用户名: 密码: 验证码:
含树枝片杂化物自组装的超分子结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装作为生命体中各种复杂生物结构形成的基础,在过去的数十年中,已经得到了材料科学、生命科学、信息科学、纳米科学等领域科学家的广泛关注。调控自组装材料的结构和功能随之成为一个重要的课题。杂化材料由两种纳米或分子级别成分组成,强调不同组分性能上的互补以及协同效应,从而展现出新的特性和功能。杂化物的自组装材料由此成为我们关注的焦点。
     在众多的构筑基元中,树枝状分子由于其独特而确定的分子形状以及多重功能性,在多样的环境中展现出新颖有趣的化学和物理性质以及自组装行为。我们通过借鉴生命体系中的分子识别和自组装思想,设计合成具有不同形状和性质的树枝状分子和无机簇等构筑单元结合的杂化分子,进而利用弱相互作用及其协同效应构筑具有特定空间结构和特殊功能的多层次超分子体系。
     本研究中,我们采用了树枝片分子(Dendron)、富勒烯(C60)、多金属氧酸盐(POMs)等构筑单元来构筑结构新颖、性质独特的杂化分子。结构上的创新在于沙漏形、蝴蝶形、羽毛球形分子的设计。第一类杂化分子是由两个不同的Dendron连接而成的嵌段树枝状大分子。通过控制两个Dendron的尺寸和功能基团的数目,调控其所构筑的本体超分子结构。从功能性质方面考虑,POMs和C60是很好的结构单元同时具有丰富的光、电和磁的功能特性,在催化、生物医药及纳米科技领域有着广阔的应用前景。它们的有机改性是重中之重,增强性能的同时扩展了体系的自组装结构及应用范围。我们在Dendron中嵌入POM或者与一个C60连接,制备了第二和第三类杂化分子。这些分子通过自组装形成有序的超分子结构,促使POM和C60也能够有序地排列。获得的结果不仅可以加深对树枝状大分子的分子结构和自组装性质关系的理解,同时也可通过自组装性质获得功能基团有序排列的、具有协同效果的、拓展了应用范围的功能材料。本文着重研究三类杂化分子的几何形状与组装形成超分子结构和性质间的关系,为发展新型的功能材料奠定了基础。
     首先,我们采用收敛法精确合成了含长烷基链的三代聚氨酯酰胺Dendron (g3-PUA)和三代聚脂肪醚Dendron(g3-PMDC),并将PUA与PMDC共价键相连接得到的形状可调控的杂化Dendron(g3-PUA-b-g3-PMDC),以及脱去PMDC上的保护基团得到两亲化的(g3-PUA-b-g3-PMDC(OH)8),实现调控分子的形状和两亲性的目标。这些操控实际上导致了样品在烷基链从结晶到熔融的过程中,超分子结构从柱状到层状最后到有趣而奇妙的Gyroid结构的演变。我们仔细地讨论了分子形状、极性强弱和烷基链结晶在超分子结构形成过程中起到的重要作用。具体的研究结果为:(1)端基为羧基g3-PUA呈现扇片形状,在PUA树枝片分子间多重氢键和端羧基氢键的主导作用下,在烷基链的结晶和熔融态下都聚集形成稳定的柱状结构;(2)g3-PUA-b-g3-PMDC呈现楔形扇片形状,由于烷基链结晶,形成了稳定的层状结构;(3)两亲化g3-PUA-b-g3-PMDC(OH)8为楔形扇片,八个端羟基的相互作用下,在烷基链结晶时形成层状结构,而在熔融时形成稳定的Gyroid结构。这些研究结果让我们对超分子纳米结构的形成机理有了更深的理解,即可以通过精确调控分子的形状、极性和官能团来构筑具体而精确的超分子结构,尤其是Gyroid结构。
     其次,我们研究了Anderson型POM与g2-PUA杂化大分子在溶液中形成有机凝胶的超分子结构和机理。我们将两个g2-PUA通过共价键接枝到有机改性的Anderson型POM的两端上,获得一种含POM的蝴蝶形杂化凝胶因子。由于g2-PUA与POM在尺寸上匹配,以及g2-PUA的多重氢键和质子化POM结晶能力的协同作用,驱动凝胶因子在有机溶剂中自组装成高度有序的单分子层杂化带状聚集体,相互交叉重叠构筑三维网络束缚溶剂分子,从而形成稳定的杂化有机凝胶。在带状聚集体中POM夹在g2-PUA层间,空间受限不能三维结晶,而是堆积成有序的单簇层,使得带状聚集体呈现很强的刚性。我们的研究证明了利用杂化分子中有机无机组分的协同效应可以软化POM簇。考虑到它们本身具有的功能,本研究利用超分子自组装精确调控POM簇的排列,有利于其性能的优化。
     最后,我们将g3-PUA与C60通过共价键构筑了羽毛球形杂化大分子,利用g3-PUA规整的形状和分子骨架上的多重作用力来指导杂化大分子的自组装行为,实现了富勒烯的一维有序排列。在研究它的溶液自组装时,发现调节溶剂种类、比例、以及浓度均会对超分子聚集体的形貌产生很大影响。在不同比例的四氢呋喃和水混合溶剂体系中获得了含C60杂化大分子的纳米带和纳米管。在异丙醇中形成空心多层花状聚集体。在甲苯中形成球形胶束,并且随着浓度增加胶束尺寸增大。在N,N-二甲基甲胺中形成超分子凝胶,含有均匀刚性的纤维结构。我们详细研究了带状超分子结构。由于树枝片与溶剂分子的相互作用,导致C60聚集在带状体的中间形成树枝片层夹心C60层的结构。树枝片中酰胺键和氨酯键间的多重氢键作用对于带状聚集体的形成起到了指导性的作用。通过分子模拟得出聚集单元的最小尺寸,并据此提出多级自组装过程的基本模型。我们的工作将功能性基团C60有序地排列在树枝状分子所提供的氢键等多重作用力的指导下形成的有序超分子聚集体中,制备了含有C60的微相有序材料,为实现光伏器件等复杂功能材料的设计提供了一个有效途径。
Self-assembly as a basis for constructing a variety of complex biological structures in life, has gained extensive attention of many scientists in the field of material science, life science, information science, and nano science in the past decades. Manipulation on the structure and function of self-assembly materials since becomes an important topic. The hybrid materials are composed of two kinds of nano or molecular level components, emphasizing the complementary on the performance and synergistic effect of different components, thereby showing the new features and functionalities. The self-assembled hybrid materials thus have become the focus of our attention.
     In many units, due to its unique, defined molecular shape and multiple functionalities, dendrimers show novel and interesting chemical and physical properties and self-assembly behaviors in diverse environments. On the thought of the molecular recognition and self-assembly in the life system, we designed and synthesized hybrid molecules containing building unit of inorganic clusters and dendrons with different shapes and features by chemical synthesis method, then built hierarchical supramolecular systems with specific structure and special features using weak interactions and their synergistic effect.
     In this study, we used the dendrons, C60, polyoxometalates (POMs) to construct hybrid molecules with novel structures and unique properties. The structural innovation is to design the hybrid molecules with hourglass-, butterfly-, or badminton-shaped molecular architechtures. The first hybrid is composed of two dendrons different in chemical structure. Through the manipulation of the shape and amphiphilicity of the dendrons, we can obtain corresponding supramolecular structures. Considering the functional properties, POM and C60as well structural units with a diverse range of optic, electric and magnetic properties, have shown potential applications in catalysis, biotechnology and nanotechnology. The organic modification of POMs is the priority among related works, enhancing the performances as well as expanding the self-assembled structures and application. We introduced certain functional units such as POM and C60into dendrons, and then the second and third hybrids were prepared. These hybrids self-assembled into ordered supramolecular structrues, promopting POM and C60to be orderly arranged. The results obtained can not only enhance the understanding of the relationship of molecular structure of the dendrimers and self-assembly properties, but also help to develop new functional materials to extend application field with ordered structures and synergetic effects via self-assmbly process. This work focuses on the relationship of topological shape of three hybrids, supramolecular structures and properties, laying the foundation for developing new functional materials.
     First, we have accurately synthesized third generation dendritic poly(urethane amide)(g3-PUA) with long alkyl chains and benzyl end-capped third generation poly(methallyl dichloride)(g3-PMDC) with convergence method, and further covalently coupled them to obtain hybrid dendron g3-PUA-b-g3-PMDC, whose protective groups could be easily removed to obtain amphiphilic g3-PUA-b-g3-PMDC(OH)8, achieving the target of manipulating the molecular shape and polarity. This manipulation is actually resulted in the supramolecular structures from columnar to layered finally to the evolution of interesting and mysterious Gyroid structure in the alkyl chain melt and crystallized samples. We carefully discussed the important role of molecular shape, polarity, and alkyl chain crystallization played in the formation of the supramolecular structure. Specific results are as follows:(1) g3-PUA showing a fan shape, under the leading role of intermolecular multiple hydrogen bonds and carboxyl, formed a stable columnar structure in the samples with crystallized and melting alkyl chains;(2) g3-PUA-b-g3-PMDC presents the wedge shape, in which the alkyl chain crystallization lead to the formation of stable lamellar structure;(3) amphiphilic g3-PUA-b-g3-PMDC (OH)8with wedge shape, under the interaction of eight terminal hydroxyl group, form a lamellar structure in the alkyl chain crystallized sample, and stable Gyroid structure in the melt. The results of our study make a deeper understanding of the mechanism of the formation of supramolecular nanostructures, which can construct specific and accurate supramolecular structures, especially the Gyroid structure, through the precisely control of molecular shape, polarity and functional groups.
     Next, we studied the supramolecular structure and mechanism of organic gel formed by the hybrid molecules of Anderson type POM and g2-PUA Dendron. We put the PUA dendron covalently onto organically modified Anderson POM cluster, obtaining a POM-containing hybrid gelator. Driven by the size matching of two components, synergist of multiple intermolecular interactions and the crystallization of protonated POM, the protonated hybrid gelator self-assembled into high ordered monolayer hybrid ribbons in organic solvent.Then,supramolecular ribbon through-mutual overlapping into three-dimensional network bounding solvent molecules, formed stable hybrid organic supramolecular gel. Because of confined space, the polyoxometalate layer can not be crystallized in three-dimensional space, therefore, accumulated in two PUA interlayers, while the nanoribbons showed strong rigidity. Our results demonstrate that using the synergistic effect of inorganic and organic components of hybrid molecules can soften the POM clusters. Considering their funtionalilies, our study precisely controlled the arrangement of POM via self-assembly, propitiously to optimize its performance.
     Finally, the badminton-like molecule was synthesized via g3-PUA dendron incorporating with an organically modified C60moiety. Directed self-assembly of the hybrid has been successfully utilized to tune the spatial ordering of C6o through the shape and multiple interactions provided by molecular skeleton. The manipulation of different solvent, proportion, and concentration will have a. great influence on the morphology of supramolecular aggregates by solution self-assembly. We obtained one-dimensional fullerene nanoribbons and nanotubes in tetrahydrofuran and water mixed solvent. We found the formation of multi-layer hollow flower-like aggregates in2-propanol, and spherical micelles in toluene, with the increasing concentration of which micellar size increased. Supramolecular gel formed in DMF with uniformly rigid ribbon structure. We carefully studied the nanoribbons. Due to the interaction of the dendrons and solvent molecules, fullerene molecules can form sandwich layer in the middle of ribbons. The multiple hydrogen bonds between the amide and urethane bonds of dendrons play a directional role for anisotropic grown ribbons. We estimated the minimum size by molecular simulation and calculation, and accordingly put forward the basic model of hierarchical self-assembly process. Our work put functional fullerene orderly into the ordered aggregates formed under the guidance of multiple interactions provided by dendrons, and prepared C60-containing ordered supramolecular materials, which have provided an effective route to design functional materials for potential applications of photovoltaic devices etc.
引文
[1]Whitesides G M, Grzybowski B. Self-assembly at all scales. Science,2002,295: 2418-2421
    [2]Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry—a chemical strategy for the synthesis of nanostructures. Science,1991,254:1312-1319
    [3]Bishop K J M, Wilmer C E, Soh S, et al. Nanoscale forces and their uses in self-assembly. Small,2009,5:1600-1630
    [4]Smith D K. Dendritic supermolecules—towards controllable nanomaterials. Chem Commun, 2006,34-44
    [5]Park C, Lee J, Kim C. Functional supramolecular assemblies derived from dendritic building blocks. Chem Commun,2011,12042-12056
    [6]Hechtand S, Frechet J M J. Dendritic encapsulation of function:Applying nature's site isolation principle from biomimetics to materials science. Angew Chem Int Ed,2001,40: 74-91
    [7]Flory P J. Molecular size distribution in rhree dimensional polymers. VI. Branched polymers containing A-R-Bf-1 type units. J Am Chem Soc,1952,74:2718-2723
    [8]Buhleier E, Wehner W, Vogtle F, et al. "Cascade" and "nonskid-chain-like" syntheses of molecular cavity topologies. Synthesis,1978,155-158
    [9]Denkewalter R G, Kole J, Lukasavage, et al. Macromolecular highly branched homogeneous compound. W. J. U. S. Patent 4,688,1983
    [10]Tomalia D A, Baker H, Dewald J, et al. A new class of polymers:Starburst-dendritic macromolecules. Polymer,1985,17:117-132
    [11]Tomalia D A, Baker H, Dewald J, et al. Dendritic macromolecules:Synthesis of starburst dendrimers. Macromolecules,1986,19:2466-2468
    [12]Newkome G R, Yao Z, Baker G R, et al. Micelles. Part 1. Cascade molecules:A new approach to micelles. A [27]-arborol. J Org Chem,1985,50:2003-2004
    [13]Newkome G R, Yao Z, Baker G R, et al. Chemistry of micelles series. Part 2. Cascade molecules. Synthesis and characterization of a benzene [9]3-Arborol. J Am Chem Soc,1986, 108:849-850
    [14]Newkome G R, Baker G R, Saunders M J, et al. Two-directional Cascade molecules. Synthesis and characterization of [9]-n-[9]-arborols. Chem Commun,1986,752-753
    [15]Hawker C J, Frechet J M J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc,1990,112: 7638-7647
    [16]Wooley K L, Hawker C J, Frechet J M J. Hyperbranched macromolecules via a novel double-stage convergent growth approach. J Am Chem Soc,1991,113:4252-4261
    [17]Serroni S, Denti G, Campagna S, et al. Arborols from luminescent and redox-active transition metal complex fragments. Angew Chem Int Ed,1992,31:1493-1495
    [18]Woner C, Muhaupt R. Polynitrile-and polyamine-functional poly(trimethylene imine) dendrimers. Angew Chem Int Ed,1993,32:1306-1308
    [19]Berg E M M D B-V D, Meijer E W. Poly(propylene imine) dendrimers:Large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed,1993,32: 1308-1311
    [20]Astrac D, Boisselier E, Ornelas C. Dendrimers designed for functions:From physical, photophysical, and supramolecular properties to applications insensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev,2010,110:1857-1959
    [21]Vogtle F, Gestermann S, Hesse R, et al. Funetional dendrimers. Prog Polym Sci,2000,25: 987-1041
    [22]Albrecht M, Gossage R A, Spek A L, et al. Sulfur dioxide gas detection by reversible η1-SO2-Pt bond formation as a novel application for periphery functionalised metallo-dendrimers. Chem Commun,1998,1003-1004
    [23]Reetz M T, Lohmer G, Schwickardi R. Synthesis and catalytic activity of dendritic diphosphane metal complexes. Angew Chem Int Ed,1997,36:1526-1529
    [24]Pollak K W, Leon J W, Fr6chet J M J, et al. Effects of dendrimer generation on site isolation of core moieties:Electrochemical and fluorescence quenching studies with metalloporphyrin core dendrimers. Chem Mater,1998,10:30-38
    [25]Enomoto M, Kishimura A, Aida T. Coordination metallacycles of.an achiral dendron self-assemble via metal-metal interaction to form luminescent superhelical fibers. J Am Chem Soc,2001,123:5608-5609
    [26]Kishimura A, Yamashita T, Yamaguchi K, et al. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events. Nat Mater,2005,4: 546-549
    [27]McElhanon J R, McGrath D V. Constitution, configuration, and the optical activity of chiral dendrimers. J Am Chem Soc,1998,120:1647-1656
    [28]Kim C, Kim K T, Chang Y, et al. Supramolecular assembly of amide dendrons. J Am Chem Soc,2001,123:5586-5587
    [29]Wang P W, Liu Y J, Devadoss C, et al. Electroluminescent diodes from a single component emitting layer of dendritic macromolecules. Adv Mater,1996,8(3):237-241
    [30]Balzani V, Campagna S, Denti G, et al. Designing dendrimers based on Transition-Metal complexes. Light-harvesting properties and predetermined redox patterns. Acc Chem Res, 1998,31(1):26-34
    [31]Hawker C J, Wooley K L, Fre'chet J M J. J Chem Soc, Perkin Trans 1 1993,1287-1297
    [32]Rosen B, Wilson C J, Wilson D A, et al. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev,2009,109:6275-6540
    [33]Hamley I W.The Physics of Block Copolymers. New York:Oxford university press,1998. 25-71
    [34]Percec V, Heck J, Tomazos D, et al. Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophase. J Chem Soc, Perkin Trans 1,1993,2799-2811.
    [35]Roman C, Fiseher H R, Meijer E W. Microphase separation of diblock copolymers consisting of polystyrene and acid-functionalized poly(propylene imine) dendrimers. Macromolecules,1999,32:5525-5531.
    [36]Mackay M E, Hong Y, Jeong M, et al. Microphase separation of hybrid dendron-linear diblock copolymers into ordered structures. Macromolecules,2002,35:8391-8399.
    [37]Cho B K, Jain A, Gruner S M, et al. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science,2004,305:1598-1601.
    [38]Yoo Y S, Choi J H, Song J H, et al. Self-assembling molecular trees containing octa-p-phenylene:From nanocrystals to nanocapsules. J Am Chem Soc,2004,126: 6294-6300.
    [39]Lecommandoux S, Klok H A, Sayar M J, et al. Synthesis and self-organization of rod-dendron and dendron-rod-dendron molecules. Polym Sci, Part A:Polym Chem,2003, 41:3501-3518.
    [40]Yagai S, Kubota S, Saito H, et al. Reversible transformation between rings and coils in a dynamic hydrogen-bonded self-assembly. J Am Chem Soc,2009,131:5408-5410.
    [41]Hawker C J, Frechet J M J. Unusual macromolecular architectures:The convergent growth approach to dendritic polyesters and novel block copolymers. J Am Chem Soc,1992,114: 8405-8413.
    [42]Gillies E R, Frechet J M J. Designing macromolecules for therapeutic applications: Polyester dendrimer poly(ethylene oxide) "Bow-Tie" hybrids with tunable molecular weight and architecture. J Am Chem Soc,2002,124:14137-14146.
    [43]Gillies E R, Frechet J M J. Self-assembly of supramolecular dendritic "Bow-Ties":Effect of peripheral functionality on association constants. J Org Chem,2004,69:46-53.
    [44]Ropponen J, Nummelin S, Rissanen K. Bisfunctionalized Janus molecules. Org Lett,2004, 6:2495-2497.
    [45]Saez I M, Goodby J W. Design and properties of "Janus-like" supermolecular liquid crystals. Chem Commun,2003,1726-1727.
    [46]Saez I M, Goodby J W. Janus supermolecular liquid crystals--giant molecules with hemispherical architectures. Chem Eur J,2003,9:4869-4877.
    [47]Bury I, Heinrich B, Bourgogne C, et al. Supramolecular self-organization of "Janus-like" diblock codendrimers:Synthesis, thermal behavior, and phase structure modeling. Chem Eur J,2006,12:8396-8413.
    [48]Bury I, Donnio B, Gallani J-L, et al. Interfacial behavior of a series of amphiphilic block co-dendrimers. Langmuir,2007,23:619-625.
    [49]Choi J-W, Ryu M-H, Lee E, et al. Ion-induced bicontinuous cubic and columnar liquid-crystalline assemblies of discotic block codendrimers. Chem Eur J,2010,16: 9006-9009.
    [50]Percec V, Ahn C H, Cho W D, et al. Visualizable cylindrical macromolecules with controlled stiffness from backbones containing libraries of self-assembling dendritic side groups. J Am Chem Soc,1998,120:8619-8631.
    [51]Balagurusamy V S K, Ungar G, Percec V, et al. Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis. J Am Chem Soc,1997,119: 1539-1555.
    [52]Percec V, Cho W D, Mosier P E, et al. Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation number. J Am Chem Soc,1998,120:11061-11070.
    [53]Hudson S D, Jung H T, Percec V, et al. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science,1997,278:449-452.
    [54]Percec V, Peterca M, IliesM A, et al. Programming the internal structure and stability of helical pores self-assembled from dendritic dipeptides via the protective groups of the peptide. J Am Chem Soc,2005,127:17902-17909.
    [55]Percec V, Ahn C H, Ungar G, et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature,1998,391:161-164.
    [56]Gitsov I, Frechet J M J. Solution and solid-state properties of hybrid linear-dendritic block copolymers. Macromolecules,1993,26:6536-6546.
    [57]Gitsov I, Frechet J M J, Wooley K L, et al. Synthesis and properties of novel linear-dendritic block copolymer. Reactivity of dendritic macromolecules toward linear polymers. Macromolecules,1993,26:5621-5627.
    [58]Gillies E R, Jonsson T B, Frechet J M J. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc,2004,126:11936-11943.
    [59]Chapman T M, Hillyer G L, Mahan E J, et al. Hydraamphiphiles:Novel linear dendritic block copolymer surfactants. J Am Chem Soc,1994,116:11195-11196.
    [60]van Hest J C M, Delnoye D A P, Baars M W P L, et al. Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation. Science,1995,268: 1592-1595.
    [61]Israelachvili J N, Mitchell D J, Ninham B W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans Ⅱ,1976,72:1525-1568.
    [62]Simonyan A, Gitsov I. Linear-dendritic supramolecular complexes as nanoscale reaction vessels for "Green" chemistry. Diels-Alder reactions between fullerene C60 and polycyclic aromatic hydrocarbons in aqueous medium. Langmuir,2008,24:11431-11441.
    [63]Ge Z, Luo S, Liu S. Syntheses and self-assembly of poly(benzyl ether)-b-poly(N-isopropylacrylamide) dendritic-linear diblock copolymers. J Polym Sci, Part A:Polym Chem,2006,44:1357-1371.
    [64]Hawker C J, Wooley K L, Frechet J M J. Unimolecular micelles and globular amphiphiles: Dendritic macromolecules as novel recyclable solublilization agents. J Chem Soc PerkinTrans 1,1993,1287-1297.
    [65]Yang M, Wang W, Yuan F, et al. Soft vesicles formed by diblock codendrimers of poly(benzylether) and poly(methallyldichloride). J Am Chem Soc,2005,127: 15107-15111.
    [66]Faul C F J, Antonietti M. Ionic self-assembly:Facile synthesis of supramolecular materials. Adv Mater,2003,15:673-683.
    [67]Rybtchinski B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano,2011,5:6791-6818.
    [68]Jung J H, Ono Y, Shinkai S. Sol-gel polycondensation in a cyclohexane based organogel creation of both right-and left-handed silica structures by helical organogel fibers. Chem Eur J,2000,6:4552-4557.
    [69]Kimura M, Kobayashi S, Kuroda T, et al. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv Mater,2004,16:335-339.
    [70]van Esch J, Schoonbeek F, de Loos M, et al. Cyclic bis-urea compounds as gelators for organic solvents. Chem Eur J,1999,5:937-950.
    [71]Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. Chem Eur J,2001,7: 4328-4334.
    [72]Shirakawa M, Kawano S I, Fujita N, et al. Hydrogen-bond-assisted control of H versus J aggregation mode of porphyrins stacks in an organogel system. J O Chem,2003,68: 5037-5044.
    [73]Newkome G R, Baker G R, Arai S, et al. Cascade molecules. Part 6. Synthesis and characterization of two-directional cascade molecules and formation of aqueous gels. J Am Chem Soc,1990,112:8458-8465.
    [74]Newkome G R, Moorefield C N, Baker G R, et al. Supramolecular Self-Assemblies of Two-Directional Cascade Molecules:Automorphogenesis. Angew Chem Int Ed,1992,31: 917-919.
    [75]Li X Q, Stepanenko V, Chen Z J, et al. Functional organogels from highly efficient organogelator based on perylene bisimide semiconductor. Chem Commun,2006, 3871-3837.
    [76]Dou X, Pisula W, Wu J, et al. Reinforced self-assembly of hexa-peri-hexabenzocoronenes by hydrogen bonds:From microscopic aggregates to macroscopic fluorescent organogels. Chem Eur J,2008,14:240-249.
    [77]Jang W D, Jiang D L, Aida T. Dendritic physical gel:Hierarchical self-organization of a peptide-core dendrimer to form a micrometer-scale fibrous assembly. J Am Chem Soc,2000, 122:3232-3233.
    [78]Zhu X, Tartsch B, Beginn U, et al. Wedge-shaped molecules with a sulfonate group at the tip-a new class of self-assembling amphiphiles. Chem Eur J,2004,10:3871-3878.
    [79]Kim K T, Park C, Kim C, et al. Self-assembly of dendron-helical polypeptide copolymers: Organogels and lyotropic liquid crystals. Chem Commun,2006,1372-1374.
    [80]Kim K T, Winnik M A, Manners I, et al. Synthesis and self-assembly of dendritic-helical block copolypeptides. Soft Matter,2006,957-965.
    [81]Zubarev E R, Pralle M U, Sone E D, et al. Self-assembly of dendron rod coil molecules into nanoribbons. J Am Chem Soc,2001,123:4105-4106.
    [82]Messmore B W, Sukerkar P A, Stupp S I. Mirror image nanostructures. J Am Chem Soc, 2005,127:7992-7993.
    [83]Hsu L, Cvetanovich G L, Stupp S I. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core. J Am Chem Soc,2008,130:3892-3899.
    [84]Jorgensen M, Bechgaard K, Bj(?)rnholm T, et al. Synthesis and structural characterization of a bis-arborol-tetrathiafulvalene gel:Toward a self-assembling "molecular" wire. J Org Chem,1994,59:5877-5882.
    [85]Hirst A R, Smith D K, Feiters M C, et al. Two-component dendritic gels:Easily tunable materials. J Am Chem Soc,2003,125:9010-9011.
    [86]Huang B Q, Hirst A R, Smith D K, et al. A direct comparison of one-and two-component dendritic self-assembled materials:Elucidating molecular recognition pathways. J Am Chem Soc,2005,127:7130-7139.
    [87]Ko H S, Park C, Lee S M, et al. Supramolecular self-assembly of dimeric dendrons with aromatic bridge units. Chem Mater,2004,16:3872-3876.
    [88]Jang W D, Aida T. Dendritic physical gels:Structural parameters for gelation with peptide-core dendrimers. Macromolecules,2003,36:8461-8469.
    [89]Hirst A R, Smith D K. Dendritic gelators. Top Curr Chem,2005,256:237-273.
    [90]Muller A, Peters F, Pope M T. Polyoxometalates:Very large clusters—anoscale magnets. Chem Rev,1998,98:239-271.
    [91]Jeannin Y P. The nomenclature of polyoxometalates:How to connect a name and a structure. Chem Rev,1998,98:51-76.
    [92]王恩波,胡长文,许林.多酸化学导论[M].化学工业出版社,1998,1.
    [93]Yin P C, Dong L, Liu T B. Counterion interaction and association in metal-oxide cluster macroanionic solutions and the consequent self-assembly. Isr J Chem,2011,51:191-204.
    [94]Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem Soc Rev,2007,36:105-121.
    [95]Sanchez C, Soler-Illia G J de A A, Ribot F, et al. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem Mater,2001,13:3061-3083.
    [96]Dolbecq A, Dumas E, Mayer C R, et al. Hybrid organic-inorganic polyoxometalate compounds:From structural diversity to applications. Chem Rev,2010,110:6009-6048.
    [97]Song Y F, Tsunashima R. Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev,2012,41:7384-7402.
    [98]Ichinose I, Asai T, Yoshimura S, et al. Two-dimensional arrangement or polynuclear metal complexes in the interlayer of multibilayer cast films. Chem Lett,1994,1837-1840.
    [99]Clemente-Leon M, Agricole B, Mingotaud C, et al. Toward new organic/inorganic superlattices:Keggin polyoxometalates in Langmuir and Langmuir-Blodgett films. Langmuir,1997,13:2340-2347.
    [100]Xu M, Li Y C, Li W, et al. Structure, photochromic, and electrochemical properties of dioctadecylamine/H3PMo12O40 Langmuir-Blodgett film. J Colloid Interface Sci,2007, 315:753-760.
    [101]Liu S Q, Kurth D G, Bredenkotter B, et al. The structure of self-assembled multilayers with polyoxometalate nanoclusters. J Am Chem Soc,2002,124:12279-12287.
    [102]Gao L, Wang E B, Kang Z H, et al. Layer-by-layer assembly of polyoxometalates into microcapsules. J Phys Chem B,2005,109:16587-16592.
    [103]Bu W F, Li H L, Sun H, et al. Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces. J Am Chem Soc,2005,127:8016-8017.
    [104]Yang Y, Wang Y Z, Li H L, et al. Self-assembly and structural evolvement of polyoxometalate-anchored dendron complexes. Chem Eur J,2010,16:8062-8071.
    [105]Li H L, Sun H, Qi W, et al. Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates. Angew Chem Int Ed,2007,46:1300-1303.
    [106]Li W, Bu W F, Li H L, et al. A surfactant-encapsulated polyoxometalate complex towards a thermotropic liquid crystal. Chem Commun,2005,3785-3787.
    [107]Li H L, Qi W, Li W, et al. A highly transparent and luminescent hybrid based on the copolymerization of surfactant-encapsulated polyoxometalate and methyl methacrylate. Adv Mater,2005,17:2688-2692.
    [108]Akutagawa T, Kudo F, Tsunashima R, et al. Hydrogen-bonded assemblies of two-electron reduced mixed-valence [XMo12O40] (X=1P and Si) with p-Phenylenediamines. Inorg Chem,2011,50:6711-6718.
    [109]Zhang G J, Keita B, Craescu C T, et al. Polyoxometalate binding to human serum albumin: A thermodynamic and spectroscopic approach. J Phys Chem B,2007,111:11253-11259.
    [110]Wang Z L, Zhang R L, Ma Y, et al. Chemically responsive luminescent switching in transparent flexibleself-supporting [EuW10O36]9--agarose nanocomposite thin films. J Mater Chem,2010,20:271-277.
    [111]Proust A, Thouvenot R, Gouzerh P. Functionalization of polyoxometalates towards advanced applications in catalysis and materials science. Chem Commun,2008, 1837-1852.
    [112]Marcoux P R, Hasenknopf B, Vaissermann J, et al. Developing remote metal binding sites in heteropolymolybdates. Eur J Inorg Chem,2003,2406-2412.
    [113]Favette S, Hasenknopf B, Vaissermann J, et al. Assembly of a polyoxometalate into an anisotropic gel. Chem Commun,2003,2664-2665.
    [114]Zeng H D, Newkome G R, Hill C L, Poly(polyoxometalate) dendrimers:Molecular prototypes of new catalytic materials. Angew Chem Int Ed,2000,39:1771-1774.
    [115]Song Y F, Long D L, Cronin L, Noncovalently connected frameworks with nanoscale channels assembled from a tethered polyoxometalate-pyrene hybrid. Angew Chem Int Ed, 2007,46:3900-3904.
    [116]Allain C, Favette S, Chamoreau L-M, et al. Hybrid organic-inorganic porphyrin-polyoxometalate complexes. Eur J Inorg Chem,2008,3433-3441.
    [117]Judeinstein P. Synthesis and properties of polyoxometalates based inorganic-organic polymers. Chem Mater,1992,4,4-7.
    [118]Peng Z H. Rational synyhesis of covalently bonded organic-inorganic hybrids. Angew Chem Int Ed,2004,43:930-935.
    [119]Moore A R, Kwen H, Beatty A M, et al. Organoimido-polyoxometalates as polymer pendants. Chem Commun,2000,1793-1794.
    [120]Han Y K, Xiao Y, Zhang Z J, et al. Synthesis of polyoxometalate-polymer hybrid polymers and their hybrid vesicular assembly. Macromolecules,2009,42:6543-6548.
    [121]Xia N, Yu W, Wang Y L, et al. Inserting polyoxomolybdate cluster into poly ((?)-caprolactone) to create a class of new heteropolymer:Synthesis and supramolecular structures. Polymer,2011,52:1772-1780.
    [122]Hu M B, Xia N, Yu W, et al. A click chemistry approach to the efficient synthesis of polyoxometalate-polymer hybrids with well-defined structures. Polym Chem,2012,3: 617-620.
    [123]Wang Y L, Wang X L, Zhang X J, et al. Manipulation of ordered nanostructures of protonated polyoxometalate through covalently bonded modification. Chem Eur J,2010, 16:12545-12548.
    [124]Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckminsterfullerene. Nature,1985,318: 162-163.
    [125]Kratschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60:a new form of carbon. Nature, 1990,347:354-358.
    [126]Chai Y, Guo T, Jin C M, et al. Fullerenes with metal inside. J Phys Chem,1991,95: 7564-7568.
    [127]Bethune D S, Johnson R D, Salem J R, et al. Atoms in carbon cages:the structure and properties of endohedral fullerenes. Nature,1993,366:123-128.
    [128]Rodriguez-Fortea A, Irle S, Poblet J M. Fullerenes:formation, stability and reactivity. Wiley Interdisciplinary Reviews:Computational Molecular Science,2011,1:350-367.
    [129]Bonifazi D, Enger O, Diederich F. Supramolecular [60]fullerene chemistry on surfaces. Chem Soc Rev,2007,36:390-414.
    [130]Zhou S, Burger C, Chu B, et al. Spherical bilayer vesicles of fullerene-based surfactants in water:a laser light scattering study. Science,2001,291:1944 1947
    [131]Sawamura M, Kawai K, Matsuo Y, et al. Stacking of conical molecules with a fullerene apex into polar columns incrystals and liquid crystals. Nature,2002,419:702 706
    [132]Nakashima N, Ishii T, Shirakusa M, et al. Molecular bilayer-based buperstructures of a fullerene-carrying ammonium amphiphile-structure and electrochemistry. Chem Eur J, 2001,7:1766-1772
    [133]Sun H-J, Tu Y F, Wang C-L, et al. Hierarchical structure and polymorphism of a sphere-cubic shape amphiphilebased on a polyhedral oligomeric silsesquioxane-[60] fullerene conjugate. J Mater Chem,2011,21:14240-14247
    [134]Hao J, H Li, W Liu, et al. Well-defined self-assembling supramolecular structures in water containing a small amount of C60. Chem Commun,2004,602-603
    [135]Hahn U, Gonzlez J J, Huerta E, et al. A highly directional fourfold hydrogen-bonding motif for supramolecular structure through self-assembly of fullerodendrimers. Chem Eur J,2005,11:6666-6762
    [136]Fernandez G, Perez E M, Sanchez L, et al. An electroactive dynamically polydisperse supramolecular dendrimer. J Am Chem Soc,2008,130:2410-2411
    [137]Duan X, Yuan F, Wen X J, et al. Alternating crystallineamorphous layers in hybrid block copolymers of linear poly(ethylene glycol) and dendritic poly(benzyl ether). Macromol Chem Phys,2004,205:1410-1417
    [138]Gao Y, Zhang X W, Yang M, et al. Synthesis and cylinder microdomain structures of hybrid block copolymers of π-conjugated and dendritic poly(phenylazomethine)s and flexible and linear PEO. Macromolecules,2007,40:2606-2612
    [139]Yuan F, Wang W, Yang M, et al. Layered structure and ordertodisorder transition in a block codendrimer caused by intermolecular hydrogen bonds. Macromolecules,2006,39: 3982-3985
    [140]Yuan F, Zhang X J, Yang M, et al. Topological transformation of aggregates formed by an amphiphilic and truncated cone shaped codendrimer. Soft Matter,2007,3:1372-1376.
    [141]Yang M, Zhang Z J, Yuan F, et al. Selfassembled structures in organogels of amphiphilic diblock codendrimers. Chem Eur J,2008,14:3330-3337
    [142]Yang M, Wang W, Lieberwirth I, et al. Multiple H-bonds directed self-assembly of an amphiphilic and plate-like codendrimer with Janus faces at water-air interface. J Am Chem Soc,2009,131:6283-6292
    [143]Zhang Z J, Yang M, Zhang X J, et al. Enhancing gelation ability of a dendritic gelator through complexation with a polyelectrolyte. Chem Eur J,2009,15:2352-2361
    [144]Zhang Z J, Yang M, Hu C Y, et al. Correlation between gel-forming ability, supramolecular aggregates and main-chain conformation of dendronized polymer gelators. New J Chem, 2011,35:103-110
    [145]Zhang X J, Wang Y L, Wang W. Salt-induced aggregation of polyelectrolyte-amphiphilic dendron complexes in THF solutions. Langmuir,2009,25:2075-2080
    [146]Feng S, Xiong X, Zhang G, et al. Hierarchical structure in oriented fibers of a dendronized polymer. Macromolecules,2009,42:281-287
    [147]Chang Y, Park C, Kim K T, et al. Synthesis and micellar characteristics of dendron-PEG conjugates. Langmuir,2005,21:4334-4339
    [148]Jayaraman M, Fr6chet J M J. A convergent route to novel aliphatic polyether dendrimers. J Am Chem Soc.1998,120:12996-12997
    [149]Grayson S M, Frechet J M J. Synthesis and surface functionalization of aliphatic polyether dendrons. J Am Chem Soc.2000,122:10335-10344
    [150]Moore J S, Stupp S I. Room-temperature polyesterification. Macromolecules,1990,23: 65-70
    [151]Hasenknopf B, Delmont R, Herson P, et al. Anderson-type heteropolymolybdates containing tris(alkoxo) ligands:Synthesis and structural characterization. Eur J Inorg Chem,2002,1081-1087
    [152]Rhule J T, Hill C L, Judd D A, et al. Polyoxometalates in Medicine. Chem Rev,1998,98: 327-357
    [153]Song Y F, McMillan N, Long D L, et al. Micropattemed surfaces with covalently grafted unsymmetrical polyoxometalate-hybrid clusters lead to selective cell adhesion. J Am Chem Soc,2009,131:1340-1341
    [154]Khenkin A M, Neumann R. Aerobic oxidation of vicinal diols catalyzed by an Anderson-type polyoxometalate, [IMo6O24]5. Adv Synth Catal,2002,344:1017-1021
    [155]Rosnes M H, Musumeci C, Pradeep C P, et al. Assembly of modular asymmetric organic-inorganic polyoxometalate hybrids into anisotropic nanostructures. J Am Chem Soc,2010,132:15490-15492
    [156]Zhang J, Song Y F, Cronin L, et al. Self-assembly of organic-inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J Am Chem Soc,2008,130: 14408-14409
    [157]Liu C M, Huang Y H, Zhang D Q, et al. Bis(ethylenedithio)tetrathiafulvalene radical waits with Anderson type heteropolymolybdates containing tris(alkoxo) ligands. Cryst Growth Des.2005,5:1531-1538
    [158]杨淼.两亲性树枝状嵌段共聚物的合成及其超分子自组装研究:[博士学位论文].天津:南开大学,2008
    [159]Kang S H, Ma H, Kang M S, et al. Ordered self-assembly and electronic behavior of C60-anthrylphenylacetylene hybrid. Angew Chem Int Ed,2004,43:1512-1516
    [160]Schoen A H. Infinite periodic minimal surfaces without self-intersection. NASA Technical Note TN D-5541,1970
    [161]Chung H, Caffrey M. The curvature elastic-energy function of the lipid-water cubic mesophase. Nature,1994,368:224-226
    [162]Huo Q-S, Leon R, Petroff P M, et al. Mesostructure design with gemini surfacants: Supercage formation in a three-dimensional hexagonal array. Science,1995,268: 1324-1327
    [163]Borisch K, Diele S, Goring P, et al. Tailoring thermotropic cubic mesophases:Amphiphilic polyhydroxy derivatives. J Mater Chem,1998,8:529-543
    [164]Lee M,. Cho B-K, Kim H, et al. Self-organization of rod-coil molecules with layered crystalline states into thermotropic liquid crystalline assemblies. J Am Chem Soc,1998, 120:9168-9179
    [165]Cheng X-H, Das M K, Diele S, et al. Influence of semiperfluorinated chains on the liquid crystalline properties of amphiphilic polyoIs:D Novel materials with thermotropic lamellar, columnar, bicontinuous cubic, and micellar cubic mesophases. Langmuir,2002, 18:6521-6529
    [166]Zeng X B, Ungar G, Imperor-Clerc M. A triple-network tricontinuous cubicliquid crystal. Nat Mater,2005,4:562-567
    [167]Hajduk D A, Harper P E, Gruner S M, et al. The gyroid:A new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules,1994,27:4063-4075
    [168]Forster S, Khandpur A K, Zhao J, et al. Complex phase behavior of polyisoprene-polystyrene diblock copolymers near the order-disorder transition. Macromolecules,1994, 27:6922-6935
    [169]Vigild M E, Almdal K, Mortensen K, et al. Transformations to and from the gyroid phase in a diblock copolymer. Macromolecules,1998,31:5702-5716
    [170]Shefelbine T A, Vigild M E, Matsen M W, et al. Core-shell gyroid morphology in a poly(isoprene-block-styrene-block-dimethylsiloxane) triblock copolymer. J Am Chem Soc, 1999,121:8457-8465
    [171]Wang C Y, Lodge T P. Kinetics and mechanisms for the cylinder-to-gyroid transition in a block copolymer solution. Macromolecules,2002,35:6997-7006
    [172]Valkama S, Ruotsalainen T, Nykanen A, et al. Self-assembled structures in diblock copolymers with hydrogen-bonded amphiphilic plasticizing compounds. Macromolecules, 2006,39:9327-9336
    [173]Tsiourvas D, Stathopoulou K, Sideratou Z, et al. Body-centered-cubic phases derived from n-dodecylurea functionalized poly(propylene imine) dendrimers. Macromolecules,2002, 35:1746-1750
    [174]Percec V, Holerca M N, Uchida S, et al. Exploring and expanding the three-dimensional structural diversity of supramolecular dendrimers with the aid of libraries of alkali metals of their AB3 minidendritic carboxylates. Chem Eur J,2002,8:1106-1117
    [175]Chvalun S N, Shcherbina M A, Yakunin A N, et al. Structure of gyroid mesophase formed by monodendrons with fluorinated alkyl tails. Polym Sci Ser A,2007,49:158-167
    [176]Choi J-W, Cho B-K. Degree of chain branching-dependent assemblies and conducting behavior in ionic liquid crystalline Janus dendrimers. Soft Matter,2011,7:4045-4049
    [177]Cho B-K, Jain A, Gruner S M, et al. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004,305:1598-1601
    [178]Chung Y-W, Lee J-K, Zin W-C, et al. Self-assembling behavior of amphiphilic dendron coils in the bulk crystalline and liquid crystalline states. J Am Chem Soc,2008,130: 7139-7147
    [179]Choi J-W, Cho B-K. Cho. Mesomorphic and conducting properties of dendritic-linear copolymers via ion-doped additives. J Polym Sci Part A:Polym Chem,2011,49: 2468-2473
    [180]Zhou S-Q, Yeh F-J, Burger C, et al. Nanostructures of polyelectrolyte gel-surfactant complexes. J Polym Sci Part B:Polym Phys,1999,37:2165-2172
    [181]Michielsen K, Stavenga D G. Gyroid cuticular structures in butterfly wing scales: Biological photonic crystals. J R Soc Interface,2008,5:85-94
    [182]Michielsen K, De Raedt H, Stavenga D G. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. J R Soc Interface,2010,7:765-771
    [183]Saranathan V, Osuji C O, Mochrie S G J, et al. Structure, function, and self-assembly of single network gyroid (14132) photonic crystals in butterfly wing scales. Proc Natl Acad Sci USA,2010,107:11676-11681
    [184]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc,1992,114:10834-10843
    [185]McGrath K M. Polymerisation of liquid crystalline phases in binary surfactant/water systems. Colloid Polym Sci,1996,274:499-512
    [186]Chan V Z-H, Hoffman J, Lee V Y, et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science,1999,286:1716-1719
    [187]Monnier A, Schiith F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science,1993,261:1299-1303
    [188]Stefik M, Mahajan S, Sai H, et al. Ordered three-and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols. Chem Mater, 2009,21:5466-5473
    [189]Crossland E J W, Kamperman M, Nedelcu M, et al. A bicontinuous double gyroid hybrid solar cell. Nano Lett,2009,9:2807-2812
    [190]Gin D L, Gu W, Pindzola B A, et al. Polymerized lyotropic liquid crystal assemblies for materials applications. Ace Chem Res,2001,34:973-980
    [191]Pindzola B A, Jin J, Gin D L, et al. Cross-linked normal hexagonal and bicontinuous cubic assemblies via polymerizable gemini amphiphiles. J Am Chem Soc,2003,125: 2940-2949
    [192]Hashimoto T, Tsutsumi K, Funaki Y. Nanoprocessing based on bicontinuous microdomains of block copolymers:Nanochannels coated with metals. Langmuir,1997, 13:6869-6872
    [193]Shah J C, Sadhale Y, Chilukuri D M. Cubic phase gels as drug delivery systems. Adv Drug Delivery Rev,2001,47:229-250
    [194]Ichikawa T, Yoshio M, Hamasaki A, et al. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases:Formation of nano-ion channel networks. J Am Chem Soc,2007,129:10662-10663
    [195]Kato T. From nanostructured liquid crystals to polymer-based electrolytes. Angew Chem Int Ed,2010,49:7847-7848
    [196]Pickett G T. Flexible/branched block copolymer melts. Macromolecules,2002,35: 1896-1904
    [197]Rios G E, Pickett G T. Dendrimer-dendrimer copolymer melts. Macromolecules,2003,36: 2967-2976
    [198]Frischknecht A, Fredrickson G H. Microphase boundaries and chain conformations in multiply branched diblock copolymers. Macromolecules,1999,32:6831-6836
    [199]Grason G M, DiDonna B A, Kamien R D. Geometric theory of diblock copolymer phases. Phys Rev Let.,2003,91:058304
    [200]Grason G M, Kamien R D. Self-consistent field theory of multiply branched block copolymer melts. Phys Rev E,2005,71:051801
    [201]Lee J W, Kim B-K, Kim J H, et al. Facile approach for diblock codendrimers by fusion between Frechet dendrons and PAMAM dendrons. J Org Chem,2006,71:4988-4991
    [202]Nierengarten J-F, Eckert J-F, Rio Y, et al. Amphiphilic diblock dendrimers:Synthesis and incorporation in Langmuir and Langmuir-Blodgett films. J Am Chem Soc,2001,123: 9743-9748
    [203]Lee C C, Gillies E R, Fox M E, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA,2006, 103:16649-16654
    [204]Chen Y C, Wu T F, Jiang L, et al. Synthesis of dendritic catalysts and application in asymmetric transfer hydrogenation. J Org Chem,2005,70:1006-1110
    [205]Percec V, Imam M R, Bera T K, et al. Self-assembly of semifluorinated Janus-dendritic benzamides into bilayered pyramidal columns. Angew Chem Int Ed,2005,44:4739-4745
    [206]Martin-Rapun R, Marcos M, Omenat A, et al. Poly(propyleneimine) liquid crystal codendrimers bearing laterally and terminally attached promesogenic groups. Chem Mater, 2004,16:4969-4979
    [207]Percec V, Ahn C-H, Ungar G, et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature,1998,391:161-164
    [208]Percec V, Cho W-D, Ungar G, et al. Synthesis and structural analysis of two constitutional isomeric libraries of AB2-based monodendrons and supramolecular dendrimers. J Am Chem Soc,2001,123:1302-1315
    [209]Percec V, Glodde, Bera T K, et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature,2002,417:384-387
    [210]Burger C, Zhou S-Q, Chu B. Handbook of polyelectrolytes and their applications. Los Angeles:Tripathy S K, Kumar J, Nalwa H S. American Scientific Publishers,2002, vol.3, ch.7.125-141
    [211]Percec V, Dulcey A E, Balagurusamy V S K, et al. Self-assembly of ampbiphilic dendritic dipeptides into helical pores. Nature,2004,430:764-768
    [212]Percec V, Dulcey A E, Peterca M, et al. The internal structure of helical pores self-assembled from dendritic dipeptides is stereochemically programmed and allosterically regulated. Angew Chem Int Ed,2005,44:6516-6521
    [213]Percec V, Dulcey A E, Peterca M, et al. Principles of self-assembly of helical pores from dendritic dipeptides. Proc Natl Acad Sci USA,2006,103:2518-2523
    [214]Peterca M, Percec V, Dulcey A E, et al. Self-assembly, structural, and retrostructural analysis of dendritic dipeptide pores undergoing reversible circular to elliptical shape change. J Am Chem Soc,2006,128:6713-6720
    [215]Percec V, Dulcey A E, Peterca M, et al. Helical pores self-assembled from homochiral dendritic dipeptides based on (?)-tyr and nonpolar α-amino acids. J Am Chem Soc, 2007,129:5992-6002
    [216]Avgeropoulos A, Dair B J, Hadjichristidis N, et al. Tricontinuous double gyroid cubic phase in triblock copolymers of the ABA type. Macromolecules,1997,30:5634-5642
    [217]Bodor N, Gabanyi Z, Wong C. A new method for the estimation of partition coefficient. J Am Chem Soc,1989,111:3783-3786
    [218]Gavezotti A. The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity. J Am Chem Soc, 1983,10:5220-5225
    [219]George M, Weiss R G. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res,2006,39: 489-497
    [220]Abdallah D J, Weiss R G Organogels and low molecular-mass organic gelators. Adv Mater, 2000,12:1237-1247
    [221]Dastidar P. Supramolecular gelling agents:can they be designed? Chem Soc Rev,2008,37: 2699-2715
    [222]Hirst A R, Escuder B, Miravet J F, et al. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials:from regenerative medicine to electronic devices. Angew Chem Int Ed,2008,47:8002-8018
    [223]Carretti E, Deia L, Weiss R G Soft matter and art conservation. Rheoreversible gels and beyond. Soft Matter,2005,1:17-22
    [224]Wang C, Chen Q, Sun F, et al. Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups:Reversible tuning of the gel-sol transition by redox reactions and light irradiation. J Am Chem Soc,2010,132:3092-3096
    [225]Steed J W. Supramolecular gel chemistry:developments over the last decade. Chem Commun,2011,47:1379-1383
    [226]Estroff L A, Hamilton A D. Water gelation by small organic molecules. Chem Rev,2004, 104:1201-1218
    [227]Sangeetha N M, Maitra U. Supramolecular gels:Functions and uses. Chem Soc Rev,2005, 34:821-836
    [228]Banerjee S, Das R K, Maitra U. Supramolecular gels'in action'. J Mater Chem,2009,19: 6649-6687
    [229]Trickett K, Brice H, Myakonkaya O, et al. Microemulsion-based organogels containing inorganic nanoparticles. Soft Matter,2010,6:1291-1296
    [230]Cicchi S, Ghini G, Lascialfari L, et al. Self-sorting chiral organogels from a long chain carbamate of 1-benzyl-pyrrolidine-3,4-diol. Soft Matter,2010,6:1655-1661
    [231]Shirakawa M, Fujita N, Shinkai S. [60]Fullerene-motivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites. J Am Chem Soc,2003, 125:9902-9903
    [232]Wang C, Zhang D, Xiang J, et al. New organogels based on an anthracene derivative with one urea group and its photodimer:Fluorescence enhancement after gelation. Langmuir 2007,23:9195-9200
    [233]Shirakawa M, Fujita N, Tani T, et al. Organogel of an 8-quinolinol platinum(II) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching. Chem Commun,2005,4149-4151
    [234]Miravet J F, Escuder B. Pyridine-functionalised ambidextrous gelators:towards catalytic gels. Chem Commun,2005,5796-5798
    [235]Piepenbrock M M, Lloyd G O, Clarke N, et al. Metal-and anion-binding supramolecular gels. Chem Rev,2010,110:1960-2004
    [236]Long D L, Tsunashima R, Cronin L. Polyoxometalates:Building blocks for nanoscale systems. Angew Chem Int Ed,2010,49:1736-1758
    [237]Mialane P, Dolbecq A, Secheresse F. Functionalization of polyoxometalates by carboxylato and azido ligands:Macromolecular complexes and extended compounds. Chem Commun,2006,3477-3485
    [238]Carraro M, Sartorel A, Scorrano G, et al. Chiral Strandberg-type molybdates [(RP03)2Mo5015]2-as molecular gelators:Self-assembled fibrillar nanostructures with enhanced optical activity. Angew Chem Int Ed,2008,47:7275-7279
    [239]Wang Y L, Li W, Wu L X. Organic-inorganic hybrid supramolecular gels of surfactant-encapsulated polyoxometalates. Langmuir,2009,25:13194-13200
    [240]He Z F, Li H L, Wu L X, et al. Instantaneous and reversible gelation of organically grafted polyoxometalate complexes with dicarboxylic acids. Soft Matter,2012,8:3315-3321
    [241]Volkmer D, Bredenkotter B, Tellenbroker J, et al. Structure and properties of the dendron-encapsulated-polyoxometalate (C52H60NO12)12[(Mn(H2O))3(SbW9O33)2], a first generation dendrizyme. J Am Chem Soc,2002,124:10489-10496
    [242]Plault L, Hauseler A, Nlate S, et al. Synthesis of dendritic polyoxometalate complexes assembled by ionic bonding and their function as recoverable and reusable oxidation catalysts. Angew Chem Int Ed,2004,43:2924-2928
    [243]Morgan J R, Cloninger M J. Synthesis of carbohydrate-linked poly (polyoxometalate) poly(amido)amine dendrimers. J Polym Sci Part A:Polym Chem,2005,43:3059-3066
    [244]Feng Y, Liu Z T, Liu J, et al. Peripherally dimethyl isophthalate-functionalized poly(benzyl ether) dendrons:A new kind of unprecedented highly efficient organogelators. J Am Chem Soc,2009,131:7950-7951
    [245]Haridas V, Sharma Y K, Creasey R, et al. Gelation and topochemical polymerization of peptide dendrimers. New J Chem,2011,35:303-309
    [246]Lee M R. Transmission electron microscopy (TEM) of Earth and planetary materials:A review. Mineralogical Magazine,2010,1-27
    [247]Lloyd G O, Steed J W. Anion tuning of the rheology, morphology and gelation of a low molecular weight salt hydrogelator. Soft Matter,2011,7:75-84
    [248]Thompson B C, Frechet J M J. Polymer-fullerene composite aolar cells. Angew Chem Int Ed,2008,47:58-77
    [249]Matsuo Y, Nakamura E. Selective multiaddition of organocopper reagents to fullerenes. Chem Rev,2008,108:3016-3028
    [250]Tsunashima R, Naro S, Akutagawa T, et al. Fullerene nanowires:Self-assembled structures of a low-molecular-weight organogelator fabricated by the Langmuir-Blodgett method. Chem Eur J,2008,14:8169-8176
    [251]Zhu D, Li Y, Wang S, et al. Design,synthesis and properties of functional materials based on fullerene. Synthetic Metals,2003,133-134:679-683
    [252]Gunnarsson O. Superconductivity in fullerides. Rev Mod Phys,1997,69:575-606
    [253]Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res,2003,36:807-815
    [254]Taylor R, Walton D R M. The chemistry of fullerenes. Nature,1993,363:685-693
    [255]Matsumoto M, Tachibana H, Azumi R, et al. Langmuir-Blodgett film of amphiphilic C60 carboxylic acid. Langmuir,1995,11:660-665
    [256]Geckeler K E, Samal S. Syntheses and properties of macromolecular fullerenes, a review. Polym Interna,1999,48:743-757
    [257]Maggini M, Scorrano G Addition of azomethine ylides to C60:Synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc,1993,115:9798-9799
    [258]Wielopolski M, Atienza C, Clark T, et al. p-Phenyleneethynylene molecular wires: Influence of structure on photoinduced electron-transfer properties. Chem Eur J,2008,14: 6379-6390
    [259]Kawauchi T, Kumaki J, Yashima E. Nanosphere and nanonetwork formations of [60]Fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J Am Chem Soc, 2006,128:10560-10567
    [260]Zhang X, Takeuchi M. Controlled fabrication of fullerene C60 into microspheres of nanoplates through porphyrin-polymer-assisted self-assembly. Angew Chem Int Ed,2009, 48:9646-9651
    [261]Zhong Y, Matsuo Y, Nakamura E. Lamellar assembly of conical molecules possessing a fullerene apex in crystals and liquid crystals. J Am Chem Soc,2007,129:3052-3053
    [262]Haddon R C, Perel A S, Morris R C, et al. C60 thin film transistors. Appl Phys Lett,1995, 67:121-123
    [263]Li C, Matsuo Y, Nakamura E. Luminescent bow-tie-shaped decaaryl[60]fullerene mesogens. J Am Chem Soc,2009,131:17058-17059
    [264]Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. Chem Mater,2004, 16:4533-4542
    [265]Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. Chem Rev,2007,107:1324-1338
    [266]Nierengarten J F. Chemical modification of C60 for materials science applications. New J Chem,2004,28:1177-1191
    [267]Steinmetz N F, Hong V, Spoerke E D, et al. Buckyballs meet viral nanoparticles: Candidates for biomedicine. J Am Chem Soc,2009,131:17093-17095
    [268]Service R F. Nanotube 'Peapods' show electrifying promise. Science,2001,292:45
    [269]Nierengarten J F. Fullerodendrimers:A new class of compounds for supramolecular chemistry and materials science applications. Chem Eur J,2000,6:3667-3670
    [270]Zhang S, Rio Y, Cardinali F. Amphiphilic diblock dendrimers with a fullerene core. J Org Chem,2003,68:9787-9797
    [271]Felder D, Gallani J-L, Guillon D, et al. Investigations of thin films with amphiphilic dendrimers bearing peripheral fullerene subunits. Angew Chem Int Ed,2000,39: 201204
    [272]Lenoble J, Maringa N, Campidelli S, et al. Liquid crystlline fullerodendrimers which display columnar phases. Org Lett,2006,8:1851-1854
    [273]Lenoble J, Campidelli S, Maringa N, et al. Liquid-crystalline Janus-type fullerodendrimers displaying tunable smectic-columnar mesomorphism. J Am Chem Soc,2007,129:-9941-9952
    [274]Nakanishi T, Ariga K, Michinobu T, et al. Flower-shaped supramolecular assemblies: Hierarchical organization of a fullerene bearing long aliphatic chains. Small,2007,3: 2019-2023
    [275]Oishi K, Ishi-i T, Sano M, et al. Unexpected discovery of a novel organic gel system composed of [60]Fullerene-containing amphiphiles. Chem Lett,1999,28:1089-1090
    [276]Ishi-i T, Ono Y, Shinkai S. Chirally-ordered fullerene assemblies found in organic gel systems of cholesterol-appended [60]fullerenes. Chem Lett,2000,808-809

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700