用户名: 密码: 验证码:
蛋白质印迹海藻酸钙聚合物微球及其诱导适配重结合行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质大分子印迹聚合物微球材料在许多科研领域已得到越来越多的重视.大分子印迹凝胶聚合物体系的重结合行为涉及构象的改变及适配等不同于传统小分子印迹体系的过程,使得该体系的重结合行为相似于生命体系识别的某些步骤,但也有其本质区别.蛋白质大分子的印迹方法须考虑到蛋白质分子自身的特点给印迹聚合物带来的影响,即体积效应、多官能团及构象多变等性质.选用含水量高、网孔尺度适合、官能团含量丰富、溶胀性能良好的水凝胶类基材已逐渐成为研究者的共识.适用于蛋白质类印迹材料的计算方法和理论模型包括Langmuir单层吸附模型、Scatchard分析法,以及由我组提出的目标作用模式原理和印迹诱导适配模型等.
     本研究首先采用两种新型双水相成球方法制备了蛋白质印迹海藻酸钙凝胶聚合物微球,研究了各种制备条件对微球形貌、尺寸、分布及力学性能的影响,获得了可兼顾产量和均一性的最佳操作工艺.研究了蛋白质溶液的聚集状态及其影响因素,总结归纳并获得了一系列蛋白质聚集态所需试剂量及配制控制条件.
     在对印迹诱导适配行为的研究中,采用不同交联密度的聚合物作为印迹基材,研究了重结合速率常数随着交联密度及溶胀度的变化规律.在此基础上建立“印迹诱导适配模型”并引入参量“适配性参数”作为衡量基材适配行为的手段.通过理论计算证实了凝胶印迹体系适配行为的存在及可预测性.
     针对蛋白质模板进行了以下方面的研究:运用Scatchard分析法研究了不同聚集态组分的蛋白质溶液的重结合行为;利用一级连串反应方程重点研究了二聚体相关的重结合反应,建立了重结合量回归方程式;利用Arrhenius公式推导出单分子、二聚体及二者混合体系的重结合量方程和重结合自由能方程;得出了“印迹诱导适配模型的本质是熵补偿机制(entropic/enthalpic compensation mechanism)”的重要结论.
     印迹聚合物制备的最终目的是实现特异重结合性.本研究制备了溶菌酶及细胞色素C分子双模板印迹凝胶微球用以研究重结合选择性.提出“相对印迹效率”参量用以表征单印迹微球在单组分及双组分溶液中的特异重结合性能.通过紫外分光光度计、电导率仪及离子交换色谱等手段证实,单印迹微球在双组分溶液中的相对印迹效率可高达2.92和3.91,即具有良好的选择性重结合效果.
The protein macromolecularly imprinted polymeric microspheres have become more and more attractive in many fields. The rebinding within macromolecularly imprinted gel polymer systems involves conformational changing and fitting that are different from classical molecularly imprinted materials. This makes it resemble some of the steps in recognition of life system but also possess essential differences.
     The operations of protein imprinting should take into account the impact of the protein properties, i.e. the volume effect, multi-functional groups and conformational instability and so on. It has become a consensus of the researchers that hydrogels with high water content, suitable mesh scale, numerous functional groups and satisfying swelling properties be used as a new kind of imprinted materials. Calculation and theoretical models applicable for protein imprinting materials are Langmuir monolayer adsorption model, Scatchard analysis, as well as the principle of target interaction mode and imprinting induced fitting model proposed by our group.
     In this study protein imprinted calcium alginate microspheres were prepared by two novel aqueous suspending methods. The experimental conditions affecting microspheres’morphology, shape distribution and mechanical properties were studied. Optimum preparation program have been made giving consideration to both sides of yield and uniformity. Then protein aggregations and their influencing factors were studies and the required reagent quantity and solution conditions were also investigated.
     The imprinting matrix was made of gel polymer with different crosslinking density. The imprinting induced fitting behavior was studied by investigating rebinding speed variation as the function of crosslinking density and swelling degree. The imprinting induce-fit model was established accordingly and parameter“fitting factor”was introduced to measure the fitting behavior of the matrix. The existence and predictability of fitting behavior of hydrogel imprinting systems were confirmed by theoretical calculations.
     Researches in view of the protein template have been conducted from the following aspects. The rebinding in protein solutions with different aggregating states was studied by Scatchard analysis. The dimer related rebinding was studied by means of first order consecutive reaction formula and the regression equation of rebinding quantity was established. The rebinding quantity and rebinding free energy formula of single molecule, dimer, and mixed system were developed from Arrhenius equation. Then an important conclusion was proposed:“the imprinting induced fitting model's essence is the entropic/enthalpic compensation mechanism”.
     The ultimate objective of imprinted polymer materials is specific rebinding. In this study the lysozyme and cytochrome C were templated in hydrogel microspheres with the aim of studying rebinding selectivity. The“relative imprinting efficiency (IEr)”had been proposed to estimate rebinding specificity of imprinted beads in single and double component solutions. As characterized by UV spectrophotometer, conductivity meter and ionic exchange chromatograph, the IEr of mono-imprinted microspheres in double component solutions may reach as high as 2.92 and 3.91, i.e. the selective rebinding is satisfying.
引文
[1] Nicole M. Bergmann, Nicholas A. Peppas. Prog. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Polymer Science. 2008, 33: 271~288
    [2]R. Thoelen, R. Vansweevelt, J. Duchateau. A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosensors and Bioelectronics. 2008, 23: 913~918
    [3]Carmen Cacho, Leif Schweitz, Esther Turiel. Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples. Journal of Chromatography A, 2008, 1179: 216~223
    [4]F. Puoci , M. Curcio, G. Cirillo. Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products. Food Chemistry 2008, 106: 836~842
    [5]Mark E. Byrne, J. Zachary Hilt, Nicholas A. Peppas. Recognitive biomimetic networks with moiety imprinting for intelligent drug delivery. Journal of Biomedical Materials Research Part A. 2008, 84A: 137~147
    [6] Liyong Zhang, Guoxiang Cheng, Cong Fu, et al. Tyrosine Imprinted Polymer Beads With Different Functional Monomers Via Seed Swelling And Suspension Polymerization. Polymer Engineering and Science, 2003, 43(4): 965~974
    [7]Chau Jin Tan and Yen Wah Tong. Preparation of Superparamagnetic Ribonuclease A Surface-Imprinted Submicrometer Particles for Protein Recognition in Aqueous Media. Anal. Chem. 2007, 79:299~306
    [8]Wayne Cummins, Patrick Duggan, Peter McLoughlin. A comparative study of the potential of acrylic and sol-gel polymers for molecular imprinting. Analytica. Chimica. Acta. 2005, 542: 52~60
    [9]Qiang Zhao, Guoxiang Cheng, Cunjiang Song. Crystallization behavior and biodegradation of poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. Polymer Degradation and Stability. 2006, 91: 1240~1246
    [10]Xingshou Pang, Guoxiang Cheng, Shulai Lu, Morphology and thermodynamic analysis of composite polymer particles prepared by soap-free emulsion polymerization in the presence of poly(methyl methacrylate) and polystyrene as biseeds, Journal of Applied Polymer Science. 2004, 92: 2675~2680
    [11]Xingshou Pang, Guoxiang Cheng, Shulai Lu, et al. Bi-Seeded emulsion polymerization in the presence of poly(methyl methacrylate) and polystyrene,Reactive and Functional Polymers. 2005, 62: 69~75
    [12]姚康德,许美萱,成国祥等,智能材料,天津大学出版社, 1996, 152~156
    [13]姚康德,成国祥,智能材料,化学工业出版社, 2002, 42~50
    [14]张立永,曾令刚,裴广玲,等,分子印迹聚合物微球制备研究进展,材料导报,2001,15(1):60~61. (Zhang Liyong, Zeng Linggang, Pei Guangling, et al. Progress in Preparation Processes of Molecularly Imprinted Polymeric Microspheres, Materials Review, 2001,15(1):60~61)
    [15]张立永,成国祥,分子印迹聚合物微球的制备及应用,高技术通讯, 2002,12(7):107~110 (Zhang Liyong, Cheng Guoxiang, Preparation and application of molecularly imprinted polymer microspheres, High Technology Letters, 2002,12(7):107~110. EI7532953
    [16]Lu Shulai, Cheng Guoxiang, Cai Zhijiang, et al., Preparation methods of nanocavity biomaterials with recognition specificity via template imprinting of proteins, Acta Academiae Medicinae Sinicae (中国医学科学院学报). 2003, 25(5):590~594
    [17]成国祥,陆书来,庞兴收,分子印迹聚合物磁性复合微球及其反相乳液与悬浮聚合的复合制备方法,中国发明专利, ZL 02121487.5
    [18]成国祥,陆书来,张立广,等.分子印迹聚合物磁性复合微球及其悬浮聚合制备方法,中国发明专利, ZL02121489.1
    [19]成国祥,张立永,在水性介质中制备分子印迹聚合物微球的方法,中国发明专利, ZL02121484.0
    [20]Xingshou Pang and Guoxiang Cheng, The Protein-Imprinted Polymer Materials, in Robert K. Bregg, Polymer Research Developments, Nova Science Publishers, Inc, New York, 2006, ISBN: 1-59454-742-4, (chapter 5)pp.91~106
    [21]Kongyin Zhao, Jianjun Huang, Xiaoguang Ying, et al. Macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres with the surface imprinting of bovine serum albumin in inverse-phase suspension, Journal of Applied Polymer Science. 2008, 109(4): 2687~2693
    [22]Rachkov A, Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochimica et Biophysica Acta, 2001, 1544: 255~266
    [23]Rachkov A, Minoura N. Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized the epitope approach. Chromatogr, 2000, 889: 111~118
    [24]张凤菊,高智,李翠萍,等.乳液及分子模板法海藻酸盐微球的研究, 2004年全国高分子材料科学与工程研讨会论文集, 2004, p497~498(Fengju Zhang, Zhi Gao, Cuiping Li, et al. Porous alginate microspheres via emulsion and molecular templates, Proceedings of national symposium on polymer material science and engineering, 2004, 497~498
    [25]成国祥,张凤菊,英晓光,双模板法羟乙基纤维素改性海藻酸盐微球及制备方法,中国发明专利,申请号200510015832.1
    [26]成国祥,英晓光,张立广,大分子及乳液双印迹海藻酸盐聚合物微球及其制备方法,中国发明专利,申请号200810052419.6
    [27]赵强,多嵌段聚(3-羟基丁酸酯)/聚乙二醇共聚物的制备、结构、特性及其作为分子印迹材料的研究.博士学位论文. 2006
    [28]R. Thoelen, R. Vansweevelt, J. Duchateau. A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosensors and Bioelectronics. 2008, 23: 913~918
    [29]F. Puoci , M. Curcio, G. Cirillo. Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products. Food Chemistry. 2008,106: 836~842
    [30] Carmen Cacho, Leif Schweitz, Esther Turiel. Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples. Journal of Chromatography A. 2008, 1179: 216~223
    [31]Masayo Ogiso, Norihiko Minoura, Toshio Shinbo, et al. DNA detection system using molecularly imprinted polymer as the gel matrix in electrophoresis. Biosensors and Bioelectronics. 2007, 22: 1974~1981
    [32] Azadeh Namvar, Keith Warriner. Microbial imprinted polypyrrole/poly (3-methylthiophene) composite films for the detection of Bacillus endospores. Biosensors and Bioelectronics. 2007, 22: 2018~2024
    [33] Nicholas W. Turner, Christopher W. Jeans, Keith R. Brain, et al. From 3D to 2D: A Review of the Molecular Imprinting of Proteins Biotechnol. Prog. 2006, 22: 1474~1489
    [34] Adam Baszkin. Molecular recognition on the supported and on the air/water interface-spread protein monolayers. Advances in Colloid and Interface Science, 2006,128~130: 111~120
    [35]Linden D. Bolisay, James N. Culver, Peter Kofinas. Optimization of Virus Imprinting Methods To Improve Selectivity and Reduce Nonspecific Binding. Biomacromolecules 2007, 8: 3893~3899
    [36] Nicholas W. Turner, Bryon E. Wright, Vladimir Hlady, et al. Formation of protein molecular imprints within Langmuir monolayers: A quartz crystalmicrobalance study. Journal of Colloid and Interface Science. 2007, 308: 71~80
    [37] Xuezhong Du, Vladimir Hlady, David Britt. Langmuir monolayer approaches to protein recognition through molecular imprinting. Biosensors and Bioelectronics. 2005, 20: 2053~2060
    [38] Amrita Mohan, Christopher J. Oldfield, Predrag Radivojac, et al. Analysis of Molecular Recognition Features (MoRFs). J. Mol. Biol. 2006, 362: 1043~1059
    [39] Nicholas W. Turner, Xiao Liu, Sergey A. Piletsky, et al. Recognition of Conformational Changes inβ-Lactoglobulin by Molecularly Imprinted Thin Films. Biomacromolecules 2007, 8: 2781~2787
    [40]John Rick, Tse-Chuan Chou. Imprinting unique motifs formed from protein-protein associations. Analytica Chimica Acta. 2005, 542: 26~31
    [41]Haupt, K. Creating a good impression. Nat. Biotechnol. 2002, 20: 884~885
    [42]Zhuo Zhao, Chunhong Wang, Minjie Guo, et al. Molecular imprinted polymer with cloned bacterial protein template enriches authentic target in cell extract. FEBS Letters. 2006, 580: 2750~2754
    [43] J. Zachary Hilt, Mark E. Byrne. Configurational biomimesis in drug delivery:molecular imprinting of biologically significant molecules. Advanced Drug Delivery Reviews. 2004, 56: 1599~1620
    [44] Liyong Zhang, Guoxiang Cheng, Cong Fu. Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. Reactive & Functional Polymers. 2003, 56: 167~173
    [45]Emmanuel H. Papaioannou, Maria Liakopoulou-Kyriakides. Rigini M. Papi, Dimitrios A. Kyriakidis. Molecularly Imprinted Polymers for Cholecystokinin C-Terminal Pentapeptide Recognition. Macromol. Chem. Phys. 2007, 208: 2621~2627
    [46] Wayne Cummins, Patrick Duggan, Peter McLoughlin. A comparative study of the potential of acrylic and sol-gel polymers for molecular imprinting. Analytica Chimica Acta. 2005, 542: 52~60
    [47] Xingshou Pang, Guoxiang Cheng, Rensheng Li. Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization. Analytica Chimica Acta. 2005, 550: 13~17
    [48] Guo-Qi Fu, Hao Yu, Jing Zhu. Imprinting effect of protein-imprinted polymers composed of chitosan and polyacrylamide: A re-examination. Biomaterials. 2008, 29: 2138~2142
    [49]Mehmet Odaba?i, Ridvan Say, Adil Denizli. Molecular imprinted particles forlysozyme purification. Materials Science and Engineering C. 2007, 27: 90~99
    [50]Nilay Bereli, Müge Anda?, G?zde Baydemir, et al. Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. Journal of Chromatography A. 2008, 1190(1-2): 18~26
    [51]Yuan Lin, Shunqing Tang, Xuan Mao, et al. Protein recognition via molecularly imprinted agarose gel membrane. 2008, 85A (3): 573~581
    [52] A. Beltran, E. Caro, R.M. Marcé. Synthesis and application of a carbamazepine-imprinted polymer for solid-phase extraction from urine and wastewater. Analytica Chimica Acta. 2007, 597: 6~11
    [53] Roberta Del Sole, Agnese De Luca, Massimo Catalano. Noncovalent Imprinted Microspheres: Preparation,Evaluation and Selectivity of DBU Template. Journal of Applied Polymer Science, 2007, 105: 2190~2197
    [54] Xiaoguang Ying, Guoxiang Cheng and Kongyin Zhao. Preparation and characterization of protein imprinted agarose microspheres. Polymer Bulletin. 2009, Accepted
    [55] G?zde Baydemir, Müge Anda?, Nilay Bereli. Selective Removal of Bilirubin from Human Plasma with Bilirubin-Imprinted Particles. Ind. Eng. Chem. Res. 2007, 46: 2843~2852
    [56] AnikóTakátsy,ákos Végvári, Stellan Hjertén, et al. Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses and cells (bacteria). Ib. Gel antibodies against proteins (hemoglobins). Electrophoresis 2007, 28: 2345~2350
    [57] FengJu Zhang, GuoXiang Cheng, XiaoGuang Ying. Emulsion and macromolecules templated alginate based polymer microspheres. Reactive and Functional Polymers, 2006, 66:712~719.
    [58] Kongyin Zhao, Guoxiang Cheng, Jianjun Huang, et al. Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. Reactive and Functional Polymers, 2008, 68:732~741
    [59] Shulai Lu, Guoxiang Cheng, Xingshou Pang. Protein-Imprinted Soft-Wet Gel Composite Microspheres with Magnetic Susceptibility. II. Characteristics. Journal of Applied Polymer Science. 2006, 99: 2401~2407
    [60]Natalia Pérez-Moral, Andrew G. Mayes. Direct rapid synthesis of MIP beads in SPE cartridges.Biosensors and Bioelectronics. 2006, 21: 1798~1803
    [61]D. Silvestri, N. Barbani, C. Cristallini. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. Journal of Membrane Science. 2006, 282: 284~295
    [62]Francesca Bonini, Sergey Piletsky, Anthony P.F. Turner. Surface imprinted beads for the recognition of human serum albumin. Biosensors and Bioelectronics. 2007, 22: 2322~2328
    [63]Huaiqiu Shi, Buddy D. Ratner. Template recognition of protein-imprinted polymer surfaces. Student Research Award in the Doctoral Degree Candidate Category, 25th Annual Meeting of the Society for Biomaterials, Providence, RI, April 28-May 2, 1999
    [64]Zhaohui Zhang, Yumei Long, Lihua Nie, et al. Molecularly imprinted thin film self-assembled on piezoelectric quartz crystal surface by the sol-gel process for protein recognition. Biosensors and Bioelectronics. 2006, 21: 1244~1251
    [65]M.E. Brown, D.A. Puleo. Protein binding to peptide-imprinted porous silica scaffolds. Chemical Engineering Journal. 2008, 137: 97~101
    [66]Hsin-Yi Lin, John Rick, Tse-Chuan Chou. Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer-formed using a micro-contact imprinting method. Biosensors and Bioelectronics. 2007, 22: 3293~3301
    [67]Xingshou Pang, Guoxiang Cheng, Shulai Lu, et al. Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin. Anal Bioanal Chem. 2006, 384: 225~230
    [68]Mitsuru Haruki, Yoshihiro Konnai, Ayumi Shimada. Molecularly Imprinted Polymer-Assisted Refolding of Lysozyme. Biotechnol. Prog. 2007, 23:1254~1257
    [69]Takateru Matsunaga, Takayuki Hishiya, Toshifumi Takeuchi. Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films. Analytica Chimica Acta. 2007, 591: 63~67
    [70]Zhiyong Chen, Zhendong Hua, Li Xua, et al. Protein-responsive imprinted polymers with specific shrinking and rebindingy. J. Mol. Recognit. 2008, 21: 71~77
    [71]Daniel M. Hawkins, Derek Stevenson, Subrayal M. Reddy. Investigation of protein imprinting in hydrogel~based molecularly imprinted polymers (HydroMIPs). Analytica Chimica Acta. 2005, 542: 61~65
    [72]Chang-Ling Yan, Yan Lu, Shu-Yan Gao. Coating Lysozyme Molecularly Imprinted Thin Films on the Surface of Microspheres in Aqueous Solutions. Journal of Polymer Science: Part A: Polymer Chemistry. 2007, 45: 1911~1919
    [73] Xiaoman Jiang, Wei Tian, Chuande Zhao, A novel sol-gel-material prepared by asurface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta. 2007, 72: 119~125
    [74] Xingshou Pang, Guoxiang Cheng , Yihua Zhang, et al. Soft-wet polyacrylamide gel beads with the imprinting of bovine serum albumin. Reactive & Functional Polymers. 2006, 66: 1182~1188
    [75]Guan Y, Lilley TH, Garcia-Lisbona MN. New approaches to aqueous polymer systems: Theory thermodynamics and applications to biomolecular separation. Pure&ApplChem. 1995, 87(6): 955~962
    [76]徐珲,魏刚,胡雪霞,双水相中制备交联泊洛沙姆亲水凝胶微球.沈阳药科大学学报(Journal of Shenyang Pharmaceutical University). 2001, 18: 166~169
    [77]Xue-Jun Wang, Zhen-Liang Xu, Jian-Li Feng, et al. Molecularly imprinted membranes for the recognition of lovastatin acid in aqueous medium by a template analogue imprinting strategy. Journal of Membrane Science. 2008, 313: 97~105
    [78] Guoxiang Cheng, Kongyin Zhao, Jianjun Huang, et al. Study on optimization of specific rebinding property of protein-macromolecularly imprinted alginate hybrid polymer microspheres via tuning of pH value,中国科技论文在线(http://www.paper.edu.cn), 2008, 200807-578
    [79] Xiaoguang Ying, Liguang Zhang, Guoxiang Cheng. Effect on rebinding behavior with different composition and structure of the dually imprinted alginate polymer microspheres using proteins and o/w emulsion drops as dual templates. Journal of Applied Polymer Science. DOI 10.1002/app.30727
    [80]英晓光,张立广,成国祥,大分子印迹聚合物微球特异重结合的印迹诱导-适配模型研究, 2009年全国高分子学术论文报告会,天津, pp482
    [81] Hiroyuki Asanuma, Tomohiro Akiyama, Kentaro Kajiya. Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests. Analytica Chimica Acta. 2001, 435: 25~33
    [82] Mark F. Lulka, Shahzi S. Iqbal, James P. Chambers. Molecular imprinting of Ricin and its A and B chains to organic silanes: fluorescence detection. Materials Science and Engineering C . 2000, 11:101~105
    [83] Djavanshir Djozan, Tahmineh Baheri. Preparation and evaluation of solid-phase microextraction fibers based on monolithic molecularly imprinted polymers for selective extraction of diacetylmorphine and analogous compounds. Journal of Chromatography A, Volume 2007, 1166: 16~23
    [84]张立永,水性体系中分子印迹聚合物微球的制备及其特性[D].天津大学, 2003
    [85]张凤菊,乳液及蛋白质双模板法印迹海藻酸盐基微球的研究[D].天津大学, 2006
    [86]庞兴收,蛋白质印迹软湿凝胶聚合物微球的研究[D].天津,天津大学, 2005
    [87]赵孔银,大分子表面印迹海藻酸盐基杂化聚合物微球的制备与特性[D].天津大学, 2007
    [88]英晓光,蛋白质及乳液印迹海藻酸盐基微球的特异重结合行为的研究[D].天津大学, 2007
    [89]李宇平,蛋白质大分子印迹琼脂糖基聚合物微球的研究[D].天津大学, 2008
    [90]陈益清,孙多先,苏晶,海藻酸钙凝胶微球粒径的理论计算与实验[J].高等学校化学学报, 2003, 3: 481~484
    [91]Byfield MP, Abuknesha RA. Biochemical aspects of biosensors. Biosens. Bioelect. 1994; 9: 373~400
    [92] Brash JL. Role of plasma protein adsorption in the response of blood to foreign surfaces. In: Sharma CP, Szycher M, editors. Biomaterials: Interfacial phenomenon and applications. ACS Advances in Chemistry Series. Lancaster, PA: Technomic, 1991, 3~24
    [93]Sakchai Wittaya-areekul, Jittiporn Kruenate, Chureerat Prahsarn. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. Colloids and Surfaces B-Biointerfaces. 2009, 73 (2): 199~206
    [94]Merkel, K. Vergleichende Untersuchungen verschiedener Kultivierungssysteme zur Produktion von Ergotalkaloiden mit Claviceps purpurea Dl-nic, VDI Fortschrittsberichte, VDI Verlag, Dusseldorf pp. 70~3, 1996
    [95]Huguet, M.L., Dellacherie, E. Calcium-alginate beads coated with chitosan: Effect of the structure of encapsulated materials on their release. Process Biochem. 1996, 31: 745~751
    [96]Daly, M.M., Knorr, D., Chitosan-alginate complex coacervate capsules: Effect of calcium chloride, plasticizers, and polyelectrolytes on mechanical stability. Biotechnol. Prog. 1988, 4: 76~81
    [97]Cho, M.G., Verfahrenstechnische Auslegung einer Apparatur zur Herstellung mikroverkapselter Biokatalysatoren mit getrennter Zufuhrung von Katalysatorlosung und Kapselgrundsubstanz, VDI Fortschrittsberichte, VDI Verlag, Dusseldorf. 1994: 93~102
    [98]Dorian RE, Cochrum KC. Production process of encapsulated bodies. US Patent 4,814,274. 1996
    [99]Renaudeaux JP, Chicheportiche JM. High flow monodispersed aerosol generating device Eur. Pat. EP0446134. 1991
    [100]Levy, M.C. and Poncelet, D. Bio-encapsolation, les technologies. Biofutur. 1994, 132: 16~21
    [101]王康,何志敏,海藻酸钠与钙或锌离子凝胶动力学过程研究. Study on gelling kinetics processes of sodium alginate with calcium ions or zinc ions.离子交换与吸附2004, 20(5): 424~429
    [102]J. Klein, J. Stock, K.-D. Vorlop. Pore Size and Properties of Spherical Ca-Alginate Biocatalysts. Eur J Appl Microbiol Biotechnol. 1983, 18: 86~91
    [103].Vassilios Raikos, Rasmus Hansen, Lydia Campbell, et al. Separation and identification of hen egg protein isoforms using SDS-PAGE and 2D gel electrophoresis with MALDI-TOF mass spectrometry. Food Chemistry. 2006, 99: 702~710
    [104] R. Asadpour, S.M. Alavi-Shoushtari, S. Asri Rezaii, et al. SDS-polyacrylamide gel electrophoresis of buffalo bulls seminal plasma proteins and their relation with semen freezability. Animal Reproduction Science. 2007, 102: 308~313
    [105] J. Janatova, J. K. Fuller, M. J. Hunter. The Heterogeneity of Bovine Albumin with Respect to Sulfhydryl and Dimer Content. The Journal of Biological Chemistry. Vol. 243, No. 13, Issue of July 10, Pp. 3612~3622, 1968. Printed in U.S.A.
    [106] Alan K. Hunter, Giorgio Carta. Effects of bovine serum albumin heterogeneity on frontal analysis with anion-exchange media. Journal of Chromatography A, 2001, 937: 13~19
    [107] Renata K.T. Kobayashi, Luis Carlos J. Gaziri, Emerson J. Venancio, et al. Detection of Tsh protein mucinolytic activity by SDS~PAGE. Journal of Microbiological Methods. 2007, 68: 654~655
    [108] Bianca Shweitzer, Dino Zanette, Rosangela Itri. Bovine serum albumin (BSA) plays a role in the size of SDS micelle~like aggregates at the saturation binding: the ionic strength effect. Journal of Colloid and Interface Science. 2004, 277: 285-291
    [109] Sonia F. Santos, Dino Zanette, Hannes Fischer et al. A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-ray scattering. Journal of Colloid and Interface Science. 2003, 262: 400~408
    [110]王思玲,李玉娟,几种大分子分散系动态光散射光谱分析.中国药剂学杂志(Chinese Journal of Pharmaceutics). 2003, 1(3): 100~105
    [111]王正烈,物理化学(第四版)下册,北京:高等教育出版社, 2001, 324~325
    [112] Abner Louis Notkins. Polyreactivity of antibody molecules. TRENDS in Immunology. 2004, 25(4): 174~179
    [113]Hiroyasu Ohtaka, Ernesto Freire. Adaptive inhibitors of the HIV-1 protease. Progress in Biophysics and Molecular Biology. 2005, 88: 193~208
    [114] Koshland D. E. Jr. Science. 1963 142: 1533~1541
    [115]陈伟兵,杨超,李晓丽,海藻酸钠/SiO2共价交联杂化水凝胶的制备与性能表征.材料科学与工程学报(Journal of Materials Science&Engineering). 2008, 26(3):438~440
    [116] Wei-Xiang Su, John Rick, Tse-Chuan Chou. Selective recognition of ovalbumin using a molecularly imprinted polymer. Microchemical Journal. 2009, 92: 123~128
    [117] George Z. Kyzas, Dimitrios N. Bikiaris, Nikolaos K. Lazaridis. Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs). Chemical Engineering Journal. 2009, 149: 263~272
    [118]Sreenivasan K, Sivakumar R. Imparting recognition sites in poly(HEMA) for two compounds through molecular imprinting. J. Appl. Polym. Sci. 1999, 71: 1823~1826
    [119]Sreenivasan K. Molecularly imprinted polyacrylic acid containing multiple recognition sites for steroids. J. Appl. Polym. Sci. 2001, 82: 889~893
    [120]Dickert F, Achatz P, Halikias K. Double molecular imprinting-a new sensor concept for improving selectivity in the detection of polycyclic aromatic hydrocarbons (PAHs) in water. Fresen. J. Anal. Chem. 2001, 371: 11~15
    [121]Schweitz L, Andersson LI, Nilsson S. Molecularly imprinted CEC sorbents: investigations into polymer preparation and electrolyte composition. Analyst. 2002.127: 22~28
    [122]Sabourin L, Ansell RJ, Mosbach K, et al. Molecularly imprinted polymer combinatorial libraries for multiple simultaneous chiral separations. Anal. Commun. 1998, 35: 285~287
    [123]Sreenivasan K. Synthesis and evaluation of multiply templated molecularly imprinted polyaniline. J. Mater. Sci. 2007, 42: 7575~7578
    [124]Spegel P, Schweitz L, Nilsson S. Selectivity toward multiple predetermined targets in nanoparticle capillary electrochromatography. Anal. Chem. 2003, 75: 6608~6613
    [125]Suedee R, Srichana T, Chuchome T, et al. Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water. J. Chromatogr. B.2004, 811: 191~200
    [126]Mathew-Krotz J, Shea KJ. Imprinted polymer membranes for the selective transport of targeted neutral molecules. J. Am. Chem. Soc. 1996, 118: 8154~8155
    [127]Takeda K, Kobayashi T. Hybrid molecularly imprinted membranes for targeted bisphenol derivatives. J. Membr. Sci. 2006, 275: 61~69
    [128]Liu HY, Row KH, Yan GL. Monolithic molecularly imprinted columns for chromatographic separation. Chromatography A. 2005, 61: 429~432
    [129]Zheng C, Liu Z, Gao R, et al. Recognition of oxytocin by capillary electrochromatography with monolithic tetrapeptideimprinted polymer used as the stationary phase. Anal. Bioanal. Chem. 2007, 388: 1137~1145
    [130]Bowman MAE, Allender CJ, Brain KR, et al. A high-throughput screening technique employing molecularly imprinted polymers as biomimetic selectors. Methodol. Surv. Bioanal. Drugs 1998. 25: 37~43
    [131]Xiaoguang Ying, Liguang Zhang and Guoxiang Cheng. Effect on rebinding behavior with different composition and structure of the dually imprinted alginate polymer microspheres using proteins and o/w emulsion drops as dual templates. Journal of Applied Polymer Science. DOI 10.1002/app.30727. 2010, 115(6): 3516-3526
    [132]Xiaoguang Ying, Guoxiang Cheng. Progress in the protein-macromolecularly imprinted polymer microspheres and technology. Advances in Polymer Technology. Submitted

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700