用户名: 密码: 验证码:
本质安全开关变换器基础理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用于易燃易爆环境的直流电源必须满足防爆要求,本质安全是最佳的防爆形式,本质安全开关电源必将获得广泛应用。开关变换器是组成开关电源的核心基础,因此,对本质安全开关变换器的基础理论及关键技术进行研究具有重要理论意义和实用价值。
     提出了一种输出电流可控的大功率安全栅电路,设计了一种快速的截止型输出短路保护电路。针对Boost变换器实现本质安全存在的问题,提出了一种本质安全型Boost变换器的改进电路。为进一步提高本质安全开关变换器的输出功率,发明了一种输出电容短路火花能量释放电路。通过大量实验验证了提出的一系列新电路的可行性。
     发现了Boost和Buck-Boost变换器存在完全电感供能模式(CISM)、不完全电感供能且连续导电模式(IISM-CCM)及不完全电感供能且不连续导电模式(IISM-DCM)三种工作模式,并推导得出了其临界条件和变换器在整个动态工作范围内的最大输出纹波电压。指出对于Boost和Buck-Boost变换器,最小负载电阻和最低输入电压所对应的CISM和IISM的临界电感,即为使得最大输出纹波电压极小的最小电感,且最大输出纹波电压的极小值与电感无关。
     推导得出了开关变换器在整个工作范围内的最大输出短路释放能量,指出其不仅与输出电压和电容有关,而且与开关频率和电感及其电流有关。发现了输出短路火花与负载电阻密切相关的现象。指出不能直接套用简单电容电路的引燃曲线作为开关变换器的输出本质安全判据。为此提出了一种将开关变换器输出短路放电特性转化为等效简单电容电路的方法,并据此首次提出了开关变换器输出本质安全的非爆炸判断方法。通过大量火花实验验证了提出方法的可行性。
     推导得出了开关变换器在整个工作范围内的最大电感电流。发现了流过开关变换器的电感电流远小于该电感对应的引燃电流时也会引燃爆炸性气体,并且电感分断火花的引燃能力与输出电容有关的现象,指出直接套用简单电感电路的引燃曲线作为开关变换器的内部本质安全判据是不严格的。为此,在深入研究开关变换器的电感分断放电火花的基础上,提出了一种将开关变换器的电感分断放电特性转化为等效简单电感电路的等效电阻分析法,并据此首次提出了开关变换器内部本质安全的非爆炸判断方法。通过大量火花实验验证了提出方法的可行性。
     建议了一种本质安全开关变换器的设计方法。推导得出了满足性能指标要求、输出本质安全要求和内部本质安全要求的电感和电容参数的取值范围,深入探讨了开关频率对元器件参数取值范围的影响,并分别得出了输出本安型开关变换器和完全本质安全型开关变换器的最小开关频率。
Direct current power supplies applied in the flammable and explosive conditions must meet the requirements of anti-explosive. As the optimal means, intrinsically safe switching power supplies will be of promise in the future. Thus, it is nessecery to investigate the basic theory and key techniques of intrinsically safe switching converters.
     A new large-power safe-barrier with controlled output current is proposed. A fast protection circuit is designed to cut off the source power when the output short-circuit occurs. To overcome the difficulty of Boost converters to realize intrinsic safety, an improved structure of Boost converter is presented. A novel capacitor short citcuit spark energy releasing circuit is invented to further improve the output power of intrinsically safe switching converters.
     It is pointed out that there are three operation modes for Boost converters and Buck-Boost converters, i.e., the Complete Inductor Supplying Mode (CISM), the Incomplete Inductor Supplying with Continuous Conduction Mode (IISM-CCM) and the Incomplete Inductor Supplying with Discontinuous Conduction Mode (IISM-DCM). The critical conditions and the maximum output voltage ripple within the whole working range of a converter are obtained. It is concluded that the minimum inductance to guarantee the maximum output ripple voltage to be the lowest is the critical inductance of CISM and IISM in case of the lowest input voltage and the minimum load resistance. It is also found that the lowest output voltage ripple is independent of the inductance.
     The maximum output short-circuit discharged energy of a converter in the whole operating range is deduced. It is found that the maximum output short-circuit discharged energy relates to not only the output voltage and the capacitance but also the switching frenquency and the energy stored in the inductor. It is discovered that the ignition ability is affacted by the load and that the published ignation curve for simple capacitive circuit is not suitable for switching converters. To solve above problem, a new non-explosive output intrinsic safety criterion for switching converters based on modeling the output short-circuit discharging behaviour as a simple capacitive circuit is suggested, which is verified by the experiment results on IEC standard spark ignation apparatus.
     The maximum current through the inductor of a switching converter is deduced. It is discovered that although the current through the inductor of a switching converter is much lower than the corresponding value on the published ignition curve, ignition still occurs. It is also found that the ignition ability is stenghfened as the output capacitance becoming larger. To solve above problem, a new non-explosive intrinsic safety criterion for switching converters is suggested based on an equivalent resistance analysis approach, in which, the inductor disconnected discharging behavior of a switching converter is modeled as an equivalent simple inductive circuit with an equivalent resistance during the inductor disconnected instant. The proposed method is verified by the experiment results on IEC standard spark ignation apparatus.
     The approach to design an intrinsically safe switching converter is proposed. The design regions of inductance and capacitance to meet both requirements of electric performance and intrinsically safety are deduced. The influence of switching frequency on design is discussed. The minimum switching frequency of the output intrinsically safe switching converters and totally intrinsic safty switching converters are deduced, respectively.
引文
[1] 中国强制性国家标准汇编[S]. 电工卷, GB 3846.4-—2000, 中国标准出版社, 2003.
    [2] 国际电工委员会 IEC 标准(79-出版物)—爆炸性环境用防爆电气设备汇编[S]. 机械工业部南阳防爆电气研究所, 1986.
    [3] IEC60079-11. Electrical apparatus for explosive gas atmospheres: Intrinsic Safety “i”[S]. International Standard, Third Edition, 1991.
    [4] 马经纲. 隔爆型电气设备新老标准主要技术内容的变化[J]. 电气防爆, 2000 (4):1-3.
    [5] L.W.斯可特, 张鸿森译. 隔爆型外壳研究综述[J]. 防爆电机, 1994 (4): 41-48.
    [6] 龚永南, 徐建平, 郭俊, 赵惠德. 隔爆兼本质安全型双闭环交流软起动器的研究[J]. 煤矿机电, 2000(2):11-13.
    [7] 李达, 范新媛. 本安防爆系统综述[J]. 石油化工自动化, 2000(6):8-10.
    [8] 杨保祥. 本质安全型电气设备新老国标的主要技术差异[J]. 电气防爆,2001(3): 1-3.
    [9] Sean Clarke. Basic techniques of intrinsically safe circuit assessment[J]. Electro-technology, 1999,2(8): 43-46.
    [10] Adams, J.M.. Electrical apparatus for flammable atmospheres: intrinsic safety[J]. Power engineering journal, 1991,5(6): 278-282.
    [11] 穆大玉. m_型电磁阀的几种保护方式[J]. 电气防爆,2006(2):18-19.
    [12] 赵鹏,冯孝秋. 浇封 P 胶粘材料在防爆电气设备中的应用[J].电气防爆,2006(3):39-42.
    [13] 张国彦. 增安型电机的防爆要点[J]. 防爆电机, 2004 (4): 27-39.
    [14] 李合德. 增安型电气设备新老国标的主要技术差异[J]. 电气防爆, 2001(3):1-3.
    [15] 李江. 正压型防爆装置工作原理及实例分析[J]. 电气防爆, 2003(4):13-17
    [16] 刘彦华, 张浩, 乔建伟. 基于单片机的正压补偿型控制系统[J]. 电气防爆, 2003(4): 22-24
    [17] David Hohenstein. Advanced intrinsic-safety solutions are more application friendly[J]. Control Solutions, 2001, 74(6): 42-47.
    [18] Adams, J.M.. Electrical apparatus for flammable atmospheres[J]. Power engineering journal, 1990,4(1): 57-60.
    [19] TomisSav Mlinac; Kresimir Malaric; Tomislav Milas. Energy Limitationas as Method of Electrical Apparatus Explosion Protection[C]. 17th International Conference on Applied Electromagnetics and Communications, 2003, PP: 45-48.
    [20] Gaunt, D.R. Intrinsic safety-simplicity itself[C]. Fourth International Conference on Electrical Safety in Hazardous Areas, 1988,PP:103-105.
    [21] Towle, L.C.. Intrinsic safety-the way forward[C]. Fifth InternationalConference on Electrical Safety in Hazardous Environments, 1994, PP:198-203.
    [22] 陈向东. 本质安全电气设备中的变压器[J]. 煤矿机电,1996(5):28-38.
    [23] 毛小建, 孙炳松. 一种新颖的本安防自启动电路[J]. 煤矿机电,2000(1):43-44.
    [24] 龚永南, 徐建平, 郭俊, 赵惠德. 隔爆兼本质安全型双闭环交流软起动器的研究[J]. 煤矿机电, 2000(2):11-13.
    [25] 郝俊芳, 李海英. 电动机控制系统本质安全型先导电路的试验研究[J]. 电工技术杂志,2001(9):1-4.
    [26] 高金辉. 本安型 SET5F 防爆全站仪的开发[J]. 煤炭科学技术, 2000(6):22-26.
    [27] 王瑗.本安型远程 I/O 系统在潜在爆炸性气体环境中的应用[J].电气防爆,2002(1):6-8.
    [28] 狄利明. 基金会现场总线的本质安全技术[J]. 化工自动化及仪表,2001,28(6):64-66.
    [29] 张友亭, 杜兵, 刘忠宽. 浅仪本质安全化在煤矿安全生产中的应用[J]. 煤矿安全, 1998(6): 35-37.
    [30] 汤亚微. 仪表本质安全防爆技术及其应用[J]. 化工建设工程, 2004, 26(4):52-53.
    [31] Udo Gerlach, Ulrich Jophannsmeyer(德国), 郭洪起译. 本安型电路应用范围的扩展[J]. 电气开关, 1995(6):43-48.
    [32] Hills, P.C. Intrinsic safety of optical fibres in combustible environments[J]. Electronics Letters, 1990,26(23):1982-1983.
    [33] Z. John Shen; David N. Okada; Fuyu Lin; Samuel Anderson; Xu Cheng. Lateral Power MOSFET for Megahertz-Frequency, High-Density DC/DC Converters[J]. IEEE Transactions on Power Electronics, 2006,21(1): 11-17.
    [34] 杨德刚, 赵良炳. 软开关技术回顾与展望[J]. 电力电子技术,1998,32(2):96-101.
    [35] Gang Yao; Alian Chen; Xiangning He. Soft Switching Circuit for Interleaved Boost Converters[J]. IEEE Transactions on Power Electronics, 2007,22(1): 80-86.
    [36] Chien-Ming Wang. Novel Zero-Voltage-Transition PWM DC-DC Converters[J]. IEEE Transactions on Industrial Electronics, 2006,53(1): 254-262.
    [37] C.Y. Inaba; Y. Konishi; M. Nakaoka. High-frequency flyback-type soft-switching PWM DC-DC power converter with energy recovery transformer and auxiliary passive lossless snubbers[J]. IEE Proceedings. Part B, Electric Power Applications,2004,151(1): 1350-2352.
    [38] Sergey MOISEEV; Koji SOSHIN; Mutsuo NAKAOKA. High-Frequency Isolated Soft-Switching Phase-Shift PWM DC-DC Power Converter Using Tapped Inductor Filter[J]. IEICE Transactions on Communications, 2004, E87-B (12): 3561-3567.
    [39] 应建华, 张玺, 李唯, 刘毅. 高频 PWM DC/DC 转换器设计[J]. 华中科技大学学报(自然科学版), 2006,34(11):67-69.
    [40] Kaiwei Yao; Yang Qiu; Ming Xu; Fred C. Lee. A Novel Winding-Coupled Buck Converter for High-Frequency, High-Step-DownDC-DC Conversion[J]. IEEE Transactions on Power Electronics, 2005,20(5): 1017-1024.
    [41] Pinon, V.; Allard, B.; Garnier, C.. High-Frequency Monolithic DC/DC Converter for System-on-Chip Power Management[C]. IEEE International Symposium on Power Semiconductor Devices and IC's, 2006, PP:1-4.
    [42] Keiki Morimoto; Toshimitsu Doi; Mutsuo Nakaoka; Hyun-Woo Lee, etal. Next Generation High Efficiency High Power DC-DC Converter incorporating Active Switch and Snubbing Capacitor Assisted Full-Bridge Soft-Switching PWM Inverter with High Frequency Transformer for Large Current Output[C]. Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, Austin, Texas, USA, 2005,PP:1549-1555.
    [43] Mweene, L.H.; Wright, C.A. A 1 kW 500 kHz front-end converter for a distributed power supply system[J]. IEEE Transactions on Power Electronics, 1991,6(3): 398-407.
    [44] Joey M. Esteves. 3A, 2MHz Monolithic Synchronous Step-Down Regulator Provides a Compact Solution for DDR Memory Termination[J]. Electrical Design News, 2003,48(9): A1-A2.
    [45] Ming Xu; Yuancheng Ren; Jinghai Zhou; Fred C. Lee. 1-MHz Self-Driven ZVS Full-Bridge Converter for 48-V Power Pod and DC/DCBrick[J]. IEEE Transactions on Power Electronics, 2005,20(5): 997-1006.
    [46] 史久焕. 本安型电路及其电源[J]. 防爆电气,1988(2):9-13.
    [47] 高庆阳. 本安高频电源[J]. 煤矿自动化,1990(1): 35-37.
    [48] 刘晓强. 本质安全型防爆直流开关电源及备用电源研究[D]: [博士学位论文]. 北京: 中国矿业大学, 2001.
    [49] 崔保春, 王聪, 卢其威, 魏巨升, 李朋. 矿用本质安全开关电源的研究[J]. 中国煤炭, 2006, 32(3): 47-49.
    [50] 崔保春, 王聪, 戴颖, 李朋, 赵明. 提高本质安全开关电源功率及安全火花电路的研究[J]. 苏州科技学院学报(自然科学版), 2006,23(1):77-80.
    [51] 崔保春, 王聪, 程红. 本质安全电源电路理论综述[J]. 电源世界, 2006(12):1-6.
    [52] 陈卫昀, 严仰光. 分布式电源[J]. 电力电子技术,1999(2):82-85.
    [53] 钱照明,董伯藩,何湘宁. 电力电子技术及其应用的最新发展(二)[J]. 中国电机工程学报,1998,18(3):153-159.
    [54] Kassakian, J.G.; Schlecht, M.F.. High-frequency high-density converters for distributed power supply systems[J]. Proceedings of the IEEE,1988,76(4): 362-376.
    [55] 鲁道夫·豪克(德), 付果译. 本质安全和高频[J]. 电气防爆,2005(1):30-34.
    [56] 商立群. 本质安全电路及其研究[J]. 仪器仪表学报, 2002,23(3): 817-818.
    [57] 张燕美, 李维坚. 本质安全电路设计[M]. 北京: 煤炭工业出版社,1992.
    [58] Y. Saito. Investigation of intrinsically safe circuit for coal mine: sparking of battery and rectified sources[J]. Mining and safety. 1975, 21(8):1-11.
    [59] W. Rolth, P. G. Guest. Heat generation by electrical rate-loss to the spark electrodes[J]. Journal of chemistry physics. 1951, 19(13):1530-1535.
    [60] R. L. Grodon, H. Hord, etal. Ignition of gases by sparks produced by breaking wires at high speed[J]. Nature,1961, 191(16):237-240.
    [61] B.C.柯拉夫钦克, B.N.谢洛夫, A.T.叶雷金. 安全火花电路[M]. 北京: 煤炭工业出版社,1981.
    [62] D. W. Widgiton, Ignition of methane by electrical arc discharge[J]. SMRE.1966 (240):22.
    [63] G. Allop, E. Guenault. The minimum ignition current in relation to circuits constants[J]. SMRE, 1946(104):16
    [64] P.K.Eckhoff. Minimum ignition energy (MIE)-a basic ignition sensitivity parameter in design of intrinsically safe electrical apparatus for explosive dust clouds[J]. Journal of Loss Prevention in the process industries, 2002(15):305-310.
    [65] B.A.Chetty. Some aspects of testing intrinsical safety for mining and non-mining application[J]. Metals and Minerals Review, 1976,15(3):1-4.
    [66] H. Llord, M. Eg. The use of break-flash apparatus No.3 for intrinsic safety testing[J]. SMRE. 1951(33):26.
    [67] D. W. Widgiton. A method for assessing the effect of components used in intrinsically safe circuits[J]. SMRE, 1968 (254):21
    [68] D. W. Widgiton. Some aspects of the design of intrinsically safe circuits[J]. SMRE, 1968 (256):23.
    [69] U.Johannsmeyer.On the ignition of explosive atmospheres by short duration sparking –when capacitive intrinsically safe circuits are discharged by short-circuit[J]. Ex Magazine, 1989(12):4-8.
    [70] 羽田博宪, 高桥保盛(日), 彭林译. 容性电路的本质安全防爆性[J]. 资源与素材,1994,110(4):55-59.
    [71] H.D.Goeldner,U.Johannsmeyer,F.Schebsdat and H.Storck. Combination of non-linear and linear intrinsically-safe circuits[J]. Ex Magazine,1990(12):11-21.
    [72] G. Bittener, The ignition of explosive atmosphere by sparks in the frequency range of 1 KHz to 10 MHz [J]. PTB Translation,1976, 86(1):26~30
    [73] Wolf Dill; Rudolf Hauke. Intrinsic safety and high frequency—The ignition behaviour of electrical power circuits at frequencies above d.c. level[J]. Gluc kauf-For schung shefte, 2003,64(3): 84-89.
    [74] K. Kumar, D. Chandra, Reliability consideration in the use of intrinsically safe barriers for instruments in coal mines[J]. Mining technology. 1991, 12(3):35-38.
    [75] D. Oancea ., Domnina Razus, V. Munteanu , Irina Cojocea. High voltage and break spark ignition of propylene/air mixtures at various initial pressures[J]. Journal of Loss Prevention in the process industries, 2003(16):353-361.
    [76] 章良海, 宋雅亭, 刘小周. 安全火花原理及应用[M]. 北京: 煤炭工业出版社,1984.
    [77] 刘建华, 王崇林, 姜建国. 直流电阻性本质安全电路低能电弧放电分析[J]. 中国矿业大学学报, 2003,32(4):440-442.
    [78] 孟庆海, 胡天禄. 本质安全电路电弧放电时间及放电能量分布规律[J]. 西安矿院学报,1999, 19(3):264-267.
    [79] 孟庆海, 胡天禄, 牟龙华. 本质安全电路低能电弧放电特性及参数[J]. 电工技术学报,2000,15(3): 28-35.
    [80] 孟庆海, 胡天禄, 牟龙华. 低能电弧放电时间与电路参数间的关系[J]. 电工技术学报,2000,15(4): 19-21.
    [81] 商立群. 电感电路放电时间的测量[J]. 仪器仪表学报, 2002,23 (3):503-504.
    [82] 杜亚娟, 潘泉等. 本质安全电路中复杂电感电路放电时间的测试[J]. 煤矿自动化,1999(6): 93-97.
    [83] 孟庆海, 胡天禄. 应用放电电流线性衰减模型评价电感性本质安全电路[J]. 煤炭学报,1999,24(4): 416-419.
    [84] 孟庆海, 牟龙华, 王崇林, 刘建华. 基于电流线性衰减模型分析低能电弧放电特性[J]. 煤炭学报, 26(6): 654-656.
    [85] 孟庆海,牟龙华,林伯泉,李增华.低能电弧放电模型比较分析[J].中国矿业大学学报, 2002,31(2): 201-203.
    [86] 孟庆海, 电感性本质安全电路动态伏安特性参数的确定[J]. 中国矿业大学学报(自然科学版), 2001,30(3):265-267.
    [87] 孟庆海, 许允之, 胡天禄. 电感性本质安全电路电弧放电伏安特性分析[J].中国矿业大学学报,1999,28(4):380-381.
    [88] 张燕美 , 李维坚 . 直流复杂电感电路本安性的瞬态分析 [J]. 煤矿自动化 , 1995(3):46-48.
    [89] 商立群. 复杂电感电路在不同频率特性下本质安全性研究的技术实现[J]. 煤矿机电,2002 (3):39-40.
    [90] 商立群, 贾文胜, 施围. 提高本质安全电感电路功率的方法[J]. 工矿自动化,2003 (6):20-21.
    [91] 张燕美. 本质安全电路最小点燃能量的一种测试方法[J]. 煤矿机电,1985(5):67-70.
    [92] 付淑玲. IEC 火花试验装置检验容性电路的新途径[J]. 电气防爆. 2002(3):35-37.
    [93] 陈向东. 本质安全电路中的晶体管保护性元件[J]. 江苏煤炭,1997(2):10-12.
    [94] 陈向东. 本质安全电路中的电隔离器件[J]. 煤炭科学技术, 1996,24(7):10-13.
    [95] 陈南燕. 本质安全电气设备电路中的保护元件[J]. 同煤科技,1999(3):58-61.
    [96] 陈向东. 本质安全电路中的限流元件和分流元件[J]. 煤矿自动化,1996(2):50-53.
    [97] 张刚. 较大电感或较大电容电路的本安保护设计[J]. 电气防爆,1999(3):20-22.
    [98] 汪淳, 谢晓春 稳压管作过压保护对本安电路安全性能的影响[J]. 煤矿机电,1999(5): 15-16.
    [99] 汪淳. 熔断器保护对电阻电路本安性能作用的研究[J]. 煤矿机电,1997(1): 28-29.
    [100] 刘琴. 用微型熔丝管作本安保护的研究[J]. 煤矿机电,1994(3): 20-21.
    [101] 柏自柄. 本质安全火花试验装置的改进设计[J]. 防爆电机,1996(1):21-24.
    [102] 商立群. 本质安全火花试验装置及应用[J]. 煤矿安全, 2002, 33(5): 3-4.
    [103] 张国军, 刘建华, 孟庆海, 牟龙华. 基于单片机控制实现的本质安全电路用火花试验装置[J]. 电气防爆,2003(2):28-30.
    [104] J.Hanko [匈牙利], 孟庆海译. 克服本安电路火花试验装置缺点采取的新方法及利用改进型装置得到的结果[J]. 电气防爆, 1999(2):39-43.
    [105] 孟庆海, 许允之, 李素英. 电感性电路本质安全性能判别式的研究[J]. 矿业安全与环保,1999(4): 11-15.
    [106] 孟庆海. 本质安全电路电弧放电数学模型及非爆炸方法评价电路本质安全性能[D]: [博士学位论文]. 徐州: 中国矿业大学, 1999.
    [107] 孟庆海, 牟龙华. 评价电路本质安全性能计算方法的修正[J]. 湘潭矿业学院学报,2000(8):12-16.
    [108] 孟庆海, 牟龙华, 王崇林, 丁勇军. 本质安全电路的功率判别式[J]. 中国矿业大学学报,2004, 33(3): 293-294.
    [109] 李胜利. 本安防爆系统设计中安全栅的选用[J]. 石油化工自动化, 2000 (1): 6-7.
    [110] 施云贵, 童少为, 翟玉文. 本安控制系统中齐纳安全栅的合理选择[J]. 吉林化工学院学报, 1999, 15(2): 59-62.
    [111] 张刚, 华书灵. 再次使用型齐纳式安全栅探讨[J]. 爆炸性环境电气防爆技术, 1998(4): 14-17.
    [112] 李邵. 合理选择安全栅种类[J]. 石油化工自动化, 1998(3): 51-53.
    [113] 赖兵. 隔离式安全栅设计的一些体会[J]. 中国仪器仪表, 2001(3): 43-45.
    [114] G.Blomer.The safety barrier as a component for explosion protection in measurement and control technology[J]. Ex Magazine,1987(12):23-29.
    [115] 沈磊, 沈正. 带有前置电阻的防爆齐纳安全栅[P]. 中国专利, 89209080.1989-12-20.
    [116] 郭松祥. 本质安全栅[P]. 中国专利, 9120240. 1992-4-1.
    [117] 徐建平, 胡富民. 非线性齐纳安全栅[P]. 中国专利, 94238990. 1995-7-12.
    [118] 戴有刚. 非线性电阻式安全栅[P]. 中国专利, 91215327. 1992-7-29.
    [119] 胡著华. 非线性齐纳安全栅[P]. 中国专利, 97221620.1999-2-17.
    [120] 何诚, 高俊彦. 齐纳式安全栅可换双熔断器[P]. 中国专利, 95220210. 1996-10-23.
    [121] 林楼飞. 安全栅[P]. 中国专利, 95246447. 1997-4-16.
    [122] 高峻, 何诚. 纯阻型电子限流安全栅[P]. 中国专利, 97203113.1998-9-30.
    [123] 王祥, 王朝晖. 油库中使用本质安全防爆仪表应注意的问题[J]. 石油库与加油站, 2006, 15(2): 34-35.
    [124] 汤亚微. 仪表本质安全防爆技术及应用[J]. 化工建设工程, 2004, 26(4): 52-53.
    [125] 曲阳, 王建辉, 徐林, 顾树生. 现场总线本质安全概念安全栅的研究开发[J]. 仪器仪表学报, 2006, 27(9): 1004-1007.
    [126] Greenwood; Alan Norman. Intrinsically safe power supply apparatus[P]. United States Patent, 3,955,132, May 4, 1976.
    [127] Richard Alexander,Dennis Kindschuh, Intrinsically safe battery circuit[P]. United States Patent 4,749,934.Jun.7, 1988.
    [128] Bockhorst; Rhea W., Zimmerman; Wiley E.. Intrinsically safe regulated power supply[P]. United States Patent, 4,264,950, April 28, 1981.
    [129] Rohl; Wolfgang. Intrinsically safe power supply with a current regulator[P]. United States Patent, 4,646,219, February 24, 1987.
    [130] Geuns; Guy. Intrinsically safe power supply unit[P]. United States Patent, 5,050,060, September 17, 1991.
    [131] Cadman; Gary R.. High efficiency intrinsically safe power supply[P]. United States Patent, 5,365,420, November 15, 1994.
    [132] Mercier; Claude. Intrinsically safe universal switching power supply[P]. United States Patent, 6,590,788, July 8, 2003.
    [133] 肖公亮. 本质安全型蓄电池[P]. 中国专利, 90217599. 1991-12-4.
    [134] 陈太华. 本质安全型防爆矿灯[P]. 中国专利, 01265779. 2002-9-11.
    [135] 杨天豪, 吴振亚. 本质安全防爆型全密封免维护固态铅酸蓄电池[P]. 中国专利, 95237296. 1997-5-28.
    [136] 王俊波. 一种短路保护矿灯[P].中国专利. 中国专利, 91225187.1991-12-9.
    [137] 徐精彩, 沈涛, 徐林生, 郑学召, 金永飞, 赵静, 王明利. 本质安全型锂离子电源[P]. 中国专利, 200420042295. 2005-10-12.
    [138] 王涛, 刘春杰, 王冬梅, 陈万聆, 文磊, 吴荣光. 本安微型矿灯[P]. 中国专利, 00123965, 2003-10-22.
    [139] 郭风仪, 李文江, 高维生, 王凤霞. KF1019 矿用隔爆兼本安电源箱的设计与实现[J]. 阜新矿业学院学报(自然科学版),1994,13(1):86-88.
    [140] 黄坡. 本质安全型电源[P]. 中国专利, 91231633. 1993-3-17.
    [141] 孙继平, 朱建铭, 朱李平. 由集成稳压器构成的本安防爆直流稳压电源[P]. 中国专利, 92230025. 1993-3-17.
    [142] 郭晨光. 双重保护本质安全电源装置[P]. 中国专利, 93227753. 1994-5-25.
    [143] 韩继光. 用三端稳压器改进矿用隔爆 DQZBH-3001140 开关电子保护组件电源部分[J]. 电气开关, 1996(2): 35-36.
    [144] 付淑玲. 可控硅保护式本安电源自动恢复装置[J]. 煤矿安全,2000(1):32-34.
    [145] 陈向东. 矿用本质安全电源[J]. 煤炭科学技术,1997,25(6):35-38.
    [146] 夏筱筠, 冒益海, 聂林, 王世秋. 本质安全型电源[P]. 中国专利, 200320131239. 2004-12-22.
    [147] 刘明亚. 隔爆兼本质安全开关电源的研制[D]: [硕士学位论文]. 北京:中国矿业大学, 1989.
    [148] 张玉良.一种带备用电池多路输出的隔爆兼本质安全型开关直流稳压电源[J]. 煤矿自动化, 1996(4):57-59.
    [149] 王中扬. KFD-IA 型井下分站电源箱的研制[J]. 煤炭工程师,1997(4):25-27.
    [150] 王花鱼. 本质安全型开关直流稳压电源[J]. 山西煤炭, 2000,20(2):41-44.
    [151] 高丽珍. 新型矿用本质安全型电源的设计与研究[J]. 机械工程与自动化, 2006(3):125-127.
    [152] Alberto Reatti; Marian K. Kazimierczuk. Small-signal model of PWM converters for discontinuous conduction mode andits application for boost converter[J]. IEEE Transactions on Circuits and Systems. 1, 2003, 50(1):65-73.
    [153] Sukanya Parui; Soumitro Banerjee, Bifurcations Due to Transition From Continuous Conduction Mode to Discontinuous Conduction Mode in the Boost Converter[J]. IEEE Transactions on Circuits and Systems. 1, Fundamental Theory andApplications, 2003, 50(11):1464-1469.
    [154] Yungtaek Jang; Milan M. Jovanovic, A new input-voltage feed forward harmonic-injection technique with nonlineargain control for single-switch, three-phase, DCM boost rectifiers[J]. IEEE Transactions on Power Electronics, 2000,15(2):268-277.
    [155] Yungtaek Jang; Milan M. Jovanovic, A novel robust harmonic injection method for single-switch three-phase discontinuous-conduction-mode boost rectifiers[J]. IEEE Transactions on Power Electronics, 1998, 13(5):824-834.
    [156] Kolar, J.W.; Ertl, H. A novel three-phase single-switch discontinuous-mode AC-DC buck-boost converter with high-quality input current waveforms and isolated output [J]. IEEE Transactions on Power Electronics, 1994, 9(2):160-172...
    [157] S. C. Chung; S. R. Huang; C. I. Lin. Applications of describing functions to estimate the continuous and discontinuous conduction mode for a DC-to-DC buck converter [J]. IEE Proceedings. Part B, 2000,147(6):513-519.
    [158] K. K. Tse; Henry Shu-hung Chung; S. Y. R. Hui; H. C. So. Spectral characteristics of randomly switched PWM DC/DC converters operatingin discontinuous conduction mode[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4):759-769.
    [159] Konstantin P. Louganski; Jih-Sheng (Jason) Lai. Current Phase Lead Compensation in Single-Phase PFC Boost Converters With aReduced Switching Frequency to Line Frequency Ratio[J]. IEEE Transactions on Power Electronics, 2007,22(1): 113-119.
    [160] Yungtaek Jang; David L. Dillman; Milan M. Jovanovic. A New Soft-Switched PFC Boost Rectifier With Integrated Flyback Converter for Stand-by Power[J]. IEEE Transactions on Power Electronics,2006,21(1): 66-72.
    [161] Yungtaek Jang; Milan M. Jovanovic; Kung-Hui Fang; Yu-Ming Chang. High-Power-Factor Soft-Switched Boost Converter[J]. IEEE Transactions on Power Electronics, 2006,21(1): 98-104.
    [162] Xiaoqun Wu; Chi K. Tse; Octavian Dranga; Junan Lu. Fast-Scale Instability of Single-Stage Power-Factor-Correction Power Supplies[J]. IEEE Transactions on Circuits and Systems. I, Regular Papers, 2006,53(1): 204-213.
    [163] Min Chen; Jian Sun. Feedforward Current Control of Boost Single-Phase PFC Converters[J]. IEEE Transactions on Power Electronics, 2006,21(2): 338-345.
    [164] 刘健, 刘树林, 王兆安. 单级功率因数校正 DCM 组合变换器的稳定性[J]. 电子学报, 1999, 27(10): 88-92.
    [165] 严百平, 刘健, 程红丽. 不连续导电模式高功率因数开关电源[M]. 北京: 科学出版社, 2000.
    [166] Abdelali El Aroudi; Ramon Leyva. Quasi-periodic route to chaos in a PWM voltage-controlled DC-DC boost converter[J]. IEEE Transactions on Automatic Control, 2001,48(8): 967-978.
    [167] Yufei Zhou; Chi K. Tse; Shui-Sheng Qiu; Francis C. M. Lau. Applying resonant parametric perturbation to control chaos in the buck dc/dcconverter with phase shift and frequency mismatch considerations[J]. International journal of bifurcation and chaos in applied sciences andengineering,2003,13(11): 3459-3471.
    [168] Sukanya Parui; Soumitro Banerjee. Bifurcations Due to Transition From Continuous Conduction Mode toDiscontinuous Conduction Mode in the Boost Converter[J]. IEEE Transactions on Circuits and Systems. 1, Fundamental Theory and Applications, 2003,50(11): 1464-1469.
    [169] K.W.E. Cheng; M. Liu; J. Wu. Experimental study of bifurcation and chaos in the Buck-Boost converte[J]. IEE Proceedings. Part B, Electric Power Applications, 2003,150(1): 45-61.
    [170] Zhanybai T. Zhusubaliyev; Evgeniy A. Soukhoterin; Erik Mosekilde. Quasi-periodicity and border-collision bifurcations in a DC-DC converter withpulsewidth modulation[J]. IEEE Transactions on Circuits and Systems. 1, Fundamental Theory andApplications,2003,50(8): 1047-1057.
    [171] Siew-Chong Tan; Y. M. Lai; Chi K. Tse; Martin K. H. Cheung. Adaptive Feedforward and Feedback Control Schemes for Sliding Mode ControlledPower Converters[J]. IEEE Transactions on Power Electronics,2006,21(1): 182-192.
    [172] Siew-Chong Tan; Y. M. Lai; Martin K. H. Cheung; Chi K. Tse. On the Practical Design of a Sliding Mode Voltage Controlled Buck Converter[J]. IEEE Transactions on Power Electronics, 2005,20(2): 425-437.
    [173] Mariano Lopez; Luis Garcia de Vicuna; Miguel Castilla; Pedro Gaya; OscarLopez. Current Distribution Control Design for Paralleled DC/DC Converters Using Sliding-Mode Control[J]. IEEE Transactions on Industrial Electronics,2004,51(2): 419-428.
    [174] Domingo Biel; Francesc Guinjoan; Enric Fossas; Javier Chavarria. Sliding-Mode Control Design of a Boost-Buck Switching Converter for AC SignalGeneration[J]. IEEE Transactions on Circuits and Systems. 1, Fundamental Theory and Applications, 2004,51(8):1539-1551.
    [175] Roberto Giral; Ramon Leyva; Luis Martinez-Salamero; Javier Maixe. Sliding-mode control of interleaved boost converters[J]. IEEE Transactions on Automatic Control, 2000,47(9): 1330-1339.
    [176] Mark Gerber; Jan Abraham Ferreira; Ivan W. Hofsajer; Norbert Seliger. High Density Packaging of the Passive Components in an Automotive DC/DC Converter[J]. IEEETransactions on Power Electronics,2005,20(2): 268-275.
    [177] Haci Bodur; A. Faruk Bakan. An Improved ZCT-PWM DC-DC Converter for High-Power and Frequency Applications[J]. IEEE Transactions on Industrial Electronics, 2004,51(1): 89-95.
    [178] Ting Ting Song; Nianci Huang; Adrian Ioinovici. A Zero-Voltage and Zero-Current Switching Three-Level DC-DC Converter With Reduced Rectifier Voltage Stress and Soft-Switching-Oriented Optimized Design[J]. IEEE Transactions on Power Electronics, 2006,21(5): 1204-1212.
    [179] Xinbo Ruan; Bin Li. Zero-Voltage and Zero-Current-Switching PWM Hybrid Full-Bridge Three-Level Converter[J]. IEEE Transactions on Industrial Electronics, 2005,52(1): 213-220.
    [180] Chien-Ming Wang. Novel zero-Voltage-transition PWM DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2005,53(1): 254-262.
    [181] A. Acik; I. Cadirci. Active clamped ZVS forward converter with soft-switched synchronous rectifier for high efficiency, low output voltage applications[J]. IEE Proceedings. Part B, Electric Power Applications, 2003,150(2): 165-174.
    [182] Bor-Ren Lin; Kevin Huang; David Wang. Analysis, Design, and Implementation of an Active Clamp Forward Converter With Synchronous Rectifier[J]. IEEE Transactions on Circuits and Systems. I, Regular Papers, 2006,53(6): 1310-1319.
    [183] Xunwei Zhou; Mauro Donati; Luca Amoroso; Fred C. Le. Improved light-load efficiency for synchronous rectifier voltage regulatormodule[J]. IEEE Transactions on Power Electronics, 2005,15(5): 826-834.
    [184] 华伟. IGBT 驱动及短路保护电路 M57959L 研究[J]. 电力电子技术,1998,32(1): 88-91.
    [185] 丁浩华, 陈辉明. 带过流和短路保护的 IGBT 驱动电路研究[J]. 电力电子技术,1997,31(1):30-32.
    [186] 梁晖, 金新民, 郝荣泰. 简单实用的功率 MOSFET 驱动电路[J]. 电力电子技术,1998,32(4):90-92.
    [187] 盛祖权, 刘立英, 王雯婧, 谷煜. 具有完善短路保护功能的 IGBT 驱动器 HL402[J]. 电力电子技术,1995,29(4):74-75.
    [188] 史平君 . 绝缘栅双极晶体管( IGBT )的驱动与保护 [J]. 火控雷达技术 , 1996,25(3):26-31.
    [189] 魏曙光, 马晓军, 颜南明. 一种带过流保护的 MOSFET 管驱动电路[J]. 装甲兵工程学院学报,2001,15(1):64-67.
    [190] 华有年, 周洪直, 李万兴, 哈平, 郗崇儒, 周钰树, 王恩鸿, 房增田. 开关电源的主动式快速保护装置[P]. 中国专利, 88209677. 1991-1-30.
    [191] 陈为匡. 保护功率半导体器件的装置[P]. 中国专利, 94222512. 1996-2-28.
    [192] Aschwanden; Felix, Bart; Theodor E., Haferl; Peter E.. Power supply fault protection circuit[P]. United States Patent, 4,907,116, March 6, 1990.
    [193] Zee Kum Yoong, Koh Kian Meng, Ng Seng Huat. Protection circuit for a switched-mode power supply[P]. United States Patent, 6,233,164, May 15, 2001.
    [194] 刘明建, 汪仁煌. 两相逆变器驱动与互锁保护电路的设计[J]. 电子技术应用, 1999(8):26-27.
    [195] 何益宏. 一种桥式开关电源的互锁保护电路[J]. 电力电子技术,1995(2):57-59.
    [196] Koh, Kian Meng.Ng, Seng Huat.Zee, Kum Yoong. Protection circuit for a switched mode power supply[P]. United States Patent, 6,678,129, January 13, 2004.
    [197] 钟启豪, 李战伟, 王庆棉. 开关电源并机系统及其输出过压保护电路[P]. 中国专利, 200520036312. 2006-11-29.
    [198] 张 真 正 . 一 种 具 有 输 出 短 路 保 护 功 能 的 开 关 电 源 电 路 [P]. 中 国 专 利 , 200420081710. 2005-12-21.
    [199] 李焕林, 李运秀. 开关电源短路及过流保护装置[P]. 中国专利, 200420103709. 2006-8-2.
    [200] 高松清司. 过电流输出保护电路和包括此电路的恒定电压开关式电源[P]. 中国专利, 03244337. 2005-11-16.
    [201] 甘旭, 王满堂. 一种短路保护电路[P]. 中国专利, 01138095. 2003-7-16.
    [202] 张闻吉 . 一种新型的开关电源自动保护电路装置 [P]. 中国专利 ,99202820. 2000-2-23.
    [203] Wu Chun Hsing. Protection circuit for a switch mode power supply[P]. United States Patent, 5,764,461, June 9, 1998.
    [204] Liu Rui. Control circuit for an in-rush current control element, and a protection circuit and power supply employing the same[P]. United States Patent, 5,991,175, November 23, 1999.
    [205] Yoshida,Katsuyuki. Overcurrent protection circuit for switching power supply[P]. United States Patent, 7,161,783, January 9, 2007.
    [206] 徐晓宁. 自动恢复保护电路型开关电源装置[P]. 中国专利, 200420088317. 2005-9-28.
    [207] Furuhata; Shoichi. Switching power supply with overcurrent protection circuit[P]. United States Patent, 5,227,964, July 13, 1993.
    [190] 华有年, 周洪直, 李万兴, 哈平, 郗崇儒, 周钰树, 王恩鸿, 房增田. 开关电源的主动式快速保护装置[P]. 中国专利, 88209677. 1991-1-30.
    [191] 陈为匡. 保护功率半导体器件的装置[P]. 中国专利, 94222512. 1996-2-28.
    [192] Aschwanden; Felix, Bart; Theodor E., Haferl; Peter E.. Power supply fault protection circuit[P]. United States Patent, 4,907,116, March 6, 1990.
    [193] Zee Kum Yoong, Koh Kian Meng, Ng Seng Huat. Protection circuit for a switched-mode power supply[P]. United States Patent, 6,233,164, May 15, 2001.
    [194] 刘明建, 汪仁煌. 两相逆变器驱动与互锁保护电路的设计[J]. 电子技术应用, 1999(8):26-27.
    [195] 何益宏. 一种桥式开关电源的互锁保护电路[J]. 电力电子技术,1995(2):57-59.
    [196] Koh, Kian Meng.Ng, Seng Huat.Zee, Kum Yoong. Protection circuit for a switched mode power supply[P]. United States Patent, 6,678,129, January 13, 2004.
    [197] 钟启豪, 李战伟, 王庆棉. 开关电源并机系统及其输出过压保护电路[P]. 中国专利, 200520036312. 2006-11-29.
    [198] 张 真 正 . 一 种 具 有 输 出 短 路 保 护 功 能 的 开 关 电 源 电 路 [P]. 中 国 专 利 , 200420081710. 2005-12-21.
    [199] 李焕林, 李运秀. 开关电源短路及过流保护装置[P]. 中国专利, 200420103709. 2006-8-2.
    [200] 高松清司. 过电流输出保护电路和包括此电路的恒定电压开关式电源[P]. 中国专利, 03244337. 2005-11-16.
    [201] 甘旭, 王满堂. 一种短路保护电路[P]. 中国专利, 01138095. 2003-7-16.
    [202] 张闻吉 . 一种新型的开关电源自动保护电路装置 [P]. 中国专利 ,99202820. 2000-2-23.
    [203] Wu Chun Hsing. Protection circuit for a switch mode power supply[P]. United States Patent, 5,764,461, June 9, 1998.
    [204] Liu Rui. Control circuit for an in-rush current control element, and a protection circuit and power supply employing the same[P]. United States Patent, 5,991,175, November 23, 1999.
    [205] Yoshida,Katsuyuki. Overcurrent protection circuit for switching power supply[P]. United States Patent, 7,161,783, January 9, 2007.
    [206] 徐晓宁. 自动恢复保护电路型开关电源装置[P]. 中国专利, 200420088317. 2005-9-28.
    [207] Furuhata; Shoichi. Switching power supply with overcurrent protection circuit[P]. United States Patent, 5,227,964, July 13, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700