用户名: 密码: 验证码:
基于黑麦草根系分泌有机酸的铅污染修复机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源紧缺使得污水灌溉面积逐年增加,随之而来的重金属污染问题日益严重。土壤重金属污染具有累积性、滞后性和不可逆性的特点,其治理难度大、成本高、周期长,不仅影响经济社会的可持续发展,而且严重危害人民群众的生命健康,因此重金属污染修复刻不容缓。面对重金属污染修复这项非常艰巨而重要的任务,众多修复方法中植物修复技术是一种可靠的、相对安全的环境友好型的修复技术,但目前对植物修复技术的植物选择、修复机理、应用条件、修复效果等方面的研究还比较薄弱,尤其在根际这个复杂的微生态环境中,土壤重金属修复机理的研究还较薄弱,有必要对土壤重金属的修复机理进行深入研究。植物根系分泌物反映了植物之间、植物与土壤以及植物与微生物之间的物理、化学和生物关系,在土壤重金属污染修复中发挥重要的作用。本文从富集重金属的黑麦草根际环境入手,主要针对基于根系分泌有机酸的植物修复机理进行研究,探索对重金属吸收起关键性促进作用的根系分泌有机酸组成、诱导作用、综合响应特征,进而从理论上阐明植物修复的调控机理。
     本项研究全文共分九章,除第一章绪论、第九章结论与讨论外,主要包括三部分:(1)重金属污染植物修复的基础研究(二—四章)、(2)黑麦草水培试验(五、六章)、(3)黑麦草土培试验(七、八章)。第一部分采用1次平衡法研究了不同pH(3,5,7,9,11)值和不同有机酸(EDTA、草酸、酒石酸、冰乙酸、丙二酸、苹果酸和柠檬酸)对重金属Pb~(2+)吸附-解吸的影响,同时采用Tissier同步提取法研究了不同pH值对重金属Pb~(2+)存在形态的影响,以期为重金属修复研究提供理论基础;第二部分通过水培试验,研究了黑麦草对不同浓度(10、25、50、100、200、400、600、800、1000mg/l)重金属Pb~(2+)的修复效果,在获得根系分泌有机酸基础上,施加外源有机酸干扰,研究不同浓度(0.1,0.5,1,2,3mmol/l)和不同种类(EDTA,草酸,冰乙酸,丙二酸,酒石酸,苹果酸,柠檬酸)有机酸对黑麦草修复效果及其响应特征;第三部分是在水培试验研究的基础上,为了使研究更具有实用性,采用土培试验,研究黑麦草对不同浓度(0、100、300、500、1000mg/kg)重金属Pb~(2+)的修复效果,在分析获得黑麦草根系、根际和非根际土壤有机酸的基础上,施加外源有机酸诱导因素,研究不同浓度(1、3、5、6、7mmol/kg)和不同种类(EDTA、草酸、冰乙酸、丙二酸、酒石酸、苹果酸)有机酸对黑麦草修复效果及其响应特征。
     取得主要研究结果如下:
     (1)在pH(3-11)跨度较大范围进行吸附-解吸研究,分析表明:吸附量(率)随初始浓度变化的pH值敏感阈值范围为pH≤7。所引入的关于平衡浓度与吸附量之间的改进模型ln(S)=K1×CK2,较其它模型为最优模型。解吸量随pH值的增大而减小,随吸附量的增加而增大。同时进行了不同有机酸作用下吸附-解吸研究,分析得出,有机酸增加了重金属Pb~(2+)的活性,其活化能力顺序为:EDTA>柠檬酸>苹果酸>丙二酸>冰乙酸>酒石酸>草酸。冰乙酸、丙二酸、酒石酸及苹果酸作用下等温吸附可以用Henry模型模拟,柠檬酸和草酸可以用Freundilich模型模拟,而各模型均不适合EDTA条件下的模拟分析。
     (2)不同pH值条件下重金属Pb~(2+)形态分析表明:pH<7时,有利于10-100mg/l重金属Pb~(2+)向易吸收的形态转变,而对于200-1000mg/l范围内Pb~(2+)的存在形态影响较小;0-100mg/l浓度范围内,铁锰氧化物结合态所占比例最大;200-1000mg/l浓度范围内,Pb~(2+)存在形态主要为残渣态。
     (3)不同重金属Pb~(2+)浓度下黑麦草修复的水培试验得出:400mg/l的重金属Pb~(2+)浓度为黑麦草分泌有机酸调节pH值的敏感阈值拐点,而影响黑麦草株高、干物质量和根系耐性指数的阈值拐点为200mg/l;随营养液中Pb~(2+)浓度的增加植株中Pb~(2+)含量增加,但增幅随Pb~(2+)浓度的增加而减小;随黑麦草生长时间的推移,根系分泌有机酸由草酸和冰乙酸增加为草酸、酒石酸、苹果酸、冰乙酸及柠檬酸;营养液Pb~(2+)浓度大于800mg/l对黑麦草有极大的毒害作用。
     (4)外源有机酸诱导修复效果的水培试验表明:有机酸促进地上干物质量和根系干重的增加。EDTA有利于重金属Pb~(2+)向地上部分转移,但生物量相对较小;1-3mmol/l的丙二酸,酒石酸对地上部分Pb~(2+)含量的促进作用较明显;1-3mmol/l的冰乙酸有利于黑麦草生物量的增加,同时也有利于根系重金属Pb~(2+)含量的增加;不同浓度有机酸对静水体内重金属Pb~(2+)吸收转移量的情况为,有机酸浓度为0.1mmol/l时,酒石酸的吸收累积量最大;有机酸浓度为0.5mmol/l时,丙二酸的吸收累积量最大;有机酸浓度在1-3mmol/l范围内时,冰乙酸的吸收累积量最大。
     (5)不同重金属Pb~(2+)浓度下黑麦草修复的土培试验得出:土壤重金属Pb~(2+)诱导黑麦草分泌草酸、苹果酸和冰乙酸;通过生理机制调节,使得根际土壤pH、Eh和Pb~(2+)含量均小于非根际;黑麦草植株中吸收积累Pb~(2+)量与试验土壤重金属Pb~(2+)浓度直接相关,且随生长时间的推移,黑麦草植株中Pb~(2+)含量增加,并有向地上部分转移的趋势,生长40-50d的黑麦草对300-500mg/kg重金属Pb~(2+)的修复效果最明显;种植黑麦草后,重金属Pb~(2+)浓度为200-1000mg/l范围内时,根际土壤的吸附量(率)略高于非根际,且随生长发育时间的推移差距增大;根际环境有利于Pb~(2+)向交换态和有机物结合态转变,根际Pb~(2+)生物有效性系数高于非根际,其差距随土壤Pb~(2+)浓度的增加而减小,随生长时间的推移而增大。
     (6)外源有机酸诱导修复效果的土培试验分析表明:EDTA修复效果较明显,但由于易造成二次污染,不作为优选材料;黑麦草所分泌的有机酸中,苹果酸可显著增加黑麦草地上部分Pb~(2+)含量,且有向地上部分转移的趋势;冰乙酸对土壤重金属Pb~(2+)的提取量较大,随冰乙酸浓度的增加,其修复效果增强,3mmol/kg时最明显,其后逐渐减弱,而且黑麦草生物量较大。
The use of treated and untreated sewage water for irrigation has increased substantially over the past decades in many countries because of the increased scarcity of fresh water. It is well known that sewage is rich in heavy metals, and irrigation with sewage water could therefore result in metal accumulation in soils. Once ending up in soils, the heavy metals not only contaminate soil and water environments, but also enter the food chain via root uptake by plant roots, thereby endangering people health. As a result, removing the heavy metals from contaminated soils has become an urgent issue in many counties. However, since most heavy metals are adsorptive, remediating soils polluted by heavy metals could be difficult and costly. One efficient technique developed over the past two decades is phytoremediation.
     The principle of phytoremediation of contaminated soils is to use super-accumulative plants to uptake the pollutants. The mechanisms of phytoremediation are complex, involving a number of physical and biochemical processes occurring in both soil and plant. Therefore, it is not surprising that our understanding of the phytoremediation mechanisms is still limited. It has been conjectured that the physical and biochemical processes induced by root exudates in rhizosphere could mobilize the immobile heavy metals, thereby enhancing uptakes by plant roots. But the mechanism associated with this is not well understood. We hypothesized that the root exudates released by super-accumulative plants into rhizosphere decrease the pH value of soil water; a decrease in pH value could enhance metal desorption, thereby mobilizing the adsorbed metals for plant roots to uptake. To test this hypothesis, we took the phytoremediation of lead by ryegrass roots as an example. A series of experiments were carried out in attempts to understand 1) if a change in pH value increases lead desorption, and 2) if the root exudates of ryegrass results in a change in pH and by how much, 3) the effect of lead concentration on the amount of root exudates released by roots and the associated root uptake.
     This thesis consists of nine chapters and is organized as follows. We first measured the adsorption and desorption of the Pb2 + under different pH value (3, 5, 7, 9, 11) and the various organic acids (EDTA, oxalic acid, tartaric acid, acetic acid, malonic acid, malic acid and citric acid); the Tissier method was used to study the effect of various pH values on the form of Pb~(2+) in soils. We then experimentally investigated the efficiency of uptake of Pb~(2+) by the roots of ryegrass under Pb~(2+) concentration ranging from 10 mg/l to 1000mg/l; in the meantime, we also analyzed the organic acids exudated by ryegrass roots under various Pb~(2+) concentrations. To see if the root uptake of Pb~(2+) can be engineered, we externally added organic acids (EDTA, oxalic acid, acetic acid, malonic acid, tartaric acid, malic acid, citric acid) at various concentrations (0.1,0.5,1,2,3 mmol/l) into the solution where the ryegrass were grown. Finally, the uptake of Pb~(2+) by ryegrass roots from soil was studied. The seedling of ryegrass were grown in pots packed with soils under various Pb~(2+) concentrations (0,100,300,500,1000mg/kg) and externally added organic acids (EDTA, oxalic acid, acetic acid, malonic acid, tartaric acid, malic acid) at concentration from 1to 7mmol/kg was investigated. Mesh was used to separate the rhizopshere from the bulk soils. Results obtained from the experiments are summarized as follows.
     (1) The adsorption-desorption of Pb~(2+) under various pH values indicated that pH value have a significant impact on adsorption-desorption. The increasing amplitude of adsorption capacity is much larger when the pH value less than 7. The adsorption isotherm can be described by a nonlinear model ln(S)=K1×CK2, where S is the adsorbed Pb~(2+) and C is Pb~(2+) concentration in water, K1 and K2 are fitting parameters. The desorption quantity decreased with pH value, and increased with absorption capacity. And it is evident that the added organic acid improved the mobility of Pb~(2+). The order of the acid follows EDTA>citric acid> malic acid> malonic acid> acetic acid>tartaric acid>oxalic acid in terms of their impact on Pb~(2+) desorption.
     (2) The results on the form of Pb~(2+) under different pH value showed that when the pH value is less 7, Pb~(2+) is more bio-available if its concentration is in the range 10-100mg/l. The bio-availability decreases when concentration increases from 200 to1000 mg/l. The proportion of Fe-Mn oxides fraction is the maximum when Pb~(2+) concentration was in the range of 0-100mg/l. Residual fraction is much larger than other forms in the range of 200-1000mg/l.
     (3) The results measured under water culture condition and various Pb~(2+) concentrations indicated that, at concentration of 400mg/l is the inflection point to the sensitivity of organic acids to pH values, and 200mg/l is the inflection point of plant height, dry matter quantity and root tolerance index. Pb~(2+) content measured in ryegrass increased with the Pb~(2+) concentration in the nutrient solution, but the rate decreased as Pb~(2+) concentration increased. Organic acid exudation by the ryegrass roots is mainly oxalic acid and acetic acid at initial stage, but as the plants grow, they became dominated by oxalic acid, tartaric acid, malic acid, acetic acid and citric acid. The solution becomes toxic when Pb~(2+) concentration in nutrient solution was over than 800mg/l.
     (4) The effect of adding exogenous organic acids on the uptake of Pb~(2+) by plant roots grown in solution culture indicated that, organic acid increased the dry matter in both shoot and root. Adding EDTA enhanced the transfer of Pb~(2+) from soil to shoot, but the increase in biomass is limited. Malonic acid (from 1 to 3mmol/l), tartaric acid can increased the content of Pb~(2+) in shoot, and Acetic acid (from 1 to 3mmol/l) increased the biomass of and the content of Pb~(2+) in roots. In terms of the effect of different organic acids on absorption and transfer of Pb~(2+) in static water, tartaric acid gave the maximum when at concentration of 0.1mmol/l, malonic acid gave the maximum when at concentration of 0.5mmol/l, and acetic acid gave the maximum when at the concentration in the range of 1-3mmol/l.
     (5) When grown in soil pots under different Pb~(2+) concentration, the main organic acids exudated by the ryegrass roots were found to be oxalic acid, malic acid and acetic acid. The pH value, Eh and Pb~(2+) content measured from soil taken from rhizosphere were less than that in bulk soil. The Pb~(2+) content measured in plant was directly related to Pb~(2+) concentration in soil, and increased as plan grows. The uptake of Pb~(2+) by ryegrass is the highest 40-50 days after the seedling and when Pb~(2+) concentration is in the range from 300 mg/kg to 500mg/kg. The adsorption capacity (rate) of soil in rhizosphere is slightly larger than bulk soil when the Pb~(2+) concentration is in the range of 200-1000mg/l, and the difference increases with growth stage. The rhizosphere of ryegrass can improve the proportion of exchangeable fraction and organic fraction of Pb~(2+). The bioavailability rate of Pb~(2+) in rhizosphere was higher than that in non-rhizosphere, and the difference decreased as the Pb~(2+) concentration in soil decreased. The bioavailability rate of Pb~(2+) in both rhizosphere and non-rhizosphere increased as plant grow.
     (6) The measurements by adding exogenous organic acids on the uptake of Pb~(2+) by ryegrass roots in soil indicated that, the remediation effect of EDTA was significant but has to be used with car as it could lead to a secondary pollution. Malic acid as one of organic acids exudated by ryegrass root could also increase the content of Pb~(2+) in the shoots. The Pb~(2+)extraction amount of acetic acid treatment is more than other organic acid. And acetic acid can enhance phytoremediation effect. And it reached the maximum when concentration was at 3mmol/kg, then decreased gradually. And acetic acid could enhance the biomass.
引文
1.曹秋华,普绍苹,徐卫红,等.根际重金属形态与生物有效性研究进展[J].广州环境科学, 2006, 21 (3): 1-4.
    2.曹淑萍.重金属污染元素在天津土壤剖面中的纵向分布特征[J].地质找矿论丛, 2004, 19 (2): 270-274.
    3.常学秀,段昌群,王焕校.根分泌作用与植物对金属毒害的抗性[J].应用生态学报, 2000, 11 (2): 315-320.
    4.陈静生,张国梁,穆岚,等.土壤对六价铬的还原容量初步研究[J].环境科学学报, 1997, 17(3): 334-339.
    5.陈静生,洪松,范文宏,等.各国水体沉积物重金属质量基准的差异及原因分析[J].环境科学, 2001, 20 (5): 417-424.
    6.陈剑侠,姜能座,杨冬雪,等.福建省茶园土壤中重金属的监测与评价[J].茶叶科学技术, 2009 (3): 26-29.
    7.陈俊,范文宏,孙如梦,等.新河污灌区土壤中重金属的形态分布和生物有效性研究[J].环境科学学报, 2007, 27 (5): 831-837.
    8.陈能场,童庆宣.根际环境在环境科学中的地位[J].生态学杂志, 1994, 13(3): 45-52.
    9.陈苏,孙铁珩,孙丽娜,等. Cd2+、Pb2+在根际和非根际土壤中的吸附-解吸行为[J].环境科学, 2007, 28 (4): 843-851.
    10.陈有鑑,黄艺,曹军,等.玉米根际土壤中不同重金属的形态变化[J].土壤学报, 2003, 40 (3):
    367-373.
    11.陈牧霞,地里拜尔·苏力坦,王吉德.污水灌溉重金属污染研究进展[J].干旱地区农业研究, 2006, 24 (2): 200-204.
    12.陈建军,俞天明,王碧玲,等.用TCLP和形态法评估含磷物质修复铅锌矿污染土壤的效果及其影响因素[J].环境科学, 2010, 31: 185-191.
    13.陈英旭,林琦,陆芳,等.有机酸对铅、镉植株危害的解毒作用研究[J].环境科学学报, 2000, 20 (4): 467-472.
    14.陈英旭,朱祖样,何增耀.土壤中铬的化学行为研究:vI氧化锰对Cr(III)的氧化机理[J].环境科学学报, 1993 13 (1): 43-49 .
    15.陈竹君,周建斌.污水灌溉在以色列农业中的应用[J].农业环境保护, 2001, 20 (6): 462 -464.
    16.程先军,高占义,胡亚琼,等.污水资源灌溉利用的有关问题.节水灌溉论坛会议论文.
    17.崔志强,张宇峰,俞斌,等.长江三角地区4种典型土壤对Zn吸附-解吸的特性[D].南京工业大学学报. 2007, 3 (29): 20-24.
    18.丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能[J].土壤, 2005,37(3):243-250
    19.董开军.谈谈农田污水灌溉问题[J].农业环保. 1995, (4): 17.
    20.段飞舟,何江,高吉喜,等.城市污水灌溉对农田土壤环境影响的调查分析[J].华中科技大学学报, 2005, 22 (增刊): 181-183.
    21.段俊英,何秀良,戴祥鹏,等.不同生态条件下芦苇根际微生物及其生物学活性的调查研究[J].生态学报, 1985, (2): 13-16.
    22.冯绍元,齐志明,王亚平.排水条件下饱和土壤中镉运移实验及其数值模拟[J].水利学报, 2004, (10): 1-8.
    23.冯绍元,齐志明,黄冠华,等.清、污水灌溉对冬小麦生长发育影响的田间试验研究[J].灌溉排水学报. 2003, 22 (3): 11-14.
    24.付红,付强,姜蕊云,等.水稻污水灌溉技术与应用[J].农机化研究. 2002, (1): 110-112.
    25.郭观林,周启星.镉在黑土和棕壤中吸附行为比较研究[J].应用生态学报, 2005, 16 (12): 2403-2408.
    26.郭世荣.无土栽培学[M].中国农业出版社, 2007年3月.
    27.黄先飞,秦贩鑫,胡继伟.重金属污染与化学形态研究进展[J].微量元素与健康研究, 2008, 25 (1): 48-51.
    28.黄艺,陈有键,陶澍.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响.[J]应用生态学报, 2000, 11 (3): 431-434.
    29.黄苏珍,原海燕,孙延东,等.有机酸对黄菖蒲镉、铜积累及生理特性的影响.[J]生态学杂志, 2008, 27 (7): 1181-1186.
    30.蒋先军,骆永明,赵其国,等.镉污染土壤植物修复的EDTA调控机理[J].土壤学报, 2003, 40 (2): 205-209.
    31.旷远文,温达志,钟传文,等.分析分泌物及其在修复中的作用[J].植物生态学报, 2003, 27 (5): 709-717.
    32.李宝贵,杜霞.污水资源化及其农业利用(污灌)[J]. 2001, (11): 9-12.
    33.李改平,席玉英,刘子川.太原地区食用蔬菜中有害重金属铅、镉含量的分析研究[J].山西农业科学, 2002, 30 (2): 70-72.
    34.李法虎,黄冠华,丁赟,等.污灌条件下土壤碱度、石膏施用以及污水过滤处理对水力传导度的影响[J].农业工程学报, 2006, 22 (1): 48-52.
    35.李炬,范瑜.污灌-城市污水资源化的有效途径[J].江苏环境科技, 2000, 13 (3): 30-31.
    36.李恋卿,潘根兴,张平究,等.太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应[J].环境科学学报, 2001, 2 (5): 608-612.
    37.李花粉.根际重金属污染[J].中国农业科技导报, 2000, 2 (4): 54-59.
    38.李廷强,舒钦红,杨肖娥.不同程度重金属污染土壤对东南景天根际土壤微生物特征的影响[J].浙江大学学报(农业与生命科学版), 2008, 34(6): 692-698.
    39.李瑛.镉铅和有机酸对根际土壤中镉铅形态转化及其毒性的影响[D].河北农业大学硕士论文, 2003.
    40.李瑛,张桂银,李洁,等. Cd、Pb在根际与非根际土壤中的吸附解吸特点[J].生态环境, 2005, 14 (2): 208-210.
    41.李瑛,张桂银,李洪军,等.有机酸对根际土壤中铅形态及其生物毒性的影响[J].生态环境, 2004, 13 (2): 164-166.
    42.李宗利,薛澄泽.污灌土壤中Pb、Cd形态的研究[J].农业环境保护, 1994,13(4):152-157.
    43.梁彦秋,潘伟,刘婷婷,等.有机酸在修复Cd污染土壤中的作用研究[J].环境科学与管理, 2006, 31 (8): 76-78.
    44.廖敏,黄昌勇,谢正苗,等. pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报, 1999, 19 (1): 81-86.
    45.廖敏,黄昌勇.黑麦草生长过程中有机酸对镉毒性的影响[J].应用生态学报2002, 13 (1): 109- 112.
    46.林琦,陈英旭,陈满怀,等.有机酸对Pb、Cd的土壤化学行为和植株效应的影响[J].应用生态学报, 2001, (5): 619-622.
    47.林琦.重金属污染土壤植物修复的根际机理[M].浙江大学博士学位论文, 2002.
    48.刘丽.小凌河污水灌溉对水稻作物影响的分析[J].辽宁城乡环境科技, 1991, 19 (1): 43- 46.
    49.刘润堂,许建中.我国污水灌溉现状、问题及对策[J].中国水利, 2002, (10): 123-125.
    50.刘韬,郭淑满.污水灌溉对沈阳市农田土壤中重金属含量的影响[J].环境保护科学, 2003, 29 (117): 51-52.
    51.刘霞,刘树庆.土壤重金属形态分布特征与生物效应的研究进展[J].农业环境科学学报, 2006, 25 (增刊): 407-410.
    52.刘卓澄.环境中污染物质及其生物效应研究文集[C].北京:科学出版社, 1992: 157-164.
    53.楼玉兰,章永松,林咸永,等.氮肥对污泥农用后土壤中重金属活性的影响[J].上海环境科学, 2004, 23, (1): 32-36.
    54.龙新宪,倪吾钟,叶正钱,等.外源有机酸对两种生态型东南景天吸收和积累锌的影响[J].植物营养与肥料学报, 2002, 8 (4): 467-472.
    55.马义兵,阎龙翔,黄友宝.外源铜、铅、镉在土壤中的形态分布规律以及碳酸钙的影响机制研究[J].农业工程学报, 1992, 8 (2): 56-60.
    56.毛达如,申建波.植物营养研究方法[M].中国农业大学出版社, 2007年7月.
    57.孟春香,郭建华,韩宝文.污水灌溉对作物产量及土壤质量的影响[J].河北农业科学. 1999, 3(2): 15-17.
    58.孟凡乔,巩晓颖,葛建国,等.污灌对土壤重金属含量的影响及其定量估算[J].农业环境科学学报, 2004, 23(2): 277-280.
    59.孟雷.污水灌溉对冬小麦根长密度和根系吸水速率分布的影响[J].灌溉排水学报, 2003, (4): 25-29.
    60.莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中形态的分布和转化[J].农业环境保护, 2002, 21 (1): 9-12.
    61.潘根兴,高建芹,刘世梁,等.活化率指示苏南土壤环境中重金属污染冲击初探[J].南京农业大学学报, 1999, (2): 46-49.
    62.齐广平.生活污水灌溉对茄子生长效应的影响[J].甘肃农业大学学报. 2001, 36(3): 329-332.
    63.齐学斌,钱炬炬,樊向阳,等.污水灌溉国内外研究现状与进展[J].中国农村水利水电, 2006,(1): 13-15.
    64.齐志明,冯绍元,黄冠华,等.清、污水灌溉对夏玉米生长影响的田间试验研究[J].灌溉排水学报, 2003, 22 (2): 36-38.
    65.乔冬梅,齐学斌,庞鸿宾,等.地下水作用下微咸水灌溉对土壤及作物的影响[J].农业工程学报, 2009, 25 (1): 55-61.
    66.乔冬梅,齐学斌,樊向阳,等.养殖废水灌溉对冬小麦作物-土壤系统影响研究[J].灌溉排水学报, 2010, 29 (1): 32-35.
    67.乔冬梅,齐学斌,樊向阳,等.再生水分根交替滴灌对马铃薯根-土系统环境因子的影响研究[J].农业环境科学学报, 2009, 28 (11): 2359-2367.
    68.邵志鹏,崔绍荣,苗香雯,等.利用污水灌溉树木的研究进展[J].世界林业研究, 2002, 15 (5): 26-31.
    69.申屠超.污水灌溉对大白菜金属元素吸收及积累的影响[J].浙江农业学报, 2003, (5): 297-301.
    70.宋玉芳,孙铁珩,张丽珊,等.土壤-植物系统中多环芳烃和重金属的行为研究[J].应用生态学报, 1995,6(4):417-422.
    71.宋玉芳,周启星,王新,等.污灌土壤的生态毒性研究[J].农业环境科学学报, 2004, 23(4): 638-641.
    72.孙冬韦,刘丽,郝滨,等.孕妇与儿童铅中毒研究进展[J].中华妇幼保健, 2001, 16(6): 386-387.
    73.孙和和,刘鹏,蔡妙珍,等.外源有机酸对美人蕉耐性和Cr吸收、迁移的影响[J].水土保持学报, 2008, 22 (2): 75-78.
    74.孙立波,郭观林,周启星,等.某污灌区重金属与两种持久性有机污染物(POPs)污染趋势评价[J].生态学杂志, 2006, 25(1): 29-33.
    75.孙琴,王晓蓉,丁士明.超积累植物吸收重金属的根际效应研究进展[J].生态学杂志, 2005, 24(1) :30-36.
    76.童健.重金属对土壤的污染不容忽视[J].环境科学, 1989, 10(3): 37-38.
    77.万金颖,纪玉琨,巨振海,等.污水灌溉区土壤重金属的空间分布特征[J].环境工程, 2006, 24(2): 87-88.
    78.王大力.水稻化感作用研究综述[J].生态学报, 1998, 18 (3): 326-334.
    79.王贵,程玉霞,孙颖卓.包头地区土壤重金属形态分布及其环境意义[J].阴山学刊, 2007, 21(3):38-42.
    80.王贵玲,蔺文静.污水灌溉对土壤的污染及整治[J].农业环境科学学报, 2003, 22 (2): 163-166.
    81.王建林,刘芷宇.重金属在根际中的化学行为,Ⅰ土壤中铜吸附的根际效应[J].环境科学学报, 1991, 11: 178-185.
    82.王建林,刘芷宇.重金属在根际中的化学行为,Ⅱ土壤中吸附态铜解吸的根际效应[J].应用生态学报, 1990, 1: 338-343
    83.王新,周启星.外源镉铅铜锌在土壤中形态分布特性及改性剂的影响[J].农业环境科学学报, 2003, 22 (5): 541-545.
    84.吴燕玉,王新,梁仁禄,等.重金属复合污染对土壤-植物系统的生态效应[J].应用生态学报, 1997, 8 (5): 545-552.
    85.夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社, 2001.
    86.夏伟立,罗安程,周焱,等.污水处理后灌溉对蔬菜产量、品质和养分吸收的影响[J].科技通报, 2005, 21 (1): 79-83.
    87.谢思琴,顾宗濂,吴留松.砷、镉、铅对土壤酶活性的影响[J].环境科学, 1987, 8 (1):19-21.
    88.辛国荣,岳朝阳,李雪梅,等.黑麦草-水稻”草田轮作系统的根际效应Ⅱ.冬种黑麦草对土壤物理化学性状的影响[J],中山大学学报, 1998, 37 (5): 78-82.
    89.徐长林,曹致中,贾笃敬.优良抗寒苜蓿新品种-甘农一号杂花苜蓿.中国畜牧杂志, 1992, 6: 43-44.
    90.许嘉林,杨居荣.陆地生态系统中的重金属[J].北京:中国环境科学出版社, 1996.
    91.徐明岗. pH对黄棕壤Cu~(2+)和Zn~(2+)吸附等温线的影响[J].土壤通报, 1998, 29 (2): 65-66.
    92.徐明岗.砖红壤和黄棕壤Zn~(2+)吸附特性的研究[J].土壤肥料, 1998, (2): 3-6.
    93.徐卫红.锌胁迫下不同植物及品种根际效应及锌积累机理研究[M].武汉大学博士学位论文. 2005.
    94.徐卫红,王宏信,李文一.重金属富集植物黑麦草对Zn的响应[J].水土保持学报, 2006, 20 (3): 43-46.
    95.徐卫红,王宏信,王正银,等.重金属富集植物黑麦草对锌-镉复合污染的响应[J].中国农学通报, 2006, 22 (6): 365-368.
    96.徐卫红,熊治庭,李文一,等. 4品种黑麦草对重金属Zn的耐性及Zn积累研究[J].西南农业大学学报, 2005, 27(6): 785-790.
    97.徐卫红,熊治庭,王宏信,等.锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响[J].水土保持学报, 2005, 19 (4): 32-35.
    98.杨红霞.大同市污水灌溉对土壤的影响及防治对策[J].太原科技. 2002, (6): 52-53.
    99.杨红霞.大同市污水灌溉对农作物影响的研究[J].农业环境与发展, 2002, 4: 18-19.
    100.杨继富.污水灌溉农业问题与对策[J].水资源保护. 2000, (2): 4-8.
    101.杨军,郑袁明,陈同斌,等.中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险[J].地理研究, 2006, 25 (2): 449-456.
    102.杨艳,汪敏,刘雪云,等.三种有机酸对镉胁迫下油菜生理特性的影响[J].安徽师范大学学报, 2007, 30 (2): 158-162.
    103.杨中艺,潘静澜.“黑麦草-水稻”草田轮作系统的研究. 2.意大利黑麦草引进品种在南亚热带地区免耕栽培条件下的生产能力[J].草业学报, 1995, 4 (4): 46-51.
    104.原海燕,黄苏珍,郭智,等.外源有机酸对马蔺幼苗生长、Cd积累及抗氧化酶的影响[J].生态环境, 2007, 16 (4): 1079-1084.
    105.曾德付,朱维斌.我国污水灌溉存在问题和对策探讨[J].干旱地区农业研究, 2004, 22 (4): 221-224.
    106.曾令芳.国外污水灌溉新技术[J].节水灌溉, 2002, (2): 34-42.
    107.张红梅,速宝玉.土壤及地下水污染研究综述[J].灌溉排水学报, 2004, 23 (3): 70-74.
    108.张敬锁,李花粉,衣纯真.有机酸对活化土壤中镉和小麦吸收镉的影响[J].土壤学报, 1999, 36 (1): 61-66.
    109.张磊,宋凤斌.土壤吸附重金属的影响因素研究现状及展望[J].土壤通报, 2005, 36 (4): 628-631.
    110.张乃明,李保国,胡克林,等.污水灌区耕层土壤中铅、镉的空间变异特征[J].土壤学报, 2003,40 (1): 151-154.
    111.张展羽,吕祝乌.污水灌溉农业技术体系探讨[J].人民黄河, 2004, 26(6): 21-22.
    112.张增强,张一平,全林安,等.镉在土壤中吸持等温线及模拟研究[J].西北农业大学学报, 2000, 28(5): 88-93.
    113.张素霞,吕家珑,杨瑜琪,等.黄土高原不同植被坡地土壤无机磷形态分布研究[J].干旱地区农业研究, 2008, 26 (1): 29-32.
    114.周慧珍,龚子同.土壤空间变异性研究[J].土壤学报, 1996, 33 (3): 232-241.
    115.周启星,高拯民.沈阳张士污灌区镉循环的分室模型及污染防治对策研究[J].环境科学学报, 1995, 15 (3): 273-280.
    116.周晓梅.松嫩平原羊草草地土-草-畜间主要微量元素的研究[D].哈尔滨:东北师范大学, 2004.
    117. Angelika Filius, Thilo Streak, Jorg Richter. Cadmium sorption and desorption in limed Topsoils as influenced by pH: Isotherm s and simulated leaching. J .Environ.Qual, 1998, 27: 12-18.
    118. Adriano D C. Trace Elements in Terrestrial Environments; Biogeochemistry, Bioavailability and Risks of Metals. 2nd Edn. Springer, New York. 2001.
    119. Bailey L.D. Effects of potassium fertilizer and fall harvests on alfalfa grown on the eastern Canadian Prairies. J. Canadian Journal Soil Science , 1983, 63: 211-219.
    120. Baker A.J.M. Reeves R.D. and HajarA.S.M.. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens. J. &C. Presl (Brassicaceae) . J. New Phytologis, 1994, 127: 61-68.
    121. Benjamin M M, Leckie J O. Multiple-site adsorption of. Cd, Cu, Zn and Pb on amorphous iron oxyhydroxides. J. Col- loid Interface Sci, 1981, 79:209-221
    122. Blaylock M.J., Salt D.E., Dushenkov S., et al. Enhanced accumulation of Pb in Indian mustard by soil-applied by soil-applied chelating agents . J. Environmental science & Technology, 1997, 31(3): 860-865.
    123. Brooks R. R., Lee J., Reeves R. D., et al. Detection of nickeliferous rocks by analysis of herbarium species of indicator plants. J. Journal Geochemical Exploration. 1977, 7: 49-57.
    124. Bousserrhine N, Gasser U q Jeanroy E, Berthelin J. Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and A1- substituted geothites[J]. Geomicrobiol. J. 1999, 16: 245-258.
    125. Claudia Bragato , Hans Brix, Mario Malagoli.Accumulation of nutrients and heavy metals in Phragmites australis(Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. J. Environmental Pollution, 2006, 144:967-975.
    126. Courchese, F. And George, R. G. Mineralogical variations of bulk and rhizosphere soils from a Norway Spruce Stand[J]. Soil Sci. Sac. Am. J. 1997, 61:1245-1249.
    127. Chamnugathas, P., Bollag, J.M., Microbial mobilization of cadmium in soil under arcobic and anacrobic conditions. J. Environ.uaG, 1987, 16:161-167.
    128. Chanmugathas, P. And Bollag, J. M., Microbial role in immobilization and subsequent mobilization of cadmium in soil suspensions[J].Soil.Sci.Soc.Am.J. 1987, 51:1184-1191.
    129. Cieslinski G.., Van Rees K.C.J,&Szmigielska A.M. Low-molecular-weight organic acids inrhizoaphere soils of durum wheat and their effect on cadmium bioaccumulation[J]. Plant and Soil, 1998, 203:109-117.
    130. Chaney R l. Plant up take of inorganic waste constituents In: Parr J.F.eds Land Treatment of Hazardous Wastes Noyes Data Corporation,Park Ridge, New Jersey,U S A, 1983, 50-76.
    131. Ernst W.H.O. Bilavailability of heavy metals and decontamination of soils by plants [J]. Applied Geochemistry, 1996, 11,163-167.
    132. Eriksson J E The influence of pH,soil type and time on adsorption and by plants of Cd added to the Soil Water Airand Soil Pollution, 1989, 48:317-335.
    133. F. A. Nicholson, et al., Quantifying heavy metal inputs to agricultural soils in England and Wales. [J]. Water and Environment Journal. 2006, 20:87-95.
    134. Fernandez S, Seoane S, Merino A. Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils [J] Communications in Soil Science and Plant analysis, 1999, 30: 1867-1884.
    135. Feng M H, Shan X Q, et al. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soils to barley [J]. Environmental Pollution, 2005, 137: 231-240.
    136. Gadd G M. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes [J]. Adv Microb Physiol, 1999, 41:47-92.
    137. Gnekov MA, Marschner H. Roles of VA-mycrorrhiza in growth and mineral nutrition of apple (Malus pumila var. domestica) stock cuttings [J]. Plant and Soil, 1989 119 (9):285-293.
    138. Hammer D. & Keller C. Change in the rhizosphere of metal-accumulating plants evidenced by chemical extractant. J. of Environmental Quality, 2002, 31(5): 1561-1569.
    139. Hammer D.& Keller C. Change in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J. of Environmental Quality, 2002, 31(5): 1561-1569.
    140. He Q B,Sngh B R Crop up take of cadmium from phosphorus fertilizers I.Yield and cadmium content Water Air and Soil Pollution, 1994, 74:251-265.
    141. Herbert E.Allen, Yu-tung Chen,Yimin Li,Huang C P. Soil partition coefficient for Cd by column desorption and comparison to Batch adsorption measurements[J]. Environ.Sci.Tech, 1995, 29:1887-1891.
    142. Horiguchi, T., Mechamism of manganese toxicity and tolerance of plant. II. Deposition of oxidized mangnese in plant tissues[J]. Soil Sci. Plant. Nutr, 1987, 33: 595-606.
    143. Huang J.W., Chen J., Berti W.R., et al. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction[J]. Environ. Sci. Technol, 1997, 31:800-805.
    144. Huang J.W. et a1. U uptake in B.chinensis in relation to exudation of citric acid[J]. Environ Sci Technol, 1998, 32: 2004-2008.
    145. HussainG ,Al-Jaloud A,Karimulla S. Effect of treated effluent irrigation and nitrogen on yield and nitrogen use efficiency of wheat[J].Agricultural Water Management, 1996, 30:175- 184.
    146. James, B. R., The challenge of remediation chromium-contaminated soil [J]. EnvironmentalScience & Technology, 1996, 30(6): 248-251.
    147. J. ESCARRé, et al., Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. J. RESEARCH New Phytol, 2000, 145: 429-437.
    148. Keith H., Oades J.M., Martin J.K. Input of carbon to soil from wheat plants[J], Soil Biology and Biochemistry, 1986, 18(4): 445- 449.
    149. Knight B, Zhao F.J. McGrath S.P. and Shen Z.G. Zinc and cadmium uptake by the hyper-accumulator Thlaspi caerulescens in contaminated soils and effects on theconcentration and chemical speciation of metals in soil solution[J]. Plant and Soil, 1997, 197: 71-78.
    150. Lasat M.M., Baker A. J. M and Kochian L.V. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J]. Plant Physiology, 1996, 112: 1715-1722.
    151. Lasat M.M. Phytoextraction of toxicmetals: a review of biologicalmechanisms[J]. Journalof Environmental Quality, 2002, 31: 109 - 120.
    152. LEBEAU T, BRAUD A, JéZéQUEL K. Performance of bioaugmentation assisted phytoextraction applied tometal contaminated soils:a review[J] Environ Pollut, 2008, 153: 497-522.
    153. Lena Q Ma,Gade N Rao.Chemical frectionation of cadmium,copper nickel,and zinc in Contaminated soils [J]. J Environ Qual, 1997, 26:259-264.
    154. McLaren, R. G., Swift, R. S., and Williams, J. G. The adsorption of copper by soil at low equilibrium solution concentration. J. Soil Sci, 1981, 32:247-256.
    155. Miguel A. P., randir V. M., &Vera M. K. The physiology and biophysics of an aluminum tolerance mechanism bases on root citrate exudation in maize[J]. Plant Physiology, 2002, 129(3): 1194-1206.
    156. Maiz I, Arambarri I, Garcia R et al. Evaluation of Heavy Metal Availability in Polluted Soils by Two Sequential Extraction Procedures Using Factor Analysis[J]. Environmental Pollution, 2000, 110: 3-9.
    157. Mathialagan T,Viraraghavan T.Adsorption of Cadmium from aqueous solutions by perlite[J].Journal of Hazardous Materials, 2002, B94(2002): 291-303.
    158. Mench, M. And Martin, E., Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. And Nicotiana rustica L[J]. Plant and Soil 1991,132:187-196.
    159. MICHAEL ROTHER., et al.,Sulphate assimilation under Cd2+ stress in Physcomitrella patens-combined transcript, enzyme and metabolite profiling. J. Plant, Cell and Environment, 2006, 29:1801-1811.
    160. Morel JL, Andreux F, Habib L and Guckert A. Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite homoionic to divalent lead and cadmium[J]. Biol Fertil Soils. 1987, 5: 13-17.
    161. M P Ortega-Larrocea,C Siebe,G Becard et al. Impact of a century of wasterwater irrigation on the abundance of arbuscular mycorrhizal spores in the soil of the Mlezquital Vally of Mexio[J].AppliedSoil Ecology, 2001, 16: 149-157.
    162. Pueyo M, Lopex-Sanchez J F, Rauret G, Assessment of CaCl2, NaNO3 and NH4NO3 Extraction Procedures for the Study of Cd, Cu, Pb and Zn Extractability in Contaminated Soils[J]. Analytica Chimica Acta, 2004, 504: 217-226.
    163. Ramos L,et al.Sequential frectionation of copper,cadmium and zinc in soils from or near Donana National Park[J].J Environ Qual, 1994, 23:50-57.
    164. Reeves R.D. and Brooks R.R. Hyperaccumulation of lead and zinc by two metalphytes from a mine area in Central Europe[J]. Environmental Pollution (Series A), 1983, 31(3): 277-287.
    165. Salt D E, prince R C. et al. Mechanisms of cadmium mobility and accumulation in India mustard[J]. Plant Physiol, 1995, 109: 1427-1433.
    166. Selim H M,Buchter B,Hinz C,Ma L. Modeling the transport and retention of Cadmium in soils:multireaction and multicomponent approaches[J]. Soil Sci. Soc. Am. J, 1992, 56: 1004- 1015.
    167. Schindler, P W, Liechti, P., and Westall, J C. Adsorption of copper, cadmium, and lead from aqueous solution to the kaolinite water interface [J]. Netherlands J Agri Sci, 1987, 35:219-230
    168. Sharma A K, Srivastava PC. Effect of V AM and zinc application on dry matter and zinc uptake of greengram (Influence of soil moisture fegime on VA-mycrorrhiza L. wilczek) [J]. Biol Fertil. Soils, 1991, 11(1):52-56.
    169. Shuman, L. M., et al., Screening wheat and sorghum cultivars for Aluminum sensitivity at low Aluminum levels[J]. Journal of Plant Nutrition, 1993, 16(12): 2383-2395.
    170. Saúl Vázquez, Peter Goldsbrough., Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin[J]. Physiologia Plantarum, 2006, 128:487- 495.
    171. Shin-ichi NAKAMURA et al., Effect of cadmium on the chemical composition of xylem exudate from oilseed rape plants (Brassica napus L.) . J. Soil Science and Plant Nutrition, 2008, 54: 118-127.
    172. T Manios,E I Stentiford,P Millner. Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewager sludge compost[J]. Chemosphere, 2003, 53: 487-494.
    173. Thomas RA P, Beswick A J., Basnakova Q., Moller R., Macaskie L E., Growth of naturally occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes[J]. J chem. Technol Biotechnol, 2000, 75: 187-195.
    174. Tessier A, Campbell P G C, Bisson M, Sequential Extraction Proceduce for the Speciation of ParticulaceTrace Metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
    175. Sébastien Roy, et al., Phytoremediation of heavy metal and PAH-contaminated brownfield sites. J. Plant and Soil 2005, 272: 277-290.
    176. V. Angelova, R.Ivanova, V. Delibaltova, K.Ivanov.,Bio-accumulation and distribution of heavy metals in fibre crops (?ax, cotton and hemp) . J. Industrial Crops and Products 2004, 19: 197-205.
    177. Valtcho D, et al., Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. J. Environmental and Experimental Botany, 2006, 58: 9-16.
    178. Wollum, A. G., Immobilization of cadmium by soil microoganisms[J]. Environmental and Healthprospective, 1973, 4: 105.
    179. Yadav R,Goyal B,Sharma R,etal.Post-irrigation impact of domestic sewage effluent on composition of soils, crops and groundwater-A case study[J]. Environment International, 2002, 28:481-486.
    180. Youssef R.A., Abd E.A., Hilal M.H. Studies on the movement on Ni in wheat rhizosphere. J. Plant Nutr, 1987, 9: 695-713.
    181. Zasoski R J, Burau R G. Sorption and sorptive interaction of cadmium and zinc on hydrous manganese oxide. Soil Sci Soc Am J, 1988, 2:81-87.
    182. Zipper C, Komarneni S, Baker D E. Specific cadmium sorption in relation to the crystal chemistry of clay aminerals. Soil Sci Soc Am J, 1988, 52:49-53.
    183. Zuzana Fischerová, Pavel Tlusto?., A comparison of phytoremediation capability of selected plant species for given trace elements. J. Environmental Pollution., 2006, 144: 93-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700