用户名: 密码: 验证码:
基于模拟体系定量构效(QSAR)与传质模型和动力学分析的黄连解毒汤超滤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题尝试将系统模拟的方法和化工过程控制原理引入中药水提液复杂体系的膜工艺研究,将复方中若干主要指标成分及淀粉、果胶、蛋白质等“共性高分子物质”建立两大类不同模拟体系,分别研究其膜过程,探索建立相对可靠和准确的中药药效物质超滤膜透过/截留率的定量构效关系模型,及“共性高分子物质”在膜分离过程的迁移表现,建立相关传递数学模型。为探讨中药水提液超滤机理,对中药膜技术应用系统进行优化设计奠定了基础。
     首先以黄连解毒汤中生物碱、环烯醚萜两大类主要药效物质为研究对象,优选偏最小二乘法(PLS)、支持向量机(SVM)、人工神经网络(ANN)等数据挖掘方法作为建模方法,初步建立了五种超滤膜相对可靠和准确的定量构效关系模型。从入选模型的参数可以看出,在超滤膜分离化合物的过程中,影响透过率的因素主要包括化合物的自身性质(包括得失电子能力、亲水/疏水性)与膜性质的相互作用以及化合物的空间结构。
     接下来以中药水提液中淀粉、果胶、蛋白质这三种共性高分子物质为研究对象,建立了三种高分子物质模拟体系七种膜的超滤传质模型,对膜过程的浓差极化阻力进行了定量描述,研究了操作压力对高分子物质膜通量和过滤阻力的影响,并对超滤过程动力学行为进行了分析。探讨共性高分子溶液的传质机理和中药水提液超滤过程中造成膜污染的物质基础,为开展膜分离技术应用系统优化设计提供依据。
     第三部分对淀粉、果胶、蛋白质三种高分子物质的模拟体系在七种超滤膜上的静态吸附行为进行考察,建立了静态吸附模型,分析比较了这几种共性高分子物质在不同材质及孔径膜上的吸附特性和差异。实验结果表明淀粉、果胶、蛋白质在聚砜、聚醚砜、聚偏氟乙烯三种常用材质的超滤膜上均存在吸附污染,静态吸附均符合Langmuir吸附模型,吸附主要发生在前40min。膜材质对吸附量影响不大,淀粉、果胶在三种不同截留分子量的膜上的吸附量无明显差异;但蛋白质在三种孔径膜上的吸附量随着膜孔径的增大而增大。
     最后,在上述研究基础上,依据黄连解毒汤复方中主要药效物质及高分子物质的含量建立模拟体系,对模拟体系膜过程进行研究,以膜过程中通量变化、膜污染度、截留率、小分子物质吸附速率和吸附量等为指标,研究黄连解毒汤复方中高分子物质对小分子药效物质膜过程的影响。研究表明黄连解毒汤中代表性药效物质小檗碱和栀子苷这两种小分子物质的膜透过率较高,但由于高分子物质的存在,与小分子药效物质间产生相互作用、膜过程浓差极化层和凝胶层的形成等因素造成了小分子药效物质的大量损失。黄连解毒汤模拟体系中造成膜污染和通量衰减的主要物质是淀粉和果胶这两种高分子物质。
     本文主要创新点:(1)首次将有机化学中定量构效关系研究方法和信息科学中数据挖掘等技术手段引入中药超滤膜分离技术机理研究,初步建立相对可靠和准确的中药药效物质超滤膜透过/截留率的定量构效关系模型。从中药药效物质分子结构的角度探索其截留机理,将中药超滤膜分离技术的研究提高到微观与定量的层次。(2)首次对中药水提液中共性高分子物质进行系统研究,建立了淀粉、果胶、蛋白质三种物质不同膜超滤过程的传质模型、动力学模型和静态吸附模型,为探讨中药水提液超滤过程中造成膜污染的物质基础和对中药膜技术应用系统进行优化设计奠定了基础。
     本论文的研究意义:(1)初步建立QSAR应用于中药超滤膜分离技术的研究方法,系统深入研究超滤膜对中药药效物质的截留机理,丰富膜科学与技术的理论,为开展膜系列技术(微滤、超滤、纳滤等技术)精制中药的研究奠定基础。(2)探索“化工过程控制”原理在中药膜分离领域的研究模式,为开展膜分离及相关精制技术应用系统优化设计提供依据。
The study try using the method of systerm simulation and Chemical Process Control principle in the membrane process research of Chinese herbal decoction. Index composition and various macromolecule materials commonly existed in Chinese herbal decoctions are set up as two types of model systerm and their membrane process are researched separately. Try to explore the establishment of UF transmission rate QSAR models of Chinese herbal index composition and transfer characteristic of macromolecule materials.
     At the beginning of the research, taking Alkaloids and Iridoid these two kinds of compound in Huanglianjiedu Decoction as the study subject, quantitative structure-property relationships in five membranes are developed by the data mining method of PLS or SVM. It shown from the parameters in the models that the main factors which infect the UF transmission rate are interaction of compound property and membrane property and compound spatial structure.
     Then taking starch、pectin and protein these three macromolecule materials in Chinese herbal decoctions as the study subject, the mass transfer models of model systerm in seven membranes are formed, the resistances from concent ration polarization were obtained. At the same time kinetics analysis in the ultrafiltration process is studied . The research lays a foundation for the exploring of macromolecule materials transfer mechanism and the substance foudation of membrane fouling, and for the the Optimal Design of ultra-filtration membrane in the production of Chinese drugs preparation.
     Part three: Examining the adsorption behavior under static condition of the model systerm of three macromolecule materials in seven UF membranes, setting up adsorption models under static condition, and comparing the adsorption characteristic of the three macromolecule in different membranes. The results show that starch、pectin and protein are all have adsorption fouling in three membranes in common use -PS、PES and PVDF. The adsorption under static condition corresponding in character of Langmuir mode, and the adsorption occur in the first 40 minute. The membrane materials have little effect on the adsorption capacity. There is no significant difference of adsorption capacity of starch and pectin in membranes with different MWCOS. But the adsorption capacity of protein increase as the increasing of membrane MWCOS.
     Finally, On the basis of the above study, the UF process of model systerm of Huanglianjiedu Decoction is researched. Using the membrane flux change、the fouling degree of membrane、the preserving degree and adsorption capacity of efficiency components as guide line, trying to find out the influence of macromolecule materials on small molecules in Huanglianjiedu Decoction. The results show that the two small molecules berberine and gardenoside in Huanglianjiedu Decoction have high permeation rate. But for the reasons of interaction of macromolecule materials and small molecules and forming of concentration layer and gel layer, the permeation rate of small molecules reduces greatly. Starch and pectin are the two main macromolecule materials in Huanglianjiedu Decoction which cause membrane fouling and flux falling.
     The innovations of this article lie in the following two ways: Firstly, using QSAR and data mining method in the mechanism research of UF technique in Chinese herbal decoction for the first time. Models of quantitative structure-property relationships of effective compounds in Chinese medicine with five membranes are initially developed. Improving the research of UF technology in Chinese herbal decoction to a microcosmic and quantitative level. Secondly, research systematically macromolecule materials commonly existed in Chinese herbal decoctions for the first time, and develop mass transfer models、kinetics models and adsorption models under static condition of starch、pectin and protein. The research lays a foundation for the exploring of the substance foudation of membrane fouling, and for the the optimal design of membrane technology in the production of Chinese drugs preparation.
引文
[1]郑领英,下学松.膜技术[M].北京:化学工业出版社,2001.
    [2]时均,衰权,高从阶.膜技术手册[M].北京:化学工业出版社,2001.
    [3]朱智清.膜分离技术的发展及其工业应用[J].化工技术与开发,2003,32(1):19-21.
    [4]刘茉娥.膜分离技术应用手册[M].北京:化学工业出版社,2001.
    [5]王湛.膜分离技术基础[M].北京:化学工业出版社,2000.
    [6]孙文基.天然药物成分提取分离和制备[M].北京:中国医药科技出版社,1999.
    [7]杨云,冯卫生.中药化学成分提取分离手册[M].北京:中国中医药出版社,1998.
    [8]Jonsson G.Polarization Phenomena in menrbrane Processes[J].Synth Membr Proeesses,Fundam and water Appl,1984,101-130.
    [9]刘洪谦.黄原胶超滤浓缩的研究[D].郑州工学院硕十学位论文,1993.
    [10]欧兴长,李淑莉,杜启云.中药制剂工艺中超滤法应用的进展和问题[J].水处理技术,1999,25(3):125-129.
    [11]冯汉鸽,张亚志,胡三豪,等.超滤法制备麻黄雾化液的实验研究[J].时珍国药研究,1993.4(1):32-33.
    [12]王英.麻黄碱新工艺[J].膜分离科学与技术,1996.6(3):47-55.
    [13]王世岭.超滤法提取黄芩苷的最佳工艺[J].中成药,1994,16(3):2-3.
    [14]何昌生,王炳南.甜菊糖苷超滤的应用研究[J].水处理技术,1994,20(2):89-94.
    [15]刘振丽,张秋海.超滤及醇沉对金银花中绿原酸的影响[J].中成药,1996,18(2):4-6.
    [16]黄伟文,朱婉珍.超滤法制备丹参注射液和复方丹参注射液工艺研究[J].水处理技术,1988,14(2):87-90.
    [17]全山丛.超滤法和水醇法制备补骨脂注射液的实验研究[J].中成药,1990,12(1):3-4.
    [18]郑志安,周嘉秀.应用工业平板式超滤机制备大输液的初步研究[J].药学情报通讯,1991,9(1):53-56.
    [19]宋洪涛,韩家秀.超滤法用于复方当归注射液制备下艺的改革[J].药学情报通讯,1993,11(3):41-43.
    [20]薛云丽,田风石.超滤工艺在清开灵注射液中的应用[J].沈阳医药,1994,(1):10-13.
    [21]贺立中.用两步超滤法制备伸筋草注射液的实验研究中[J].中草药,1996,27(12):719-721.
    [22]季红,张玉华.超滤法制备感冒康注射液及质量考查[J].黑龙江医药,1997,10(6):345-348.
    [23]张宇,曹玉娥.应用超滤技术制备四逆汤口服液的研究[J].佳木斯医学院学 报,1992,15(2):30-32.
    [24]宋洪涛,郭涛.超滤法制各心脑脉舒口服液及临床疗效观察[J].药学情报通讯,1993,11(4):45-46.
    [25]杨张渭.陆晓峰.人参精采用超滤工艺的中试研究[J].中成药,1994,16(1):4-6.
    [26]杨张渭,陆晓峰.超滤工艺用于人参精口服液生产的试验[J].中成药,1991,13(2):4-5.
    [27]郭立玮,何昌生.水醇法与脱分离法精制含山茱萸中药制剂的比较研究[J].中成药,1999,21(2):59-61.
    [28]Sheikonholeslami R.Fouling mitigation in membrane processes.Desalination,1999,123(1):45-53.
    [29]贺立中.药液超滤过程中的膜污染与防治[J].膜科学与技术,2000,20(5):49-51.
    [30]郭立玮.中药膜分离领域的科学与技术问题[J].膜科学与技术,2003,23(4):209-213.
    [31]S.Mok,D.J Worsfold,A.Fouda and T.Matsuura.Surface Modification of Polyethersulfone Hollow-Fiber Membranes Byγ-Ray Irradiation[J]J.Appl.Polym.Sci.,1994,51(1):193.
    [32]刘福谅,续曙光.非均相磺化法制备磺化聚砜超滤膜材料[J].水处理技术,1988,14(5):266.
    [33]王静娟,杜启云,郭振友,等.聚砜-磺化聚砜共混超滤膜的研制[J].水处理技术,1992,18(1):24.
    [34]高以恒,叶凌碧.膜分离技术基础[M].北京:科学出版社,1989.
    [35]李仁利.药物构效关系.北京:中国医药科技出版社,2004.
    [36]Hubinyi.h.The Quantitative Analysis of Structure-Activity Relationships.5th Edition.vol 1:Principles and Practice.New York:John Wiley & Sons.1995.
    [37]Shorter J.Correlation Analysis of organic Reactivity with Particular Reference to Multiple Regression Chichester:Research Studies press,1982.
    [38]王连生,韩朔睽.分子结构、性质与活性[M].北京:化学工业出版社,1997.
    [39]Stone.M:Jonhatna.P.Statistical Thinking and Techniuque for QSAR and Related Sutdies.1.General Theory.J.Chemom.1993.7:455-475.
    [40]Karitzky.A.R:Marna,U:Lobnao,VS:et al.perspective:Surtcutrally diverse QunatitativeSurtcutre-ProPeyrty Relationship Coerrlations of Technologically Relevant Physical ProPerties.J.Chem.Inf.Comput.Sci.2000.40:1-18.
    [41]郭宗儒.药物分子设计[M].北京:科学出版社,2005.
    [42]李仁利.药物构效关系[M].北京:中国医药科技出版社,2004.
    [43]Crippen,G.M.Qunatitative sturcutre-activity relationships by distance geomeyrt:systematic anyalsis of dihydrofolate reductase inhibitors.J.Med Chem.1980,23(6):599-606.
    [44]Crmer.R.D,Patterson.D.E,Bunce,J.D.Comparative Molecular Field Analysis(COMAF).Eeffct of Shape on Binding of Steorids to Carrier proteins.J.Am.Chem.Soc.1988,110.5959-5967.
    [45]李志良,曾鸽鸣,胡芳,等.多维定量构效关系及药物分子设计研究进展[J].化学研究与应用.1997.9:7-14.
    [46]梁桂兆,梅虎,周原,等.计算机辅助设计中的多维定量构效关系模型化方法[J].化学进展.2006.18(1):120-127.
    [47]丁俊杰,丁晓琴,赵立峰.多肽定量构效关系与分子设计[J].化学进展.2005.17:130-136.
    [48]Hnasch,C:Hoekmna.D:Leo.A:et al.Chem-Bioinofmratics:ComParative QSAR at the Interface Bewteen Chemistry and Biology.Chem.Rev.2002.102,783-812.
    [49]Karelson,M:Lobnaov.V.S:Katritzky.A.R.Qunautm-Chemical Descriptors in QSAR/QSPR Studies.Chem.Rev.1996.96:1027-1044.
    [50]马丁原著,王尔华编译.定量药物设计[M].北京:人民卫生出版社,1983:1-402.
    [51]陈凯先,蒋华良,稽汝运.计算机辅助药物设计-原理、方法及应用[M].上海:上海科学技术出版社,2000.
    [52]徐筱杰,侯廷军,乔学斌等.计算机辅助药物分子设计[M].北京:化学工业出版社.2004.
    [53]叶德泳.计算机辅助药物设计导论[M].北京:化学工业出版社,2004.
    [54]曹晨忠.有机化学中的取代基效应[M].科学出版社,2003.
    [55]Guttman.I.Linear models:An introduction.NewYokr:Wiley.1982:578-579.
    [56]Jobson.J.D.Applied multivariate data analysis.NewYokr:Springer-Veriga.1992:314-316.
    [57]Kbae.D.G.On some multivariate statistical methodology with applications to statistics.psychology,and mathematical programming.J.Industrial mathematics Soc.1985,35:1-18.
    [58]Khattree.R:Naik,D.N.APPlied multivariate statistics with SAS software.2nd ed.New Yokr:Wiley.1999:89-92.
    [59]Morrison.D.F.Multivariate statistical methods.3rd ed.New Yokr:McGraw-Hill.1990:234-238.
    [60]梁逸曾,俞汝勤.化学计量学[M].北京:高等教育出版社,2003.5.
    [61]Wold H.Estimation of principal components and related models by iterative least squares.in:Multivariate analysis,Krishnaiah PR(ed).New York:Academic Press,1966:259-261.
    [62]De Jong S.SIMPLS:An alternative approach to partial least squares regression.Chemometrics Intell.Lab.Syst.,1993,18:251-263.
    [63]Ergon R.PLS score-loading correspondence and a biorthogonal factorization.J.Chemometrics,2002,16:368-373.
    [64]Wold S,Ruhe A,H.Wold et al.The collinearity problem in linear regression,the partial least squares approach to generalized inverses,SIAM J.Sci.Stat.Comput.,1984,5:735-743.
    [65]Hoskuldsson P.PLS regression methods.J.Chemom.,1988,2:211-228.
    [66]Wold S,Johansson E,Cocchi M.PLS-partiai least squares.projections to latent structures,in:3D QSAR in drug design,theory,methods,and applications,H.Kubinyi(ed).Leiden:ESCOM Science Publishers,1993:523-550.
    [67]TenenhausM.Laregression PLS:Theorie et pratique.Paris:Technip,1998:102-107.
    [68]Gerlach RW,Kowalski BR,Wold H.Partial least squares modelling with latent variables,Anal.Chim.Acta.,1979,112:417-421.
    [69]Wold S,Hellberg S,Lundstedt T et al.PLS modeling with latent variables in two or more dimensions,PLS meeting,Frankfurt,September 1987:84-85.
    [70]Nomikos P,MacGregor JF.Multi-way partial least squares in monitoring batch processes.Chemometrics Intell.Lab.Syst.,1995,30:97-108.
    [71]Kourti T,Nomikos P,MacGregor JF.Analysis,monitoring and fault diagnosis of batch processes using multi-block multi-way PLS.J.Proc.Control,1995,5:277-284.
    [72]Wold S,Trygg J,Berglund A et al.Some recent developments in PLS modeling.Chemom.Intell.Lab.Syst.,2001,58:131-150.
    [73]Wold S,Sjostrom M,Eriksson L.PLS-regression:A basic tool of chemometrics.Chemom.Intell.Lab.Syst..2001.58:109-130.
    [74]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999:125-127.
    [75]ZuPan.J:Gasteiger.J.Neural networks in chemistry and durgdesign.2nd ed.Weinheim:Wilye-VCH.1999:456-459.
    [76]Wu.C.H.Artificial neural networks for molecular sequence analysis.Comput.Chem.1997,214:237-256.
    [77]Rumelhart.D.E:Hinton.GE:Willimas,R.J.Lenaring representations by back-Propagating error.Nature.1986.323:533-536.
    [78]许禄,邵学广.化学计量学方法(第二版)[M].北京:科学出版社,2004.
    [79]VapnikV,The nature of statistical learning theory.New York:Springer,1995:67-74.
    [80]Vapnik V,Statistical learning theory.New York:Wiley,1998:125-131.
    [81]Gunn S,Support vector machines for classification and regression.Technical report,ISIS,Department of Electronics and Computer Science,University of Southampton,1998:151-157.
    [82]Jaakkola T,Haussler D.Probabilistic kernel regression models.in:Proceedings of the seventh international workshop on artificial intelligence and statistics,1998:678-682.
    [83]Joachims T.Making large-scale SVM learning practical.in:Advances in kernel methods-support vector learning,SchSolkopf B,Burges C,Smola A(ed).Cambridge:MIT Press,1999:49-53.
    [84]Platt J.Fast training of support vector machines using sequential minimal optimization,in:Advances in kernel methods-support vector learning,SchSolkopf B,Burges C,Smola A(ed).Cambridge:MIT Press,1999:159-163.
    [85]Chaucharda F,Cogdillb R,Rousselc S,et al.Application of LS-SVM to non-linear phenomena in NIR spectroscopy:Development of a robust and portable sensor for acidity prediction in grapes.Chemom Intell Lab Syst.,2004,71:141-150.
    [86]Hua S,Sun,Z.A novel method of protein secondary structure prediction with high segment overlap measure:Support vector machine approach.J Mol Biol.,2001,308:397-407.
    [87]Burbidge R,Trotter M,Buxton B,et al.Drug design by machine learning:Support vector machines for pharmaceutical data analysis.Computers and Chemistry,2001,26:5-14.
    [88]Hong SJ,Weiss SM.Advances in predictive models for data mining.Pattern Recognition Letters,2001,22:55-61.
    [89]Belousov AI,Verzakov SA,Frese JV.A flexible classification approach with optimal generalization performance:Support vector machines.Chemom Intell Lab Syst.,2002,64:15-25.
    [90]Cai YD,Feng KY,Li YX et al.Support vector machine for predicting α-turn types.Peptides,2003,24:629-630.
    [91]Gaoa JB,Gunnb SR,Harrisb CJ.SVM regression through variational methods and its sequential implementation.Neurocomputing,2003,55:151-167.
    [92]李鑫玮,祝万鹏,朱安娜.纳滤膜对水中酚类物质的截留滤及其定量结构关系研究[J].膜科学与技术,2006,26(4):14-19.
    [93]李鑫玮,祝万鹏,韩文亚.脂肪族及杂环分子结构和纳滤膜特性对截留率的影响规律[J].环境化学,2006,25(4):491-494.
    [94]杨靖,陈杰容,徐嵘.纳滤/反渗透分离中有机物的特征参数对截留率的影响[J].膜科学与技术,2006,26(2):36-40.
    [95]郭立玮,金万勤.无机陶瓷膜分离技术对中药药效物质基础研究的意义.膜科学与技术.2002,22(4):46-48..
    [96]聂幼华.高淀粉植物饮料的稳定性研究[J].饮料开发,1997,5:9-11.
    [97]李淑莉.鞣质、果胶污染膜的清洗初步研究[J].膜科学与技术,2000,20(6):62-64.
    [98]杜继煜.果胶的化学组成与基本特性[J].农业与技术,2002,22(5):72-76.
    [99]张建东.微滤膜上污染的蛋白质的定量方法[J].膜科学与技术,2001,21(5):48-52.
    [100]杨苹.微滤膜过滤蛋白质溶液污染问题的研究[J].水处理技术,1998,24(6):324-328.
    [101]李卫星.面向中药水提液体系的陶瓷膜设计与应用[D].南京:南京工业大学.2004.
    [102]邓玲,王晔.超滤过程中膜的吸附现象是造成膜污染的关键[J].过滤与分离,1997,(4):13-18.
    [103]Hanemaaijer J H,Robbertsen T,Boomgaard Th van den,et al.Fouling of ultrafiltration membranes:The role of protein adsorption and salt precipitation[J].J Membr Sci,1989,40:199-217.
    [104]Dal-Cin M,Striez C,Tweddle T,et al.Effect of adsorptive fouling on membrane performance:case study with a pulp mil effluent[J].Desalination,1995,1011:55-167.
    [105]Jones K L,O'Melia C R.Ultrafiltration of protein and humic substances:effect of solution chemistry on fouling and flux decline[J].J Membr Sci,2001,193:163-173.
    [106]Bhattacharjee S,Sharma A,Bhattacharya P K.A unified model for prediction during batch cell ultrafiltration[J].J Membr Sci,1996,111:243-258.
    [107]孙培松,Jim K J.蛋白质在超滤过程中的膜污染和膜清洗[J].水处理技术,1994,20(2):81-85.
    [108]陆晓峰,陈仕意.超滤膜的吸附污染研究[J].膜科学与技术,1997,17(1):37-42.
    [109]Jones K L,O'Melia C R.Protein and humic acid adsorption onto hydrophilic membrane surfaces:effects of pH and ionic strength[J].J.Membr.Sci,2000,165:31-46.
    [110]李秀芬,王晓丽,傅学起,等.大豆蛋白在聚砜膜上的吸附行为[J].膜科学与技术,2005,25(6):1-6.
    [111]王志,伍艳辉,任延,等.糖类和蛋白类物质污染聚砜膜的不同特性和微观机制[J].水处理技术,2000,26(5):273-276.
    [112]田龙,鲁云风,杜敏华,等.猕猴桃果水溶性多糖的超滤膜分离研究[J].过滤与分离,2007,17(1):26-28.
    [113]刘贺.果胶超滤纯化过程传质模型和动力学分析[J].膜科学与技术,2007,27(3):48-51.
    [114]孟永成,田少君.大豆蛋白溶液超滤过程传质特性的研究[J].中国粮油学报,2005,20(5):82-84.
    [115]陈山,杨晓泉.大豆肽溶液超滤传质过程的研究[J].化工装备技术,2003,24(1):3-6.
    [116]王丽玲,焦必宁.柑桔汁超滤传质过程机理的研究[J].现代食品科技,2008,24(4):327-329.
    [117]Shorter J.Correlation Analysis of organic Reactivity with Particular Reference to Multiple Regression Chichester:Research Studies press,1982.
    [118]王飞越,陈雁飞.有机物的结构—活性定量关系极其在环境化学和环境毒理学中的应用[J].环境科学进展,1994,2(1):26-52.
    [119]Antonio A,Gracia,Matthew R.Bonen Jaime Ramirez-Vick Mariam Sadaka Anil Vuppu.Bioseparation Process Science[M].清华大学出版社,2002.67-70.
    [120]陈丹丹,郭立玮,刘爱国,等.0.2μm无机陶瓷膜微虑对生地黄、黄芪水提液物理化学参数影响的初步研究[J].南京中医药大学学报,2002,18(3):153-155.
    [121]陈丹丹,郭立玮,刘爱国,等.0.2μm无机陶瓷膜微滤枳实陈皮水提液物理化学参数与通量变化关系的研究[J].南京中医药大学学报,2003,19(3):151-153.
    [122]MichaelsA S.New Separat ion technique fo r CP I.Chemical Engineering P rogress,1968,64(12):32-37.
    [123]王骥程、祝和云.化工过程控制工程[M].化学工业出版社,2003.
    [124]Siskens C.A.M.,Application of ceramic membranes in liquid filtration,pp619-639,in:Fundamental of inorganic6 membrane science and technology,A.J.Burggraaf and L.Cot editors,Elsevier Science B.V.,(1996).
    [125]Van der Bruggen B,Schaep J,Wilms D,et al.lnfluence of molecular size,polarity and charge on the retension of organic molecules by nanofiltration[J].JMembrSci,1999,156:29-41.
    [126]彭国平,郭立玮,徐丽华,等.超滤技术应用对中药成分的影响[J].南京中医药大学学报,2002,18(6):339-341.
    [127]Hanemaaijer J H,Robbertsen T,Boomgaard Th van den,et al.Fouling of ultrafiltration membranes:The role of protein adsorption and salt precipitation[J].J Membr Sci,1989,40:199-217.
    [128]Dal-Cin M,Striez C,Tweddle T,et al.Effect of adsorptive fouling on membrane performance:case study with a pulp mill effluent[J].Desalination,1995,1011:55-167.
    [129]Jones K L,O'Melia C R.Protein and humic acid adsorption onto hydrophilic membrane surfaces::effects of pH and ionic strength[J].J.Membr.Sci,2000,165:31-46.
    [130]Ohmori K,Glatz C.Effects of pH and ionic strength on microfiltration of C.glutamicom[J].J Membr Sci,1999,153:23-32.][Mukai Y,Iritani E,Murase T.Effect of protein charge on cake properties in dead-end ultrafiltration of protein solutions[J].J Membr Sci,1997,137:271-275.
    [131]宁正祥.食品成分分析.北京,中国轻工业出版社,1998.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700