seo H-S, An M-J, Zhang Y, Choi J-H. Characterization of Perylene and Tetracene-Based Ambipolar Light-Emitting Field-Effect Transistors. J. Phys. Chem. C 2010,114:6141-6147.
    [54]Wurthner F, Stepanenko V, Chen Z J, Saha-Moller C R, Kocher N, Stalke D. Preparation and Characterization of Regioisomerically Pure 1,7-Disubstituted Perylene Bisimide Dyes. J. Org. Chem. 2004,69:7933-7939.
    [55]Kong X F, He Z Q, Zhang Y N, Mu L P, Liang C J, Chen B, Jing X P, Cammidge A N. A Mesogenic Triphenylene-Perylene-Triphenylene Triad. Org. Lett.2011,13:764-767.
    [56]Struijk C W, Sieval A B, Dakhorst J E J, van Dijk M, Kimkes P, Koehorst R B M, Donker H, Schaafsma T J, Picken S J, van de Craats A M, Warman J M, Zuilhof H, Sudholter E J R. Liquid Crystalline Perylene Diimides:Architecture and Charge Carrier Mobilities. J. Am. Chem. Soc.2000, 122:11057-11066.
    [57]Shibano Y, Imahori H, Adachi C. Organic Thin-Film Solar Cells Using Electron-Donating Perylene Tetracarboxylic Acid Derivatives. J. Phys. Chem. C 2009,113:15454-15466.
    [58]Zhang Q L, Cirpan A, Russell T P, Emrick T. Donor-Acceptor Poly(thiophene-block-perylene diimide) Copolymers:Synthesis and Solar Cell Fabrication. Macromolecules 2009,42:1079-1082.
    [59]Yan P, Chowdhury A, Holman M W, Adams D M. Self-Organized Perylene Diimide Nanofibers. J. Phys. Chem. B 2005,109:724-730.
    [60]Feng J Q, Liang B L, Wang D L, Xue L, Li X Y. Novel Fluorescent Dyes with Fused Perylene Tetracarboxlic Diimide and BODIPY Analogue Structures. Org. Lett.2008,10:4437-4440.
    [61]Lee S, Muller A M, Al-Kaysi R, Bardeen C J. Using Perylene-Doped Polymer Nanotubes as Fluorescence Sensors. Nano. Lett.2006,6:1420-1424.
    [62]Adachi M, Nagao Y. Design of Near-Infrared Dyes Based on π-Conjugation System Extension. Theoretical Evaluation of Arylimidazole Derivatives of Perylene Chromophore. Chem. Mater.1999, 11:2107-2114.
    [63]Correa D S, Oliveira S L, Misoguti L, Zilio S C, Aroca R F, Constantino C J L, Mendonca C R. Investigation of the Two-Photon Absorption Cross-Section in Perylene Tetracarboxylic Derivatives: Nonlinear Spectra and Molecular Structure. J. Phys. Chem. A 2006,110:6433-6438.
    [64]Sautter A, Kaletas B K, Schmid D G, Dobrawa R, Zimine M, Jung G, Stokkum I H M, Cola L D, Williams R M, Wurthner F. Ultrafast Energy-electron transfer cascade in a multichromophoric light-harvesting molecular square. J. Am. Chem. Soc.2005,127:6719-6729.
    [65]Balaji G, Kale T S, Keerthi A, Pelle A M D, Thayumanavan S, Valiyaveettil S. Low Band Gap Thiophene-Perylene Diimide Systems with Tunable Charge Transport Properties. Org. Lett.2011,13: 18-21.
    [66]Yilmaz M D, Bozdemir O A, Akkaya E U. Light Harvesting and Efficient Energy Transfer in a Boron-dipyrrin (BODIPY) Functionalized Perylenediimide Derivative. Org. Lett.2006,8:2871-2873.
    [67]Tang W H, Ke L, Chen Z-K. Incorporating Perylene Moiety into Poly (phenothiazine-co-bithiophene) Backbone for Higher Charge Transport. J. Phys. Chem. B 2008,112: 3590-3596.
    [68]Flamigni L, Ventura B, You C-C, Hippius C, Wurthner F. Photophysical Characterization of a Light-Harvesting Tetra Naphthalene Imide/Perylene Bisimide Array. J. Phys. Chem. C 2007,111: 622-630.
    [69]Kim M H, Cho M J, Kim K H, Hoang M H, Lee T W, Jin J, Kang N S, Yu J-W, Choia D H. Organic donor-σ-cceptor molecules based on l,2,4,5-tetrakis((E)-2-(5'-hexyl-2,2'-bithiophen-5-yl)vinyl)benzene and perylene diimide derivative and their application to photovoltaic devices. Org. Electron.2009,10:1429-1441.
    [70]Ie Y, Uto T, Saeki A, Seki S, Tagawa S, Aso Y. Photovoltaic performance and charge carrier mobility of dendritic oligothiophene bearing perylene bis(dicarboximide) groups. Synth. Met.2009, 159:797-801.
    [71]Mikroyannidis J A, Stylianakis M M, Sharma G D, Balraju P, Roy M S. A Novel Alternating Phenylenevinylene Copolymer with Perylene Bisimide Units:Synthesis, Photophysical, Electrochemical, and Photovoltaic Properties. J. Phys. Chem. C 2009,113:7904-7912.
    [72]Foster S, Finlayson C E, Keivanidis P E, Huang Y-S, Hwang I, Friend R H, Otten M B J, Lu L-P, Schwartz E, Nolte R J M, Rowan A E. Improved Performance of Perylene-Based Photovoltaic Cells Using Polyisocyanopeptide Arrays. Macromolecules 2009,42:2023-2030.
    [73]Susarova D K, Troshin P A, Hoglinger D, Koeppe R, Babenko S D, Lyubovskaya R N, Razumov V F, Sariciftci N S. Donor-acceptor complex formation in evaporated small molecular organic photovoltaic cells. Sol. Energ. Mater. Sol. Cells.2010,94:803-811.
    [74]Shibano Y, Umeyama T, Matano Y, Imahori H. Electron-Donating Perylene Tetracarboxylic Acids for Dye-Sensitized Solar Cells. Org. Lett.2007,9:1971-1974.
    [75]Neubauer A, Szarko J M, Bartelt A F, Eichberger R, Hannappel T. Photophysical Study of Perylene/TiO2 and Perylene/ZnO Varying Interfacial Couplings and the Chemical Environment. J. Phys. Chem. C 2011,115:5683-5691.
    [76]Weaver J E, Dasari M R, Datar A, Talapatra S, Kohli P. Investigating Photoinduced Charge Transfer in Carbon Nanotube-Perylene-Quantum Dot Hybrid Nanocomposites. ACS Nano 2010,4: 6883-6893.
    [77]Muthukumaran K, Loewe R S, Kirmaier C, Hindin E, Schwartz J K, Sazanovich I V, Diers J R, Bocian D F, Holten D, Lindsey J S. Synthesis and Excited-State Photodynamics of A Perylene-Monoimide-Oxochlorin Dyad. A Light-Harvesting Array. J. Phys. Chem. B 2003,107: 3431-3442.
    [78]You C C, Wurthner F. Porphyrin-Perylene Bisimide Dyads and Triads:Synthesis and Optical and Coordination Properties. Org. Lett.2004,6:2401-2404.
    [79]Ghirotti M, Chiorboli C, You C-C, Wurthner F, Scandola F. Photoinduced Energy and Electron-TransferProcesses in Porphyrin-Perylene Bisimide Symmetric Triads. J. Phys. Chem. A 2008, 112:3376-3385.
    [80]Kelley R F, Tauber M J, Wasielewski M R. Intramolecular Electron Transfer through the 20-Position of a Chlorophyll a Derivative:An Unexpectedly Efficient Conduit for Charge Transport. J. Am. Chem. Soc.2006,128:4779-4791.
    [81]Xiao S Q, El-Khouly M E, Li Y L, Gan Z H, Liu H B, Jiang L, Araki Y, Ito O, Zhu D B. Dyads and Triads Containing Perylenetetracarboxylic Diimide and Porphyfin:Efficient Photoinduced Electron Transfer Elicited via Both Excited Singlet States. J. Phys. Chem. B 2005,109:3658-3667.
    [82]Liu M O, Tai C-H, Chen C-W, Chang W-C, Hu A T. The fluorescent and photoelectric conversion properties of porphyrin-perylene tetracarboxylic complex. J. Photochem. Photobiol A Chem.2004,163: 259-266.
    [83]Tomizaki K, Loewe R S, Kirmaier C, Schwartz J K, Retsek J L, Bocian D F, Holten D, Lindsey J S. Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments. J. Org. Chem.2002,67:6519-6534.
    [84]Odom S A, Kelley R F, Ohira S, Ensley T R, Huang C, Padilha L A, Webster S, Coropceanu V, Barlow S, Hagan D J, Van Stryland E W, Bredas J-L, Anderson H L, Wasielewski M R, Marder S R. Photophysical Properties of an Alkyne-Bridged Bis(zinc porphyrin) Perylene Bis(dicarboximide) Derivative. J. Phys. Chem. A 2009,113:10826-10832.
    [85]Hasselman G M, Watson D F, Stromberg J R, Bocian D F, Holten D, Lindsey J S, Meyer G J. Theoretical Solar-to-Electrical Energy-Conversion Efficiencies of Perylene Porphyrin Light-Harvesting Arrays. J. Phys. Chem. B 2006,110:25430-25440.
    [86]Jiao C J, Huang K-W, Chi C Y, Wu J S. Doubly and Triply Linked Porphyrin-Perylene Monoimides as Near IR Dyes with Large Dipole Moments and High Photostability. J. Org. Chem. 2011,76:661-664.
    [87]Kelley R F, Shin W S, Rybtchinski B, Sinks L E, Wasielewski M R. Photoinitiated Charge Transport in Supramolecular Assemblies of a 1,7,N,N'-Tetrakis(zinc porphyrin)-perylene-3,4;9,10-bis(dicarboximide). J. Am. Chem. Soc.2007,129:3173-3181.
    [88]Prodi A, Chiorboli C, Scandola F, Iengo E, Alessio E, Dobrawa R, Wurthner F. Wavelength-Dependent Electron and Energy Transfer Pathways in a Side-to-Face Ruthenium Porphyrin/PeryleneBisimide Assembly. J. Am. Chem. Soc.2005,127:1454-1462.
    [89]Indelli M T, Chiorboli C, Scandola F, Iengo E, Osswald P, Wurthner F. Photoinduced Processes in Self-Assembled Porphyrin/Perylene Bisimide Metallosupramolecular Boxes. J. Phys. Chem. B 2010, 114:14495-14504.
    [90]Ambroise A, Kirmaier C, Wagner R W, Loewe R S, Bocian D F, Holten D, Lindsey J S. Weakly coupled molecular photonic wires:synthesis and excited-state energy-transfer dynamics. J. Org. Chem. 2002,67:3811-3826.
    [91]Yang S I, Prathapan S, Miller M A, Seth J, Bocian D F, Lindsey J. S, Hotten D. Synthesis and excited-state photodynamics in perylene-porphyrin dyads.2. Effects of porphyrin metalation state on the energy transfer, charge transfer, and deactivation channels. J. Phys. Chem. B 2001,105: 8249-8258.
    [92]孙景志,杨新国,李寒莹,黄骥,汪茫.酸碱控制的卟啉-苝酰亚胺分子阵列荧光开关.高等学校化学学报,2004,25:2148-2152.
    [93]van der Boom T, Hayes R T, Zhao Y Y, Bushard P J, Weiss E A, Wasielewski M R. Charge Transport in Photofunctional Nanoparticles Self-Assembled from Zinc 5,10,15,20-Tetrakis(perylenediimide)porphyrin Building Blocks. J. Am. Chem. Soc.2002,124: 9582-9590.
    [94]Loewe R S, Tomizaki K, Youngblood W J, Bo Z, Lindsey J S. Synthesis of perylene-porphyrin building blocks and rod-like oligomers for light-harvesting applications. J. Mater. Chem.2002,12: 3438-3451.
    [95]Miller M A, Lammi R K, Prathapan S, Holten D, Lindsey J S. A tightly coupled linear array of perylene, bis(porphyrin), and phthalocyanine units that functions as a photoinduced energy-transfer cascade. J. Org. Chem.2000,65:6634-6649.
    [96]Kirmaier C, Hindin E, Schwartz J K, Sazanovich I V, Diers J R, Muthukumaran K, Taniguchi M, Bocian D F, Lindsey J S, Holten D. Synthesis and Excited-State Photodynamics of Perylene-Bis(Imide)-Oxochlorin Dyads. A Charge-Separation Motif. J. Phys. Chem. B 2003,107: 3443-3454.
    [97]Huang X B, Shi Q Q, Chen W-Q, Zhu C L, Zhou W Y, Zhao Z, Duan X-M, Zhan X W. Low-Bandgap Conjugated Donor-Acceptor Copolymers Based on Porphyrin with Strong Two-Photon Absorption. Macromoleculars 2010,43:9620-9626.
    [98]Huang Y-S, Yang X D, Schwartz E, Lu L P, Albert-Seifried S, Finlayson C E, Koepf M, Kitto H J, Ulgut B, Otten M B J, Cornelissen J J L M, Nolte R J M, Rowan A E, Friend R H. Sequential Energy and Electron Transfer in Polyisocyanopeptide-Based Multichromophoric Arrays. J. Phys. Chem. B 2011,115:1590-1600.
    [99]Liu Y, Wang N, Li Y J, Liu H B, Li Y L, Xiao J C, Xu X H, Huang C S, Cui S, Zhu D B. A New Class of Conjugated Polyacetylenes Having Perylene Bisimide Units and Pendant Fullerene or Porphyrin Groups. Macromolecules 2005,38:4880-4887.
    [100]O'neil M P, Niemczyk M P, Svec W A, Gosztola D, Gaines III G L, Wasielewski M R. Picosecondoptictal switching based on biphotonic excition of an electron donor-acceptor-donor molecule. Science 1992,257:63-65.
    [1]Reinhoudt D N, Crego-Calama M. Synthesis Beyond the Molecule. Science 2002,295:2403-2407.
    [2]Bradshaw D S, Peck J N T, Oganesyan V S, Andrews D L. Optically Controlled Energy Transfer in Stacked and Coplanar Polycyclic Chromophores. J. Phys. Chem. Lett.2010,1:2705-2708.
    [3]De Schryver F C, Vosch T, Cotlet M, Van der Auweraer M, Mullen K, Hofkens J. Energy Dissipation in Multichromophoric Single Dendrimers. Acc. Chem. Res.2005,38:514-522.
    [4]Kulkarni A P, Kong X X, Jenekhe S A. Polyfluorene Terpolymers Containing Phenothiazine and Fluorenone:Effects of Donor and Acceptor Moieties on Energy and Intrachain Charge Transfer Processes in the Photoluminescence and Electroluminescence of Multichromophore Copolymers. Macromolecules 2006,39:8699-8711.
    [5]Zhao Z X, Cammidge A N, Hughes D L, Cook M J. Modular Face-to-Face Assembly of Multichromophore Arrays That Absorb Across the Complete UV-Visible Spectrum and into the Near-IR. Org. Lett.2010,12:5138-5141.
    [6]Szent-Gyorgyi C, Schmidt B F, Fitzpatrick J A J, Bruchez M P. Fluorogenic Dendrons with Multiple Donor Chromophores as Bright Genetically Targeted and Activated Probes. J. Am. Chem. Soc.2010,132:11103-11109.
    [7]Astruc D, Boisselier E, Ornelas C. Dendrimers Designed for Functions:From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chem. Rev.2010,110:1857-1959.
    [8]Eu S, Hayashi S, Umeyama T, Oguro A, Kawasaki M, Kadota N, Matano Y, Imahori H. Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells. J. Phys. Chem. C 2007,111:3528-3537.
    [9]Chesterfield R J, Mckeen J C, Newman C R, Ewbank P C, da Silva Filho D A, Bredas J L, Miller L L, Mann K R, Frisbie C D. Organic thin film transistors based on N-alkyl perylene diimides:charge transport kinetics as a function of gate voltage and temperature. J. Phys. Chem. B 2004,108: 19281-19292.
    [10]Tatemichi S H, Lchikawa M, Koyama T, Taniguchi Y. Highly mobility n-tpye thin-film transistors based on N,N'-ditridecyl perylene diimide with thermal treatments. Appl. Phys. Lett.2006,89: 112108-112110.
    [11]Lentijo S, Miguel J A, Espinet P. Highly Fluorescent Platinum(II) Organometallic Complexes of Perylene and Perylene Monoimide, with Pt σ-Bonded Directly to the Perylene Core. Inorg. Chem. 2010,49:9169-9177.
    [12]Serin J M, Brousmiche D W, Frechet J M J. Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem. Commun.2002,2605-2607.
    [13]Zhou Z, Brusso J L, Holdcroft S. Directed Growth of 1-D Assemblies of Perylene Diimide from a Conjugated Polymer. Chem. Mater.2010,22:2287-2296.
    [14]Metivier R, Kulzer F, Weil T, Mullen K, Basche T. Energy Transfer Rates and Pathways of Single Donor Chromophores in a Multichromophoric Dendrimer Built around a Central Acceptor Core. J. Am. Chem. Soc.2004,126:14364-14365.
    [15]Vasseur K, Rolin C, Vandezande S, Temst K, Froyen L, Heremans P. A Growth and Morphology Study of Organic Vapor Phase Deposited Perylene Diimide Thin Films for Transistor Applications. J. Phys. Chem. C 2010,114:2730-2737.
    [16]Wonneberger H, Ma C Q, Gatys M A, Li C, Buerle P, Mullen K. Terthiophene-Perylene diimides: Color Tuning via Architecture Variation. J. Phys. Chem. B 2010,114:14343-14347.
    [17]Ilhan F, Tyson D S, Stasko D J, Kirschbaum K, Meador M A. Twisted, Z-Shaped Perylene Bisimide. J. Am. Chem. Soc.2006,128:702-703.
    [18]Marciniak H, Li X Q, Wurthner F, Lochbrunner S. One-Dimensional Exciton Diffusion in Perylene Bisimide Aggregates. J. Phys. Chem. A 2011,115:648-654.
    [19]Nakazono S, Easwaramoorthi S, Kim D, Shinokubo H, Osuka A. Synthesis of Arylated Perylene Bisimides through C-H Bond Cleavage under Ruthenium Catalysis. Org. Lett.2009,11:5426-5429.
    [20]Campbell W M, Jolley K W, Wagner P, Wagner K, Walsh P J, Gordon K C, Schmidt-Mende L, Nazeeruddin M K, Wang Q, Graetzel M, Officer D L. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2007,111:11760-11762.
    [21]Cappel U B, Karlsson M H, Pschirer N G, Eickemeyer F, Schoneboom J, Erk P, Boschloo G, Hagfeldt A. A Broadly Absorbing Perylene Dye for Solid-State Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009,113:14595-14597.
    [22]Chamberlin A C, Ikezaki A, Nakamura M, Ghosh A. Iron Porphyrin Dications with Neutral Axial Ligands:DFT Calculations Delineate Similarities with Heme Protein Compound II Intermediates. J. Phys. Chem. B 2011,115:3642-3647.
    [23]Dutta P, Rai R, Pandey S. Effect of Ionic Liquid on J-Aggregation of meso-Tetrakis(4-sulfonatophenyl)porphyrin within Aqueous Mixtures of Poly(ethylene glycol). J. Phys. Chem. B 2011,115:3578-3587.
    [24]Stranks S D, Sprafke J K, Anderson H L, Nicholas R J. Electronic and Mechanical Modification of Single-Walled Carbon Nanotubes by Binding to Porphyrin Oligomers. ACS Nano 2011,5: 2307-2315.
    [25]Schappacher M, Deffieux A. Reversible Switching between Linear and Ring Polystyrenes Bearing Porphyrin End Groups. J. Am. Chem. Soc.2011,133:1630-1633.
    [26]Tomizaki K-Y, Thamyongkit P, Loewe R S, Lindsey J S. Practical Synthesis of Perylene-Monoimide Building Blocks that Possess Features Appropriate for Use in Porphyrin-Based Light-Harvesting Arrays. Tetrahedron. Lett.2003,59:1191-1207.
    [27]Hindin E, Forties R A, Loewe R S, Ambroise A, Kirmaier C, Bocian D F, Lindsey J S, Holten D, Knox R S. Excited-State Energy Flow in Covalently Linked Multiporphyrin Arrays:The Essential Contribution of Energy Transfer between Nonadjacent Chromophores. J. Phys. Chem. B 2004,108: 12821-12832.
    [28]Chernick E T, Ahrens M J, Scheidt K A, Wasielewski M R. Copper-Promoted N-Arylations of Cyclic Imides within Six-Membered Rings:A Facile Route to Arylene-Based Organic Materials. J. Org. Chem.2005,70:1486-1489.
    [29]Weng Y Q, Yue F, Zhong Y R, Ye B H. A Copper(II) Ion-Selective On-Off-Type Fluoroionophore Based on Zinc Porphyrin-Dipyridylamino. Inorg. Chem.2007,46:7749-7755.
    [30]Jee J-E, Eigler S, Hampel F, Jux N, Wolak M, Zahl A, Stochel G, van Eldik R. Kinetic and Mechanistic Studies on the Reaction of Nitric Oxide with a Water-Soluble Octa-anionic Iron(Ⅲ) Porphyrin Complex. Inorg. Chem.2005,44:7717-7731.
    [31]McQuade D T, Hegedus A H, Swager T M. Signal Amplification of a "Turn-On" Sensor: Harvesting the Light Captured by a Conjugated Polymer. J. Am. Chem. Soc.2000,122:12389-12390.
    [32]Mumtaz M, Labrugere C, Cloutet E, Cramail H. Synthesis of Polyaniline Nano-Objects Using Poly(vinyl alcohol)-, Poly(ethylene oxide)-, and Poly[(N-vinyl pyrrolidone)-co-(vinyl alcohol)]-Based Reactive Stabilizers. Langmuir 2009,25:13569-13580.
    [33]Wang H, Griffiths J-P, Egdell R G, Moloney M G, Foord J S. Chemical Functionalization of Diamond Surfaces by Reaction with Diaryl Carbenes. Langmuir 2008,24:862-868.
    [34]Killian M S, Gnichwitz J-F, Hirsch A, Schmuki P, Kunze J. ToF-SIMS and XPS Studies of the Adsorption Characteristics of a Zn-Porphyrin on TiO2. Langmuir 2010,26:3531-3538.
    [35]Palacin T, Khanh H L, Jousselme B, Jegou P, Filoramo A, Ehli C, Guldi D M, Campidelli S. Efficient Functionalization of Carbon Nanotubes with Porphyrin Dendrons via Click Chemistry. J. Am. Chem. Soc.2009,131:15394-15402.
    [36]Akatsuka K, Ebina Y, Muramatsu M, Sato T, Hester H, Kumaresan D, Schmehl R H, Sasaki T, Haga M. Photoelectrochemical Properties of Alternating Multilayer Films Composed of Titania Nanosheets and Zn Porphyrin. Langmuir 2007,23:6730-6736.
    [37]Diek H A, Heck F R. Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives. J. Organomet. Chem.1975,93:259-263.
    [38]Cassar L. Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes. J. Organomet. Chem.1975,93:253-257.
    [39]Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes:catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron. Lett.1975, 16:4467-4470.
    [I]Takahashi K, Nakajima I, Imoto K, Yamaguchi T, Komura T, Murata K. Sensitization effect by porphyrin in polythiophene/perylene dye two-layer solar cells. Sol. Energ. Mater. Sol. Cells.2003,76: 115-124.
    [2]Xiang N, Liu Y J, Zhou W P, Huang H, Guo X, Tan Z, Zhao B, Shen P, Tan S T. Synthesis and characterization of porphyrin-terthiophene and oligothiophene p-conjugated copolymers for polymer solar cells. Eur. Polym. J.2010,46:1084-1092.
    [3]Gervaldo M, Funes M, Durantini J, Fernandez L, Fungo F, Otero L. Electrochemical polymerization of palladium (Ⅱ) and free base 5,10,15,20-tetrakis(4-N,N-diphenylaminophenyl)porphyrins:Its applications as electrochromic and photoelectric materials. Electrochim. Acta.2010,55:1948-1957.
    [4]Shen P, Liu Y J, Huang X W, Zhao B, Xiang N, Fei J J, Liu L M, Wang X Y, Huang H, Tan S T. Efficient triphenylamine dyes for solar cells:Effects of alkyl-substituents and p-conjugated thiophene unit. Dyes Pigments 2009,83:187-197.
    [5]宋文波,陈旭,吴芳,田文晶,马淤光,许宏鼎.有机/聚合物材料体系能带结构的表征-电化学方法研究.高等学校化学学报,2000,21:1422-1426.
    [6]吴芳.有机/聚合物电致发光材料的能带结构及其在发光器件中的应用.吉林大学博士论文,2000年.
    [7]Bolink H J, Coronado E, Costa R D, Gavina P, Orti E, Tatay S. Deep-Red-Emitting Electrochemical Cells Based on Heteroleptic Bis-chelated Ruthenium(II) Complexes. Inorg. Chem. 2009,48:3907-3909.
    [8]Bard A J, Memming R, Miller B. Terminology in semiconductor electrochemistry and photoelectrochemical energy conversion. Pure & Appl. Chem.1991,63:569-596.
    [9]Liu Y, Yang C H, Li Y J. Synthesis and Photovoltaic Characteristics of Novel Copolymers Containing Poly(phenylenevinylene)and Triphenylamine Moieties Connected at 1,7 Bay Positions of Perylene Bisimide. Macromolecules.2005,38:716-721.
    [10]Augilar-Martinez M, Cuevas Q Jimenez-Estrada M, Gonzalez I, Lotina-Hennsen B, Macias-Ruvalcaba N. An experimental and theoretical study of the substituent effects on the redox properties of 2-[(R-pheny)amine]-1,4-naphthalenediones in acetonitrile. J. Org. Chem.1999,64: 3684-3694.
    [11]Marcon V, Breiby D W, Pisula W, Dahl J, Kirkpatrick J, Patwardhan S, Grozema F, Andrienko D. Understanding Structure-Mobility Relations for Perylene Tetracarboxydiimide Derivatives. J. Am. Chem. Soc.2009,131:11426-11432.
    [12]Cotlet M, Masuo S, Lor M, Fron E, van der Aueraer M, Mullen K, Hofkens J, De Schryver F C. Single molecule spectroscopy probing the influence of molecular oxygen on photoinduced reversible electron transfer in single perylenediimide-triphenylamine-based dendrimers. Angew. Chem. Int. Ed. 2004,43:6116-6120.
    [13]Rickhaus M, Belanger A P, Wegner H A, Scott L T. An Oxidation Induced by Potassium Metal. Studies on the Anionic Cyclodehydrogenation of 1,10-Binaphthyl to Perylene. J. Org. Chem.2010,75: 7358-7364.
    [14]Bagui M, Dutta T, Chakraborty S, Melinger J S, Zhong H Z, Keightley A, Peng Z H. Synthesis and Optical Properties of Triphenylene-Based Dendritic Donor Perylene Diimide Acceptor Systems. J. Phys. Chem. A 2011,115:1579-1592.
    [15]Schenning A P H J, van Herrikhuyzen J, Jonkheijm P, Chen Z J, Wurthner F, Meijer E W. Photoinduced Electron Transfer in Hydrogen-Bonded Oligo(p-phenylenevinylene) Perylene Bisimide Chiral Assemblies. J. Am. Chem. Soc.2002,124:10252-10253.
    [16]Zhou E J, Tajima K, Yang C H, Hashimoto K. Band gap and molecular energy level control of perylene diimide-based donor-acceptor copolymers for all-polymer solar cells. J. Mater. Chem.2010, 20:2362-2368.
    [17]Burrell A K, Officer D L, Plieger P G, Reid D C W. Synthetic Routes to Multiporphyrin Arrays. Chem. Rev.2001,101:2751-2796.
    [18]杨新国.卟啉-苝酰亚胺分子阵列的合成及其电子结构与聚集态结构.浙江大学博士论文,2003年.
    [19]Radzki S, Legendziewicz J, Sokolnicki J, Wiglusz R. Spectroscopic investigation of Tb(III) porphyrin in solid and solutions. J. Alloy. Compd.2000,300-301:439-442. [20] Closs G L, Miller J R. Intramolecular Long-Distance Electron Transfer in Organic Molecules. Science.1988,240:440-446.
    [21]Schuster D I, Li K, Guldi D M, Ramey J. Novel Porphyrin-Fullerene Assemblies: from Rotaxanes to Catenanes. Org. Lett.2004,6:1919-1922.
    [22]Prathapan S, Yang S I, Seth J, Miller M A, Bocian D F, Holten D, Lindsey J S. Synthesis and Excited-State Photodynamics of Perylene-Porphyrin Dyads.1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker. J. Phys. Chem. B 2001,105:8237-8248.
    [23]Hildebrandt A, Ruffer T, Erasmus E, Swarts J C, Lang H. A Star-Shaped Supercrowded 2,3,4,5-Tetraferrocenylthiophene:Synthesis, Solid-State Structure, and Electrochemistry. Organometallics.2010,29:4900-4905.
    [24]Wiirthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun.2004,1564-1579.
    [25]Wiirthner F, Sautter A, Schmid D, Weber P J A. Fluorescent and Electroactive Cyclic Assemblies from Perylene Tetracarboxylic Acid Bisimide Ligands and Metal Phosphane Triflates. Chem. Eur. J. 2001,7:894-902.
    [26]Lee S K, Zu Y, Herrmarm A, Geers Y, Miillen K, Bard A J. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J. Am. Chem. Soc.1999,121:3513-3520.
    [27]Rajasingh P, Cohen R, Shirman E, Shimon L J W, Rybtchinski B. Selective Bromination of Perylene Diimides under Mild Conditions. J. Org. Chem.2007,72:5973-5979.
    [28]Newman C R, Frisbie C D, da Silva Filho D A, Bredas J L, Ewband P C, Mann K R. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater.2004, 16:4436-4451.
    [29]Chen X L, Jenekhe S A. Bipolar Conducting Polymers:Blends of p-Type Polypyrrole and an n-Type Ladder Polymer. Macromolecules 1997,30:1728-1733.
    [30]Zhu Y, Kulkarni A P, Jenekhe S A. Phenoxazine-Based Emissive Donor-Acceptor Materials for Efficient Organic Light-Emitting Diodes. Chem. Mater.2005,17:5225-5227.
    [31]InganAs O, Zhang F L, Andersson Mats R. Alternating Polyfluorenes Collect Solar Light in Polymer Photovoltaics. Acc. Chem. Res.2009,42:1731-1739.
    [32]Thelakkat M, Posch P, Schmidt H-W. Synthesis and Characterization of Highly Fluorescent Main-Chain Copolyimides Containing Perylene and Quinoxaline Units. Macromolecules 2001,34: 7441-7447.
    [33]Flamigni L, Marconi G, Dixon I M, Collin J-P, Sauvage J-P. Switching of Electron- to Energy-Transfer by Selective Excitation of Different Chromophores in Arrays Based on Porphyrins and a Polypyridyl Iridium Complex. J. Phys. Chem. B 2002,106:6663-6671.
    [34]Lee J-E, Yang J, Gunderson V L, Wasielewski M R, Kim D. Fluorescence Dynamics of Chlorophyll Trefoils in the Solid State Studied by Single-Molecule Fluorescence Spectroscopy. J. Phys. Chem. Lett.2010,1:284-289.
    [35]Odom S A, Kelley R F, Ohira S, Ensley T R, Huang C, Padilha L A, Webster S, Coropceanu V, Barlow S, Hagan D J, Van Stryland E W, Bredas J-L, Anderson H L, Wasielewski M R, Marder S R. Photophysical Properties of an Alkyne-Bridged Bis(zinc porphyrin) Perylene Bis(dicarboximide) Derivative. J. Phys. Chem. A 2009,113:10826-10832.
    [36]Kirmaier C, Song H, Yang E, Schwartz J K, Hindin E, Diers J R, Loewe R S, Tomizaki K, Chevalier F, Ramos L, Birge R R, Lindsey J S, Bocian D F, Holten D. Excited-State Photodynamics of Perylene-Porphyrin Dyads.5. Tuning Light-Harvesting Characteristics via Perylene Substituents, Connection Motif, and Three-Dimensional Architecture. J. Phys. Chem. B 2010,114:14249-14264.
    [37]He X R, Liu H B, Li Y L, Liu Y, Lu F S, Li Y J, Zhu D B. A New Copolymer Containing Perylene Bisimide and Porphyrin Moieties:Synthesis and Characterization. Macromol. Chem. Phys.2005,206: 2199-2205.
    [38]Walker B J, Bulovi V, Bawendi M G. Quantum Dot/J-Aggregate Blended Films for Light Harvesting and Energy Transfer. Nano. Lett.2010,10:3995-3999.
    [39]Kirmaier C, Yang S I, Prathapan S, Miller M A, Diers J R, Bocian D F, Lindsey J S, Holten D. Synthesis and Excited-State Photodynamics of Perylene-Porphyrin Dyads 4. Ultrafast Charge-Separation and Charge Recombination Between Tightly Coupled Units in Polar Media. Res. Chem. Intermed.2002,28:719-740.
    [40]Wurthner F, Hanke B, Lysetska M, Lambright G, Harms G S. Gelation of a Highly Fluorescent Urea-Functionalized Perylene Bisimide Dye. Org. Lett.2005,7:967-970.
    [41]Fischer M K R, Kaiser T E, Wurthner F, Bauerle P. Dendritic oligothiophene-perylene bisimide hybrids:synthesis, optical and electrochemical properties. J. Mater. Chem.2009,19:1129-1141.
    [42]Rajkumar G A, Sandanayaka A S D, Ikeshita K, Itou M, Araki Y, Furusho Y, Kihara N, Ito O, Takata T. Photoinduced Intramolecular Electron-Transfer Processes in [60]Fullerene-(Spacer)-N, N-Bis(biphenyly)aniline Dyad in Solutions. J. Phys. Chem. A 2005,109:2428-2435.
    [1]Hagfeldt A, Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995,95:49-68.
    [2]Schlamp M C, Peng X G, Alivisatos A P. Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys.1997,82: 5837-5842.
    [3]Wohltjen H, Snow A W. Colloidal Metal-Insulator-Metal Ensemble Chemiresistor Sensor. Anal. Chem.1998,70:2856-2859.
    [4]Keng P Y, Bull M M, Shim I-B, Nebesny K G, Armstrong N R, Sung Y, Char K, Pyun J. Colloidal Polymerization of Polymer-Coated Ferromagnetic Cobalt Nanoparticles into Pt-Co3O4 Nanowires. Chem. Mater.2011,23:1120-1129.
    [5]Boeneman K, Prasuhn D E, Blanco-Canosa J B, Dawson P E, Melinger J S, Ancona M, Stewart M H, Susumu K, Huston A, Medintz I L. Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires. J. Am. Chem. Soc.2010,132:18177-18190.
    [6]Rizzo A, Nobile C, Mazzeo M, De Giorgi M, Fiore A, Carbone L, Cingolani R, Manna L, Gigli G. Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface. ACS Nano 2009,3:1506-1512.
    [7]Lubitz I, Kotlyar A. Self-Assembled G4-DNA-Silver Nanoparticle Structures. Bioconjugate. Chem. 2011,22:482-487.
    [8]Acar H, Garifullin R, Guler M O. Self-Assembled Template-Directed Synthesis of One-Dimensional Silica and Titania Nanostructures. Langmuir 2011,27:1079-1084.
    [9]Murphy A R, Frechet J M J, Chang P, Lee J, Subramanian V. Organic Thin Film Transistors from a Soluble Oligothiophene Derivative Containing Thermally Removable Solubilizing Groups. J. Am. Chem. Soc.2004,126:1596-1597.
    [10]de la Escosura A, Martnez-Daz M V, Thordarson P, Rowan A E, Nolte R J M, Torres T. Donor-Acceptor Phthalocyanine Nanoaggregates. J. Am. Chem. Soc.2003,125:12300-12308.
    [11]Mohr G J, Spichiger U E, Jona W, Langhals H. Using N-Aminoperylene-3,4:9,10-tetracarboxylbisimide as a Fluorogenic Reactand in the Optical Sensing of Aqueous Propionaldehyde. Anal. Chem.2000,72:1084-1087.
    [12]Schouwink P, Gadret G., Mahrt R F. Hampered excimer formation in a perylene derivative with bulky functional groups. Chem. Phys. Lett.2001,341:213-218.
    [13]Schouwink P, Schafer A H, Seidel C, Fuchs H. The influence of molecular aggregation on the device properties of organic light emitting diodes. Thin solid films.2000,372:163-168.
    [14]Wiirthner F, Sautter A, Schilling J. Synthesis of Diazadibenzoperylenes and Characterization of Their Structural, Optical, Redox, and Coordination Properties. J. Org. Chem.2002,67:3037-3044.
    [15]Castriciano M A, Romeo A, De Luca G, Villari V, Scolaro L M, Micali N. Scaling the Chirality in Porphyrin J-Nanoaggregates. J. Am. Chem. Soc.2011,133:765-767.
    [16]Meng F, Chen K, Tian H, Zuppiroli L, Nuesch F. Cyanine dye acting both as donor and acceptor in heterojunction photovoltaic devices. Appl. Phys. Lett.2003,82:3788-3790.
    [17]Mishra A, Behera R K, Behera P K, Mishra B K, Behera G B. Cyanines during the 1990s:A Review. Chem. Rev.2000,100:1973-2012.
    [18]Lyong S P. Femtosecond optical switches by squarylium dye J-aggregates films. Opt. Mater.2002, 21:489-493.
    [19]Debreczeny M P, Svec W A, Wasielewski M R. Optical control of photogenerated ion pair lifetimes:an approach to a molecular switch. Science 1996,274:584-586.
    [20]Gosztola D, Niemczyk M P, Wasielewski M R. Picosecond molecular switch based on bidirectional inhibition of photoinduced electron transfer using photogenerated electric fields. J. Am. Chem. Soc.1998,120:5118-5119.
    [21]Hayes R T, Walsh C J, Wasielewski M R. Using Three-Pulse Femtosecond Spectroscopy to Probe Ultrafast Triplet Energy Transfer in Zinc meso-Tetraarylporphyrin-Perylene-3,4-dicarboximide Dyads. J. Phys. Chem. A 2004,108:3253-3260.
    [22]Kelley R F, Tauber M J, Wasielewski M R. Linker controlled energy and charge transfer within chlorophyll trefoils. Angew. Chem. Int. Ed.2006,45:7979-7982.
    [23]Fuller M J, Sink L E, Rybtchinski B, Giaimo J M, Li X Y, Wasielewski M R. Ultrafast photoinduced charge separation resulting from self-assembly of a green perylene-based dye into π-stacked arrays. J. Phys. Chem. A 2005,109:970-975.
    [24]Fuller M J, Sinks L E, Rybtchinski B, Giaimo J M, Li X Y, Wasielewski M R. Photoinitiated charge transport in supramolecular assemblies of 1,7-N,N'-tetrakis(zinc-porphyrin)-perylene-3,4:9,10-bis(dicarboximide). J. Am. Chem. Soc.2007,129:3173-3181.
    [25]Tauber M J, Kelley R F, Giaimo J M, Rybtchinski B, Wasielewski M R. Electron hopping in π-stacked covalent and self-assembled perylene-diimide observed by ENDOR spectroscopy. J. Am. Chem. Soc.2006,128:1782-1783.
    [26]Ahrens M J, Kelley R F, Dance Z E X,Wasielewski M R. Photoinduced Charge Separation in Self-Assembled Cofacial Pentamers of Zinc-5,10,15,20-Tetrakis(perylenediimide)porphyrin. Phys. Chem. Chem. Phys.2007,9:1469-1478.
    [27]Wrobel D, Siejak A, Siejak P. Photovoltaic and spectroscopic studies of selected halogenated porphyrins for their application in organic solar cells. Sol. Energ. Mater. Sol. Cells.2010,94:492-500.
    [28]Nishizawa T, Lim H K, Tajima K, Hashimoto K. Efficient dyad-based organic solar cells with a highly crystalline donor group. Chem. Commun.2009,2469-2471.
    [29]Kim K H, Chi Z G, Cho M J, Jin J-I, Cho M Y, Kim S J, Joo J-s, Choi D H. Soluble Star-Shaped Molecules Based on Thiophene Derivatives as Organic Semiconductors for Field-Effect Transistor Applications. Chem. Mater.2007,19:4925-4932.
    [30]Peng Q, Park K, Lin T, Durstock M, Dai L M. Donor-π-Acceptor Conjugated Copolymers for Photovoltaic Applications:Tuning the Open-Circuit Voltage by Adjusting the Donor/Acceptor Ratio. J. Phys. Chem. B 2008,112:2801-2808.
    [31]Liu Y, Wang N, Li Y J, Liu H B, Li Y L, Xiao J C, Xu X H, Huang C S, Cui S, Zhu D B. A New Class of Conjugated Polyacetylenes Having Perylene Bisimide Units and Pendant Fullerene or Porphyrin Groups. Macromolecules 2005,38:4880-4887.
    [32]Gardner T H, Spivey J J, Kugler E L, Campos A, Hissam J C, Roy A D. Structural Characterization of Ni-Substituted Hexaaluminate Catalysts Using EXAFS, XANES, XPS, XRD, and TPR. J. Phys. Chem. C 2010,114:7888-7894.
    [33]施敏敏.氟带苝酰亚胺电子传输材料的研究.浙江大学博士学位论文,2003年.
    [34]Hayashi S, Matsubara Y, Eu S, Hayashi H, Umeyama T, Matano Y, Imahori H. Fused Five-Membered Porphyrin for Dye-Sensitized Solar Cells. Chem. Lett.2008,37:846-847.
    [35]Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev.2009,109:5868-5923.
    [36]Mishra A, Fischer M K R, Bauerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure:Property Relationships to Design Rules. Angew. Chem. Int. Ed.2009,48:2474-2499.
    [1]Tokuhisa H, Hammond P T. Solid-state photovoltaic thin films using TiO2, organic dyes, and layer-by-layer polyelectrolyte nanocomposites. Adv. Funct. Mater.2003,13:831-839.
    [2]战佩英,李东风,王进军.环稠卟啉合成的研究进展.有机化学,2008,28:2039-2056.
    [3]Vilmercati P, Cudia C C, Larciprete R, Cepek C, Zampieri G, Sangaletti L, Pagliara S, Verdini A, Cossaro A, Floreano L, Morgante A, Petaccia L, Lizzit S, Battocchio C, Polzonetti G, Goldoni A. Molecular orientations, electronic properties and charge transfer timescale in a Zn-porphyrin/C70 donor-acceptor complex for solar cells. Surf. Sci.2006,600:4018-4023.
    [4]Reeta P S, Kandhadi J, Lingamallu G. One-pot synthesis of b-carboxy tetra aryl porphyrins: potential applications to dye-sensitized solar cells. Tetrahedron. Lett.2010,51:2865-2867.
    [5]Tao M L, Liu L Z, Liu D Z, Zhou X Q. Photoinduced energy and electron transfer in porphyrin-anthraquinone dyads bridged with a triazine group. Dyes Pigments 2010,85:21-26.
    [6]Imahori H, Umeyama T, Ito S. Large π-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. Acc. Chem. Res.2009,42:1809-1818.
    [7]Cappel U B, Smeigh A L, Plogmaker S, Johansson E M J, Rensmo H, Hammarstrom L, Hagfeldt A, Boschloo G. Characterization of the Interface Properties and Processes in Solid State Dye-Sensitized Solar Cells Employing a Perylene Sensitizer. J. Phys. Chem. C 2011,115:4345-4358.
    [8]Howard I A, Laquai F, Keivanidis P E, Friend R H, Greenham N C. Perylene Tetracarboxydiimide as an Electron Acceptor in Organic Solar Cells:A Study of Charge Generation and Recombination. J. Phys. Chem. C 2009,113:21225-21232.
    [9]Liu B, Zhu W-H, Wu W-J, Ri K M, Tian H. Hybridized ruthenium(Ⅱ) complexes with high molar extinction coefficient unit:Effect of energy band and adsorption on photovoltatic performances. J. Photochem. Photobiol. A Chem.2008,194:268-274.
    [10]Liu M O, Tai C-H, Hu A T. The fluorescent and photoelectric conversion properties of phthalocyanine-perylene tetracarboxylic complexes. J. Photochem. Photobiol. A Chem.2004,165: 193-200.
    [11]周瑞龄,韩允鱼,杨玉国.叶绿素α/聚乙烯醇光电化学电池的研究.感光科学与光化学,1991,9:229-232.
    [12]Takechi K, Shiga T, Motohiro T, Akiyama T, Yamada S, Nakayama H, Kohama K. Solar cells using iodine-doped polythiophene-porphyrin polymer films. Sol. Energ. Mater. Sol. Cells.2006,90: 1322-1330.
    [13]Zhao L, Ma T, Bai H, Lu G, Li C, Shi G-Q. Layer-by-Layer Deposited Multilayer Films of Oligo(pyrenebutyric acid) and a Perylene Diimide Derivative:Structure and Photovoltaic Properties. Langmuir 2008,24:4380-4387.
    [14]Neuteboom E E, Meskers S C J, van Hal P A, van Duren J K J, Meijer E W, Janssen R A J, Dupin H, Pourtois G, Cornil J, Lazzaroni R, Bredas J-L, Beljonne D. Alternating Oligo(p-phenylene vinylene) Perylene Bisimide Copolymers:Synthesis, Photophysics, and Photovoltaic Properties of a New Class of Donor Acceptor Materials. J. Am. Chem. Soc.2003,125:8625-8638.
    [15]Wamser C C, Kim H-S, Lee J-K. Solar cells with porphyrin sensitization. Opt. Mater.2002,21: 221-224.
    [16]Jasieniak J, Johnston M, Waclawik E R. Characterization of a Porphyrin-Containing Dye-Sensitized Solar Cell. J. Phys. Chem. B 2004,108:12962-12971.
    [17]Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Gratzel M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc.1993,115: 6382-6390.
    [18]Imahori H, Hosomizu K, Mori Y, Sato T, Ahn T K, Kim S K, Kim D, Nishimura Y, Yamazaki I, Ishii H, Hotta H, Matano Y. Substituent Effects of Porphyrin Monolayers on the Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrin on Indium Tin Oxide Electrode. J. Phys. Chem. B 2004,108:5018-5025.
    [19]Marczak R, Sgobba V, Kutner W, Gadde S, D'Souza F, Guldi D M. Langmuir Blodgett Films of a Cationic Zinc Porphyrin Imidazole-Functionalized Fullerene Dyad:Formation and Photoelectrochemical Studies. Langmuir 2007,23:1917-1923.
    [20]Hasobe T, Imahori H, Kamat P V, Fukuzumi S. Quaternary Self-Organization of Porphyrin and Fullerene Units by Clusterization with Gold Nanoparticles on SnO2 Electrodes for Organic Solar Cells. J. Am. Chem. Soc.2003,125:14962-14963.
    [21]Yamada H, Imahori H, Nishimura Y, Yamazaki I, Ahn T K, Kim S K, Kim D, Fukuzumi S. Photovoltaic Properties of Self-Assembled Monolayers of Porphyrins and Porphyrin-Fullerene Dyads on ITO and Gold Surfaces. J. Am. Chem. Soc.2003,125:9129-9139.
    [22]He C, He Q G, Yang X D, Wu G L, Yang C H, Bai F L, Shuai Z G, Wang L X, Li Y F. Synthesis and photovoltaic properties of a solution-processable organic molecule containing triphenylamine and DCM moieties. J. Phys. Chem. C 2007,111:8661-8666.
    [23]Imahori H, Mitamura K, Shibano Y, Umeyama T, Matano Y, Yoshida K, Isoda S, Araki Y, Ito O. A Photoelectrochemical Device with a Nanostructured SnO2 Electrode Modified with Composite Clusters of Porphyrin-Modified Silica Nanoparticle and Fullerene. J. Phys. Chem. B 2006,110: 11399-11405.
    [24]Imahori H, Umeyama T. Donor-Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion. J. Phys. Chem. C 2009,113:9029-9039.
    [25]Heuer W B, Xia H L, Abrahamsson M, Zhou Z, Ardo S, Sarjeant A A N, Meyer G J. Reaction of Ru11 Diazafluorenone Compound with Nanocrystalline TiO2 Thin Film. Inorg. Chem.2010,49: 7726-7734.
    [26]Kira A, Umeyama T, Matano Y, Yoshida K, Isoda S, Park J K, Kim D, Imahori H. Supramolecular Donor-Acceptor Heterojunctions by Vectorial Stepwise Assembly of Porphyrins and Coordination-Bonded Fullerene Arrays for Photocurrent Generation. J. Am. Chem. Soc.2009,131: 3198-3200.
    [27]Nishizawa T, Tajima K, Hashimoto K. Supramolecular formation of fibrous nanostructure in donor-acceptor dyad. J. Mater. Chem.2007,17:2440-2445.
    [28]Pandey A K, Seignon S D, Nunzi J M. Pentacene:PTCDI-C13H27 molecular blends efficiently harvest light for solar cell applications. Appl. Phys. Lett.2006,89:113506-113507.
    [29]Sharma G D, Suresh P, Mikroyannidis J A, Effect of thermal annealing and incorporating TiO2 layer on the photovoltaic performance of single- and bi-layer bulk heterojunction devices based on phenylenevinylene copolymer and small molecule. Org. Electron.2010,11:731-742.
    [30]Agarwal N. The synthesis and characterization of photonic materials composed of substituted fluorene donors and a porphyrin acceptor. Dyes Pigments 2009,83:328-333.
    [31]Lim B, Jo J, Khim D, Jeong H-G, Yu B K, Kim J, Kim D Y. Synthesis of an alternating thienylenevinylene-benzothiadiazole copolymer with high hole mobility for use in organic solar cells. Org. Electron.2010,11:1772-1778.
    [32]Karak S, Reddy V S, Ray S K, Dhar A. Organic photovoltaic devices based on pentacene/N,N'-dioctyl-3,4,9,10-perylened-icarboximide heterojunctions. Org. electron.2009,10: 1006-1010.
    [33]Cravino A. Conjugated polymers with tethered electron-accepting moieties as ambipolar materials for photovoltaics. Polym. Int.2007,56:943-956.
    [34]Okamoto K, Fukuzumi S. Hydrogen Bonds Not Only Provide a Structural Scaffold to Assemble Donor and Acceptor Moieties of Zinc Porphyrin Quinone Dyads but Also Control the Photoinduced Electron Transfer to Afford the Long-Lived Charge-Separated States. J. Phys. Chem. B 2005,109: 7713-7723.
    [35]Nakanishi T, Kojima T, Ohkubo K, Hasobe T, Nakayama K, Fukuzumi S. Photoconductivity of porphyrin nanochannels composed of diprotonated porphyrin dications with saddle distortion and electron donors. Chem. Mater.2008,20:7492-7500.
    [36]Moliton A, Nunzi J. How to model the behaviour of organic photovoltaic cells. Polym. Int.2006, 55:583-600.
    [37]Liang F S, Shi F, Fu Y Y, Wang L F, Zhang X T, Xie Z Y, Su Z M. Donor-acceptor conjugates-functionalized zinc phthalocyanine:Towards broad absorption and application in organic solar cells. Sol. Energ. Mater. Sol. Cells.2010,94:1803-1808.
    [38]Modelli A, Burrow P D. Electron Attachment to Dye-Sensitized Solar Cell Components: Cyanoacetic Acid. J. Phys. Chem. A 2011,115:1100-1107.
    [39]郝彦忠,武文俊.纳米结构Ti02/3-甲基噻吩和2-噻吩甲酸共聚物复合膜电极光电化学性能.高等学校化学学报,2005,6:1098-1101.
    [40]Pal S K, Kesti T, Maiti M, Zhang F L, Inganas O, Hellstrm S, Andersson M R, Oswald F, Langa F, Osterman T, Pascher T, Yartsev A, Sundstrom V. Geminate Charge Recombination in Polymer/Fullerene Bulk Heterojunction Films and Implications for Solar Cell Function. J. Am. Chem. Soc.2010,132:12440-12451.
    [41]Neugebauer H, Loi M A, Winder C, Sariciftci N S, Cerullo G., Gouloumis A, Vazquez P, Torres T, Photophysics and photovoltaic device properties of phthalocyanine-fullerene dyad.conjugated polymer mixtures. Sol. Energ. Mater. Sol. Cells.2004,83:201-209.
    [42]Mikroyannidis J A, Kabanakis A N, Sharma S S, Kumar A, Sharma G D. Symmetrical molecules of low band gap with a central spacer connected via ether bond with terminal 4-nitro-a-cyanostilbene units:Synthesis and application for bulk heterojunction solar cells. Org. Electron.2010,11:1631-1641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700