用户名: 密码: 验证码:
稠环芳烃材料在有机电致发光器件中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件作为一种平板显示技术,具有诸如自发光、高亮度、宽视角、超薄、低能耗、响应速度快、可卷曲、可实现全色发光等众多优点,而备受人们的关注。通过采用适当的器件结构、器件制作技术和有机材料,有机电致发光器件的性能得到明显提高。在全色显示方面,高效率、稳定的绿色有机电致发光器件已达实用化程度,与绿色有机电致发光器件相比,蓝色和红色有机电致发光器件的效率和色纯度对于全色显示来说尤其需要提高。另一方面,白光有机电致发光器件由于其在全色显示和背光源的潜在应用价值,也备受人们的关注。尽管有机电致发光器件的有些产品已经商业化,但作为一种技术还需要不断提高其产品性能。在本论文中,有些工作已经提高了有机电致发光器件的性能。本论文的工作主要包括以下方面:
     (1)探索了合成二芳香基蒽衍生物的方法,合成了三种二芳香基蒽衍生物。本文中设计的合成方法较一般传统方法具有反应步骤少,方法简便,原料易得,不需使用昂贵的钯化合物催化剂,产品产率高等特点;而且其中个别中间体3,5-二苯基溴苯的合成方法较一般传统方法也具有反应步骤少,方法简便,原料易得,产品产率高等特点,这些都具有较好的实际应用价值,为今后的工业生产提供技术支持。
     本论文以自制的二芳香基蒽衍生物蓝光材料为非掺杂发光层制作了蓝色器件,研究了发光层厚度、空穴传输层厚度、电子传输层厚度对电致发光光谱的影响,进行了器件优化,并利用空穴阻挡层改善色纯度,得到色纯度好的蓝色发光。
     本论文还首次以4,4’-N,N’-二咔唑基联苯(CBP)作为主体发光材料、以蒽衍生物9,10-二(β-萘基)蒽(ADN)为掺杂剂,得到深蓝色发光器件,并通过ADN掺杂浓度的优化,得到性能好的深蓝色发光器件。器件发光色坐标为(0.1516,0.0836),最高发光亮度为6500cd/m2,最大发光效率为3.5cd/A。
     (2)本论文研究了三种结构的白光有机电致发光器件,以蓝色和黄色为基本色素单位混合得到白色发光,器件结构为:第三种器件所发射白光在14V时最大亮度为11665cd/m2,对应效率为2.9cd/A。研究表明,第三种器件发光层中,少量Perylene对Rubrene的发光起了促进作用,在Rubrene浓度为0. 005 mol %时,Rubrene的发光主要源于Perylene分子的能量转移,而不是Rubrene分子直接捕获载流子形成激子。比较三种结构的白光有机电致发光器件,白光色度相差不大,从器件效率、制备工艺的复杂程度等方面考虑,第三种结构的白光有机电致发光器件较好。
     (3)本论文通过分子设计合成了一种新的红色有机荧光染料6,13-二(3,5-二(苯基)苯基)并五苯(PDT),并以其为发光材料制备了三种结构的有机电致发光器件,器件结构为: ITO/TPD(50nm)/PDT(60nm)/Bphen(25nm)/LiF(1nm)/Al(器件-P) ITO/TPD(50nm)/Alq3 : 3%molPDT(60nm)/Bphen(25nm)/LiF(1nm)/Al(器件-AP) ITO/TPD(50nm)/Alq3:3mol%PDT:1mol%rubrene(60nm)/Bphen(25nm)/LiF(1nm)/Al(器件-APR)尽管器件-P的发光色坐标为(0.6581,0.2927),但其电流效率较低,亮度只有几个尼特,器件性能较差。器件-AP的发光色坐标在4mA/cm2时为(0.5901,0.3804),电流效率为1.5cd/A,其色纯度较差。为了提高器件的发光性能,我们在器件-AP的发光层中再掺杂红荧烯作为辅助掺杂剂。研究表明,红荧烯不但自身发光,还帮助使能量从Alq3转移到PDT,从而得到较纯的红色发光器件,器件在120mA/cm2时电流效率为2.4cd/A,色坐标为(0.6081,0.3779)。与其它类型材料的有机电致发光器件相比,该器件色度比较稳定,电流密度在12mA/cm2到200 mA/cm2变化时,其色坐标仅由(0.612,0.371)变化到(0.6018,0.3814),这对其实际应用具有非常重要的意义。该器件中可能的激发机制,既存在由Rubrene向PDT的能量转移,也存在PDT直接捕获载流子。比较三种结构的红光有机电致发光器件,从器件色度、效率及稳定性等方面考虑,具有辅助掺杂剂的第三种结构(器件-APR)的红光有机电致发光器件较好。
     (4)有机电致发光材料能带的准确测定对于有机电致发光器件研究至关重要。电化学方法(如循环伏安法)是表征有机材料的HOMO能级的简单而被广泛采用的方法之一。通常所用循环伏安法存在用料多、数值确定不明显等方面的缺点,因此我们改进了上述方法,将待测定材料在工作电极上成膜,采用线性扫描伏安法直接测定氧化电流起峰位置而得到其HOMO能级。再结合光谱数据就可以计算出材料的LUMO能级。研究表明该方法用料量少、快速、简便。
Organic light emitting devices (OLEDs) have attracted considerable attention due to their outstanding superiorities of application in flat-panel displays, such as self-luminous, high-brightness, wide viewing angle, thinness, low power consumption, fast response time, flexible, and full color. The performance of OLEDs has been improved significantly with the adoption of suitable device structures, process technologies, and organic materials. In full color display, highly efficient and stable green OLEDs have been realized. Compared with green-emitting devices, the electroluminescence (EL) characteristics of blue and red-emitting ones have to be improved particularly in terms of efficiency and color purity for full color applications. On the other hand, white light devices among various colors draw particular attention because their potential use in backlight, full color applications, as well as in lighting purposes. The products of OLEDs have been commercialized, however much work remains important to enhance the product performance. In this dissertation, some works have been shown to improve the performance of OLEDs. It includes the following items:
     (1) Several 9, 10-diaryl substituted anthracene derivatives were synthesized by a simple synthetic route from anthraquinone compared with conventional method. In this way it is of less reacting steps, convenient, easy to obtain raw material, not need to use expensive palladium catalyst, and of high yield of the product. It is also shown a simple way to synthesize the intermediate product 3, 5-(diphenyl) bromobenzene by one-pot reaction of 2,4,6-tribromoiodobenzene with aryl-Grignard reagent, which is beneficial to industrial manufacture.
     Blue organic light emitting devices were prepared based on undoped 9, 10-diaryl substituted anthracene derivatives as light emitting materials. The influences of the thickness of lighting layer, hole transporting layer, and electron transporting layer on emitting spectra were studied. The color purity of devices was improved by using hole blocking layer, resulting in pure blue emission. A deep blue organic light emitting diode which was fabricated by firstly using 9,10-di(2-naphthyl)anthracene (ADN) as a dopant and 4,4’-N,N’-dicarbazole- biphenyl (CBP)as a host. The doping concentration of ADN was optimized, and the Commission Internationale de l’Eclairage coordinates of (0.1516, 0.0836) were achieved in the cell, which is very close to the National Television Standards Committee standard of (0.14, 0.08). Meanwhile, maximum luminance over 6500cd/cm2 and maximum current efficiency of 3.5cd/A were also obtained.
     (2) This dissertation presents organic light-emitting diodes which generate white emission based on both perylene and 5,6,11,12-tetraphenylnaphthacene (rubrene) doped in 9,10-di(2-naphthyl)anthracene (ADN). The white OLEDs have three kinds of configurations: ITO/TPD(50nm)/ADN: 0.04mol%Rubrene (40nm)/Bphen(25nm)/LiF(1nm)/Al, ITO/TPD (50nm)/ADN: 0.05mol%Rubrene (20nm)/ADN: 0.85mol%Perylene (20nm)/Bphen(25nm)/LiF(1nm)/Al, And ITO/TPD (50nm)/ADN:0.85mol%Perylene:0.005mol%Rubrene (40nm)/Bphen(25nm)/LiF(1nm)/Al. The CIE color coordinates of above devices at 4mA/cm2 are (0.3175, 0.3692), (0.3098, 0.3515) and (0.3064, 0.3888) respectively. Compared with the other two devices, the third device presents white emission with the maximum luminance of 11665cd/m2 at 14V according to luminance efficiency of 2.9cd/A. The third white organic light emitting device was fabricated by doping two color fluorescent dyes in one blue host. In which yellow emission component from rubrene was strengthened due to another dopant perylene. It was found that the blue dopant perylene not only itself emitted but also assisted the energy transfer from ADN to rubrene. Thus, in lower concentration of rubrene the white lighting emission was obtained.
     (3) Three kinds of red organic light emitting devices (ROLEDs) were configured based on a new synthesized pentacene derivative, 6, 13-di-(3,5-diphenyl) phenylpentacene (PDT), doped in tris-(8-hydroxy-quinolinato)aluminum(Alq3). ITO/TPD (50nm)/PDT (60nm)/Bphen(25nm)/LiF(1nm)/Al(Cell-P) ITO/TPD (50nm)/Alq3 : 3%molPDT(60nm)/Bphen(25nm)/LiF(1nm)/Al(Cell-AP) ITO/TPD (50nm)/Alq3:3mol%PDT: 1mol%rubrene (60nm)/Bphen(25nm)/LiF(1nm)/Al (Cell-APR) Although the color coordinate is (0.6581, 0.2927) in Cell-P, the maximum luminance is 3.5cd/m2. The luminance of Cell-P is poor. While the color coordinate is (0.5901, 0.3804) at 4mA/cm2 according to luminance efficiency of 1.5cd/A in Cell-AP. In order to improve the color purity of red emission in Cell-AP, 5,6,11,12-tetraphenylnaphthacene (rubrene) was introduced as the assist dopant in above doping system (Alq3:PDT). The assist dopant (rubrene) not only itself emitted but also assisted the energy transfer from the host (Alq3) to the red emitting dopant (PDT). A stable red emission cell was obtained, and the color coordinates have only small variation from (0.612, 0.371) to (0.6018, 0.3814) with increasing the current density from 12 mA/cm2 to 200 mA/cm2. The excitation mechanism of PDT in Cell-APR may be considered to be both energy transfer from rubrene and PDT directly carrier trapping. So we may deduce that it is attributed to rubrene assist effect which is beneficial to energy transfer from Alq3 to PDT in the same emitting layer, resulting in stable red emission.
     (4) It is very important to obtain accurate data of energy band structure of organic electroluminescent materials. Cyclic voltammetry is one of the methods usually used to obtain HOMO energy level. However it is too difficult to get precise data of HOMO energy level by cyclic voltammetry. In this dissertation technology of linear scanning voltammetry (LSV) is instead utilized to attain a result of oxidation potential (or HOMO energy level) due to electrochemical oxidation of organic electroluminescent material filmed on the working electrode. Fewer amounts of materials are consumed in this method. And results show that it is faster and more convenient.
引文
[1] a. M Pope , H Kallmann , P Magnante . Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963, 38(8):2042~2043.
    b. W. Helfrich, W G Schneider, Recombination radiation in anthracene crystals [J].Phys. Rev. Lett., 1965, 14:229~231.
    c. Lohmann F and MehlW. Dark Injection and radiative recombination of electrons and holes in naphthalene crystals[J].J.Chem.Phys.1969 ,50:500~506.
    d. D F Williams, M Schadt. DC and pulsed electroluminescence in anthracene and doped anthracene crystals [J]. J.Chem.Phys.1970 ,53:3480~3487.
    e. P S Vincett, W A Barlow, R A Hann, G B Roberts. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films [J]. Thin Solid Films,1982,94(2):171~183.
    f. R H Partidge. Electroluminescence from polyvinylcarbazole films: 3. electroluminescent devices [J]. Polymer,1983,24(6):746~752.
    [2] C W Tang , S A VanSlyke. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913~915.
    [3] a.C Adachi, S Tokito, T Tsutsui,et al. Jpn.J.Appl.Lett., part2, 1988,27,L269. b. C Adachi, S Tokito, T Tsutsui,et al. Jpn.J.Appl.Lett., part2, 1988, 27, L713.
    [4] C W Tang, S A VanSlyke, C H Chen, Electroluminescence of doped organic thin films[J]. J.Appl.Phys., 1989,65(9),3610~3616.
    [5] J H Burroughes , D D C Bradley , A R Brown , et al. Light-emitting Diodes Based On Conjugated Polymers [J]. Nature, 1990, 347(11): 539~541.
    [6] L S Hung ,C W Tang ,M G Mason ,et al. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode[J]. Appl. Phys. Lett.,1997,70:152~154.
    [7] S A VanSlyke, C H Chen, C W Tang, Organic electroluminescent devices with improved stability[J]. Appl. Phys. Lett.,1996,69(15),2160~2162.
    [8] M A Baldo, D F O’Brien, Y You, A Shoustikov, S Sibley, M E Thompson, SR Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature(London), 1998,395,151~154.
    [9] L S Liao, K P Klubek, C W Tang. High-efficiency tandem organic light-emitting diodes [J]. Appl. Phys. Lett., 2004, 84:167~169.
    [10] http://www.novaled.com/index.php
    [11]李文连,有机LED的界面与载流子注入[J],液晶与显示,1998,13(3),203~206.
    [12] J Kido, T Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injection layer[J]. Appl. Phys. Lett.,1998,73(20),2866~2868.
    [13] Z Z Zhang, X Y Jiang, S H Xu et al,Thin film electroluminescent diodes based on poly(vinylcarbazole)[C],edited by S Miyata,H S Nalwa. Organic electroluminescent materials and devices. Amsterdam: Gorden & Breach,1997,203~230.
    [14] Qiu Y(邱勇), Gao J H(高鸿锦), Song X Q(宋心琦). Progress in Organic and Polymer Thin Film Electroluminescent Devices [J]. Prog. In Chem(.化学进展), 1996, 8(3): 221-230 (in Chinese)
    [15] Kim D Y, Cho H N, Kim C Y. Blue Light Emitting Polymers [J]. Prog. Polym. Sci., 2000, 25: 1089-1139
    [16]陈金鑫,石建民,邓青云,有机电致发光材料的新发展[J]. Chemistry(化学)(The Chinese Chem. Soc., Taipei), 1996,54(1): 125-145
    [17] Mitschke U, Bauerle P. The Electroluminescence of Organic Materials [J]. J. Mater. Chem., 2000, 10: 1471-1507
    [18] Chen C H, Shi J M, Tang C W. Coord. Chem. Rev., 1998, 171: 161-174
    [19] Kido J,Iizumi Y.Chem.Lett.,1997:963
    [20] Leung L M, Lo W Y, So S K, et al. A High-Efficiency Blue Emitter for Small Molecule-Based Organic Light-Emitting Diode[J]. J. Am. Chem. Soc., 2000, 122(23): 5640-5641
    [21] VanSlyke S A,Bryan P S,Lovecchio F V.Blue Emitting Internal Junction Organic Electroluminescent Device[P].US Patent No.5150006
    [22] Yu G, Liu Y R, Wu X, et al. A New Blue Light-Emitting Material [J]. Synth. Met., 2001, 117: 211-214
    [23] Hamada Y, Sano T, Fujita M, et al. Blue Electroluminescence in Thin Film of Azomethin-Zinc Complexes [J]. Jpn. J. Appl. Phys., 1993, 32(4A): L511-L513
    [24] Im W B, Hwang H K, Lee J G, et al. Bright Pure Blue Emission from Multilayer Organic Electroluminescent Device with Purified Unidentate Organometallic Complex [J]. Appl. Phys. Lett., 2001,79(9): 1387-1389
    [25] Kim Y, Lee J G, Kim S.Blue Light-Emitting Device Based on a Unidentate Organometallic Complex Containing Lithium as an Emission Layer [J].Adv. Mater., 1999, 11(17): 1463-1466
    [26] Tao X T, Suzuki H, Wada T, et al. Highly Efficient Blue Electroluminescence of Lithium Tetra- (2- methyl- 8- hydroxyquinolinato) Boron [J]. J. Am. Chem. Soc., 1999, 121(40): 9447-9448
    [27] Liu Y, Guo J H, Feng J, et al. High-performance Blue Electroluminescent Devices Based on Hydroxyphenyl-pyridine Beryllium Complex [J]. Appl. Phys. Lett., 2001, 78(16): 2300-2302
    [28] Li Y Q, Liu Y, Bu W M, et al. Hydroxyphenyl-pyridine Beryllium Complex (Bepp2) as a Blue Electroluminescent Material [J]. Chem. Mater., 2000, 12(9): 2672-2675
    [29] Adachi C, Tsutsui T, Saito S. Blue Light-emitting Organic Electroluminescent Devices [J]. Appl. Phys. Lett., 1990, 56(9): 799-801
    [30] Sato Y, Ichinosawa S, Ogata T, et al. Blue-emitting Organic EL Devices with a Hole Blocking Layer [J]. Synth. Met., 2000, 111-112: 25-29
    [31] Tokito S, Noda K, Fujikawa H, et al. Highly Efficient Blue-green Emission from Organic Light-Emitting Diodes Using Dibenzochrysene Derivatives [J]. Appl. Phys. Lett., 2000, 77(2): 160-162
    [32]蒋雪茵,张志林,张步新等,稳定的蓝色及白色有机薄膜电致发光器件[J].发光学报, 2000, 21(4): 369-372
    [33] Kim Y H, Shin D C, Kim S H, et al. Novel Blue Emitting Material with High Color Purity [J]. Adv. Mater., 2001,13(22): 1690-1693
    [34] Hosokawa C, Toshio S, Fukuoka K, et al. Organic EL Materials Based on Styryl and Amine Derivatives [C] SID, Digest, 2001: 522-525
    [35] Hosokawa C, Higashi H, Nakamura H, et al. Highly Efficient Blue Electroluminescence from a Distyrylarylene Emitting Layer with a NewDopant [J]. Appl. Phys. Lett., 1995, 67(26): 3853-3855
    [36] Tokailin H, Matsuura M, Higashi H, et al. Characteristics of Blue Organic EL Devices with Distyrylarylene Derivatives. Proc. SPIE, 1993, 1910: 38-47
    [37] Koch N, Pogantsch A, List E J W, et al. Low-onset Organic Blue Light Emitting Devices Obtained by Better Interface Control [J]. Appl. Phys. Lett., 1999, 74(20): 2909-2911
    [38] Leising G, Tasch S, Meghdadi F, et al. Blue Electroluminescence with Ladder-type Poly (para-phenylene) and para-hexaphenyl [J]. Synth. Met., 1996, 81: 185-189
    [39] Okumoto K, Shirota Y. Development of High-Performance Blue-Violet Emitting Organic Electroluminescent Devices [J]. Appl. Phys. Lett., 2001, 79(9): 1231-1233
    [40] Balasubramaniam E, Tao Y T, Danel A, et al. Blue Light-Emitting Diodes Based on Dipyrazolopyridine Derivatives [J]. Chem. Mater., 2000, 12(9): 2788-2793
    [41] Tao Y T, Balasubramaniam E, Danel A, et al. Dipyrazolopyridime Derivatives as Bright Blue Electroluminescent Materials [J]. Appl. Phys. Lett., 2000,77(7): 933-935
    [42] He Z, Milburn G H W, Danel A, et al. Blue Electroluminescence of Novel Pyrazoloquinoline and Bispyrazolopyridine Derivatives in Doped Polymer Matries [J]. J. Mater. Chem., 1997, 7(12): 2323-2325
    [43] Tao Y T, Balasubramaniam E, Danel A, et al. Pyrazoloquinoline Derivatives as Efficient Blue Electroluminescent Materials [J]. J. Mater. Chem., 2001, 11: 768-772
    [44] Gao Z Q, Lee C S, Bello I, et al. Bright-Blue Electroluminescence from a silyl-substituted Ter-(phenylene-Vinylene) Derivative [J]. Appl. Phys. Lett., 1999, 74(6): 865-867
    [45] Chan L H, Yeh H C, Chen C T. Blue Light-Emitting Devices Based on Molecular Glass Materials of Tetraphenylsilane Compounds [J]. Adv. Mater. 2001,13(21): 1637-1641.
    [46]陈孔常,田禾,高等精细化学品化学[B].中国轻工业出版社,1999年8月第一版
    [47]田禾,苏建华,孟凡顺,陈孔常,功能性色素在高新技术中的应用[B].化学工业出版社,2000年7月第一版
    [48] Chen C H, Tang C W, Shi J M, et al. Highly Efficient Phosphorescent Emission From Organic Electroluminescent Devices [J].Macromol. Symp., 1998, 125: 49-58
    [49] Tao X T, Miyata S, Sasabe H, et al. Efficient Organic Red Electroluminescent Device with Narrow Emission Peak [J]. Appl. Phys. Lett., 2001,78(3): 279-281
    [50] Kim D U, Paik S H, Kim S H, et al. Design and Synthesis of a Novel Red Electroluminescent Dye [J]. Synth. Met.,2001, 123: 43-46
    [51] Yu J S, Chen Z J, Sone M, et al. Red-Light-Emitting Organic Electroluminescent Devices with Bisanil Dye as Emitter [J]. Jpn. J. Appl. Phys., 2001,40(5A): 3201-3205.
    [52]李文连,液晶与显示,2000,15:108-113.
    [53]王丽辉,徐征,孙力等,半导体光电,1999,20:409-412.
    [54] Cao Y, Park K T, Hsich B R, J. Appl. Phys., 1993, 73: 7894-7899.
    [55] Haskai E I, Curioni A, Seidler P F, et al. Appl. phys. Lett., 1997, 71: 1151.
    [56] Wakimoto T, Awami S K, Nagayama K, et al. Technical Digest, Int. Symp. On Inorganic and Orgamic Electroluminescence, 1994: 77.
    [57] Schlar R, Parkinson B A, Lee P A, et al. J. Appl. phys., 1998, 84: 6729.
    [58] Hung L S, Tang c w, Mason M G. Appl. phys. Lett., 1997, 70: 152.
    [59] Tang H, Li F, Shinar J. Appl. phys., 1997, 71: 2560.
    [60] Li F, Tang H, Auderegg J, et al. Appl. phys. Lett., 1997, 70: 1233.
    [61] Kido J, Matsumoto T. Appl. phys. Lett., 1998, 73: 2866-2868.
    [62] Gustafsson G, Cao Y, Treacy G M, et al. Nature, 1992, 357: 477-479.
    [1] Shi J M, and Tang C W, Anthracene Derivatives for Stable Blue-Emitting Organic Electroluminescence Devices[J]. Appl Phys Lett 2002, 80(17):3201~3203.
    [2]J Shi, EP 1156536(2001).
    [3]M T Lee, Y S Wu, H H Chen, C T Tsai, C H Liao, and C H Chen,Proceedings of SID’04,p.710,May 23~28,2004, Seattle,Washington,USA.
    [4] C Hosokawa, S Sakamoto, T Kusumoto, US 5389444(1995)
    [5] Hosokawa C, Higashi H, Nakamura H, and Kusumoto T, Highly Efficient Blue Electroluminescence from a Distyrylarylene Emitting Layer with a New Dopant [J]. Appl Phys Lett, 1995, 67(26):3853~3855.
    [6]C C Yeh, M T Lee, H H Chen, C H Chen, Proceedings of SID’04,p.788,May 23~28,2004, Seattle, Washington, USA.
    [7]A Saitoh, N Yamada, M Yashima, K Okinaka, Proceedings of SID’04,p.150,May 23~28,2004, Seattle, Washington, USA.
    [8] C C Wu, Y T Lin, H H Chiang, T Y Cho, C W Chen, K T Wong, Y L Liao, G H Lee, and S M Peng, Highly Bright Blue Organic Light-Emitting Devices Using Spirobifluorene-cored Conjugated Compounds [J]. Appl Phys Lett ,2002, 81(4):577~579.
    [9] J Shi, C W Tang, Organic electroluminescent elements for stable electroluminescence:US5935721[P].1999-08-10
    [10]Wang W, Yang L, Zhang W, et al, Preparation of 5’-nitro-m-terphenyl and 5’-amino-m-terphenyl by Suzuki Coupling Reaction[J].Huaxue Shiji,1999,21(1):51.
    [11] Kelly T R, Chandrakumar N S, and Saha J K, A Chiral Catechol with C2 Symmetry[J].J Org Chem,1989,54:980~983.
    [12]Hodgson H H, Mahadevan A P, A Interpretation of Sandmeyer Reaction(Part IX)[J].J Chem Soc, 1947,173~174.
    [13]Du C-J Frank, Hart H, and Ng K-K Daniel, A One-Pot Synthesis of m-Terphenyls via a Two-Aryne Sequence[J].J Org Chem,1986,51:3162~3165.
    [14] Culligan S W, Chen A C-A, Wallace J U, Klubek K P, Tang C W, and Chen S H, Effect of Hole Mobility Through Emissive Layer on Temporal Stability of Blue Organic Light-Emitting Diodes [J]Adv Funct Mater, 2006,16:1481~1487.
    [15] Y Kijima, N Asai, and S–I Tamura, Jpn J Appl Phys, 1999, Part 1, 38, 5274.
    [16] Y J Tung, T Ngo, M Hack, J Brown, N Koide, Y Nagara, Y Kato, and H Ito, SID Int. Symp. Digest Tech. 2004,Papers 48.
    [17] M H Ho, Y S Wu, S W Wen, et al, Highly efficient deep blue organic electroluminescent device based on 1-methyl-9,10-di(1-naphthyl)anthracene[J], Appl Phys Lett, 2006, 89:252903~252905.
    [18] Z Q Gao, B X Mi, and C H Chen, High-efficiency deep blue host for organic light-emitting devices[J], Appl Phys Lett, 2007, 90:123506~123508.
    [19] Y Q Li, M K Fung, Z Y Xie, S T Lee, L S Hung, and J M Shi, An efficient pure blue organic light-emitting device with low driving voltages[J], Adv Mater, 2002, 14(18):1317~1321.
    [20]D F O’Brien, M A Baldo, M E Thompson, S R Forrest, Improved energy transfer in electrophosphorescent devices[J]. Appl. Phys. Lett.,1999,74(3),442-444
    [21]M A Baldo, S Lamansky, Burrows P E, M E Thompson, S R Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J], Appl. Phys. Lett.,1999,75(1),4-6
    [22]T Tsutsui, M J Yang, M Yahiro, et al, High quantum efficiency in organic light-emitting devices with Iridium-complex as a triplet emissive center[J], Jpn. J. Appl. Phys., 1999,Part2,38(12B),L1502-1504
    [23]C Adachi, M A Baldo, S R Forrest, S Lamansky, M E Thompson, R C Kwong, High-efficiency electrophosphorescence devices[J]. Appl. Phys. Lett., 2001,78(11),1622-1624
    [24]D M Pai, J F Yanus, M Stolka, J Phys Chem, 1984, 88, 4714.
    [25]C W Ko, Y T Tao, J T Lin, and K R Justin Thomas, Chem Mater, 2002, 14, 357.
    [26]Y H Kim, D C Shin, S H Kim, C H Ko, H S Yu, Y S Chae, and S K Kwon, Novel blue emitting material with high color purity[J], Adv Mater, 2001,13:1690~1693.
    [27] Y Kan, L D Wang, L Duan, Y C Hu, G S Wu, and Y Qiu, Highly-efficient blue electroluminescence based on two emitter isomers[J], Appl Phys Lett,2004, 84:1513~1515.
    [28]Y H Niu, B Chen, T D Kim, M S Liu, A K Y Jen, Efficient and stable blue light-emitting diodes based on an anthracene derivative dopedpoly(N-vinylcarbazole)[J], Appl Phys Lett, 2005, 85:5433~5435.
    [29] V Bulovic, A Shoustikov, M A Baldo, E Bose, V G Kozlov, M E Thompson, and S R Forrest, Bright saturated red-to-yellow organic light-emitting devices based polarization-induced spectral shifts[J], Chem Phys Lett,1998,287:455~460.
    [30] V Bulovic, R Deshpande, M E Thompson, and S R Forrest, Tuning the color emission of thin film molecular organic light emitting devices by the solid state salvation effect[J], Chem Phys Lett,1999,308:317~322.
    [1]Hamada Y,Sano T,Fujii H,et al. White-light-emitting Material for Organic Electroluminescent Devices[J].Jpn.J.Appl.Phys., 1996,35(Part2,10B):L1339-L1341
    [2]Tian H,Zhu W H,Chen K C.Novel Triad Luminescent Compound with an Electron Transporting and a Hole Transporting Moiety[J].Synth.Met.,1997,91:229-231
    [3]Kido J,Hongawa K,Okuyama K,et al.White Light-emitting Organic Electroluminescent Devices Using the Poly(N-vinylcarbazole) Emitter Layer Doped with Three Fluorescent Dyes[J]. Appl.Phys.Lett., 1994,64(7):815-817
    [4]Lee T W, Park O O, Cho H N, et al. White Emission from a Ternary Polymer Blend by Incomplete Cascade Energy Transfer[J].Synth.Met., 2001,122:437-441
    [5]Kido J, Kimura M, Nagai K. Multilayer White Light-emitting Organic Electroluminescent Device[J].Science,1995,267:1332-1334
    [6] C. W. Ko, and Y. T. Tao. Bright White Organic Light-emitting diode[J]. Appl. Phys. Lett. 79 (2001) 4234-4236.
    [7] C. H. Kim, and J. Shinar. Bright Small Molecular White Organic Light-emitting Devices With Two Emission Zones[J].Appl. Phys. Lett. 80 (2002) 2201-2203.
    [8]谢志元,李传南,黄劲松等,有机多层白光发光二极管[J]。半导体学报,2000,21(2):184-187
    [9]Ko C W,and Tao Y T. Bright White Organic Light-emitting Diodes[J]. Appl.Phys.Lett.,2001,79(25):4234-4236
    [10]Forrest S R,Burrows P E,Shen Z,et al.The Stacked OLED:A New Type of Organic Device for Achieving High Resolution Full Colour Display[J].Synth.Met.,1997,91:9-13
    [11] C. H. Chuen and Y. T. Tao. Highly-bright White Organic Light-emitting Diodes Based on a Single Emission Layer. Appl. Phys. Lett. 81 (2002) 4499-4501.
    [12]蒋雪茵,张志林,张步新等,稳定的光谱不随电流变化而改变的白色有机发光器件[J]。发光学报,2002,23(2):165-170
    [13]Huang Y S,Jou J H,Weng W K,et al. High-efficiency White Organic Light-emitting Devices with Dual Doped Structure[J]. Appl.Phys.Lett.,2002,80(15):2782-2784
    [14] K. O.Cheon, and J. Shinar. Bright White Small Molecular Organic Light-emitting Devices Based on A Red-emitting Guest-host Layer andBlue-emitting 4,4’-bis(2,2’-diphenylvinyl)-1,1’-biphenyl[J].Appl. Phys. Lett. 81 (2002) 1738-1740.
    [15] G. Li and J. Shinar. Combinatorial Fabrication and Studies of Bright White Organic Light-emitting Devices Based on Emission From Rubrene-doped 4,4’-bis(2,2’-diphenylvinyl)-1,1’-biphenyl[J].Appl. Phys. Lett. 83 (2003) 5359-5361.
    [16] X. H. Zhang, M. W. Liu, O. Y. Wong, C. S. Lee, H. L. Kwong, S. T. Lee, and S. K. Wu. Blue and White Organic Electroluminescent Devices Based on 9,10-bis(2’-naphthyl)anthracene[J]. Chem. Phys. Lett. 369(2003)478-482.
    [17] J. M. Shi, and C. W. Tang, Anthracene Derivatives for Stable Blue-emitting Organic Electroluminescence Devices[J]. Appl. Phys. Lett. 80 (2002) 3201-3203.
    [18] V Bulovic, A Shoustikov, M A Baldo, E Bose, V G Kozlov, M E Thompson, and S R Forrest, Bright saturated red-to-yellow organic light-emitting devices based polarization-induced spectral shifts[J], Chem Phys Lett,1998,287:455~460.
    [1] C W Tang, S A VanSlyke, and C H Chen. Electroluminescence of doped organic thin film[J]. J Appl Phys, 1989, 65:3610-3616.
    [2] C H Chen, C W Tang, J M Shi, et al. Highly Efficient Phosphorescent Emission From Organic Electroluminescent Devices [J]. Macromol Symp, 1998, 125: 49-58.
    [3] X T Tao, S Miyata, H Sasabe, et al. Efficient Organic Red Electroluminescent Device with Narrow Emission Peak [J]. Appl Phys Lett, 2001, 78(3): 279-281.
    [4] D U Kim, S H Paik, S H Kim, et al. Design and Synthesis of a Novel Red Electroluminescent Dye [J]. Synth Met, 2001, 123: 43-46.
    [5] J S Yu, Z J Chen, M Sone, et al. Red-Light-Emitting Organic Electroluminescent Devices with Bisanil Dye as Emitter [J]. Jpn J Appl Phys, 2001, 40(5A): 3201-3205.
    [6] N A Male H, O V Salata, V Christou.Enhanced Electroluminescent Efficiency from Spin-coated Europium (III) Organic Light-Emitting Device [J]. Synth Met, 2002, 126: 7-10.
    [7] Y J Liang, Q Lin, H J Zhang, et al. Electroluminescence of a Novel Europium Complex [J]. Synth Met, 2001, 123: 377-379.
    [8] Z R Hong, C J Liang, R G Li, et al.Rare Earth Complex as a High-Efficiency Emitter in an Electroluminescent Device [J]. Adv Mater 2001, 13(16): 1241-1244.
    [9] C J Liang, D Zhao, Z R Hong, et al. Improved Performance of Electroluminescent Devices Based on an Europium Complex [J]. Appl Phys Lett, 2000,76(1): 67-69.
    [10] C Adachi, M A Baldo, S R Forrest. Electroluminescence Mechanisms in Organic Light Emitting Devices Employing a Europium Chelate Doped in a Wide Euergy Gap Bipolar Conducting Host [J]. J Appl Phys, 2000,87(11): 8049-8055.
    [11] W P Hu, M Matsumura, M Z Wang, et al. Red Electroluminescence from an Organic Europium Complex with a Triphenylphoshpine Oxide Ligand [J]. Jpn J Appl Phys, 2000,39(11): 6445-6448.
    [12] J Chen, X Liu, X Z Fan, et al. A Novel Organic Electroluminescent Device Using a New Eu3+ Polymer as Emitting Layer [J]. Proc SPIE, 2000, 4220: 255-259.
    [13] M D Mc Gehee, T Bergstedt, C Zhang, et al, Narrow Bandwidth Luminescence from Blends with Energy Transfer from Semiconducting Conjugated Polymers to Europium Complexes [J]. Adv Mater, 1999,11(6): 1349-1354.
    [14] T Sano, M Fujita, T Fujii, et al, Novel Europium Complex for Electroluminescent Devices with Sharp Red Emission [J]. Jpn J Appl Phys, 1995, 34(4A): 1883-1887.
    [15] J Kido, H Hayase, K Hongawa, et al, Bright Red Light-Emitting Organic Electroluminescent Devices Having a Europium Complex as an Emitter [J]. Appl Phys Lett, 1994, 65(17): 2124-2126.
    [16] J Kido, K Nagai, Y Okamoto, et al, Electroluminescentce from Polysilane Film Doped with Europium Complex [J]. Chem Lett, 1991, 1267-1270.
    [17] M A Baldo, D F O’Brien, Y You, A Shoustikov, S Sibley, M E Thompson, S R Forrest, Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices [J]. Nature (London), 1998,395: 151-154.
    [18] D F O’Brien, M A Baldo, M E Thompson, S R Forrest.Improved Energy transfer in Electrophosphorescent Devices [J]. Appl Phys Lett, 1999,74(3):442-444
    [19] L C Picciolo, H Murata, and Z H Kafafi, Organic Light-emitting Devices with Saturated Red Emission Using 6,13-diphenylpentacene [J]. Appl Phys Lett, 2001, 78(16):2378-2380.
    [20] B X Mi, Z Q Gao, M W Liu, K Y Chan, H L Kwong, N B Wong, C S Lee, L S Hung, and S T Lee. J Mater Chem, 2002,12,1307- .
    [21] M A Wolak, B B Jang, L C Palilis, and Z H Kafafi. Functionalized Pentacene Derivatives for Use as Red Emitters in Organic Light-Emitting Diodes[J]. J Phys Chem B, 2004,108(18):5492-5499.
    [22] B B Jang, S H Lee, and Z H Kafafi. Asymmetric Pentacene Derivatives for Organic Light-Emitting Diodes[J]. Chem Mater, 2006,18(2):449-457.
    [23] Y Hamada, H Kanno, T Tsujioka, H Takahashi, and T Usuki. Red organic light-emitting using an eitting assist dopant[J]. Appl Phys Lett, 1999, 75 (12) : 1682-1684.
    [24] V Bruckner, A Karczag-Wilhelm, K Kormendy, M Meszaros, and J Tomasz. Acta Chim Acad Sci Hung,1960,22:433; Chem Abstr, 1961,55,8367i.
    [25] D R Maulding, and B G Roberts.Electronic Absorption and Fluorescence of Phenylethynyl-Substituted Acenes[J].J Org Chem,1969,34(6):1734-1736.
    [26] US 6489046
    [27] C F H Allen, and Alan Bell.Action of Grignard Reagents on Certain Pentacenequinones 6,13-Diphenylpentacene[J].J Am Chem Soc,1942,64:1253-1260.
    [28]黄劲松,谢志元,杨开霞等,有机高亮度黄光发光二极管[J],半导体学报,2000,21(1):76-78。
    [1] Tang C W, Vanslyke S A. Organic Electroluminescent Diodes [J]. Appl Phys Lett, 1987, 51(12): 913-915.
    [2] Tian Wenjing, Wu Fang, Fan Yuguo, Shen Jiacong. Energy Band Structure of Organic/Polymer Materials and its Application in Electroluminescent Devices[J].Chin J Lumin,2000,21(3):230-237(in Chinese).
    [3] Song Wenbo, Chen Xu, Wu Fang,et al.Electrochemical Determination of the Energy Level of Organic/Polymer Materials[J].Chem J Chinese Universities,2000,21(9):1422-1426(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700