用户名: 密码: 验证码:
智能配电网的电网分区及孤岛辨识研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来分布式发电技术(Distribution Generation:DG)得到了快速的发展,为提高分布式电源运行的安全性和可靠性,一般都将其并入电网运行。随着DG的并网运行,会使配电系统的短路电流的大小、流向和分布发生较大变化,导致原有馈线保护出现灵敏度降低、拒动、误动等问题,这给配电系统的继电保护提出了新的挑战。因此开展面向智能配电网的继电保护问题研究,在分析智能配电网对继电保护功能要求的基础上,研究相应的保护原理,提出相应的保护算法是十分必要的,对于智能配电网的发展有着重要的意义。
     分布式电源接入配电系统后,使传统的单电源辐射网络变成了一个多源网络。正常运行时,网络中的潮流分布及系统故障时短路电流的大小、流向和分布,均会发生变化。传统配电系统中保护设备之间建立起来的配合关系被打破,配电网中的自动重合闸的动作行为以及相应的包含DG的智能配电网的孤岛检测方法都将会受到较大的影响。尽管目前也提出了一些针对DG并网运行的自适应重合闸和孤岛检测方案,但是很多方案不够完善,具有一定的局限性,不适用于高渗透率的DG并网的智能配电网的保护要求。
     本文在总结和借鉴前人研究工作的基础上,面向智能配电网,提出了一种“主从式”变电站级纵联保护方案。该方案以包含DG在内的变电站及所有馈出线为保护区域,在变电站中设置一个站级保护主机,在具有切断短路电流能力的开关处均安装保护从机,从机借助光纤通信通道与主机实现快速可靠的信息交互。在配网系统发生故障时,保护从机基于本地电气量信息计算安装点处的故障方向,保护主机依靠通信系统完成对故障方向信息的收集,并通过故障检测与隔离算法对所收集的信息进行运算处理,判断出故障区段和需要跳开的开关信息,向对应的保护从机下发跳闸指令,最终完成故障的隔离。
     在智能配电网中,由于大量分布式电源(DG)或微网(MG)的接入,对配电网中的自动重合闸提出了新的挑战。智能配电网发生故障后,为尽快使瞬时性故障电弧消失,提高自动重合闸成功率,减小重合于故障对负荷的影响,应将故障区域内所有的主干线开关、DG或MG的并网开关、负荷分支开关跳开,然后根据预定的自动重合闸策略对跳开的开关进行顺序重合。本文提出的适用于智能配电网自动重合闸的开关分类方法,故障发生后由继电保护系统完成故障的检测和隔离,由位于各开关处的智能终端采集开关位置状态信息,上传至位于变电站监控室内的控制主机,形成开关跳闸信息向量。控制主机根据当前的网络拓扑结构,生成开关类型及关联矩阵,对配电系统中的各个开关进行了标记,通过对矩阵进行计算,完成对待重合开关的自动分类,并将分类结果和重合策略下发至智能终端,以实现预定的自动重合闸策略。
     配电网节点众多,各种DG投退频繁,导致智能配电网的运行方式灵活多变,尤其当电网中的某些开关断开时,会将电网分为若干性质各异、相互独立的子网,如果子网中的负荷由DG或微网供电,那么该子网就以孤岛的方式运行。孤岛的出现一方面对智能配电网的调度、自动化系统、继电保护系统和自动重合闸等带来较大影响,另一方面孤岛自身运行的安全性和稳定性也存在诸多问题。本文提出了基于可达性矩阵的智能配电网分区及孤岛辨识方法,将配电网整体作为研究对象,结合网络拓扑结构并利用网络中的开关位置状态信息,引入可达性矩阵,对电网进行分区,进而对孤岛进行辨识,判断出孤岛的数量、每个孤岛涵盖的范围,为开展孤岛运行控制与保护研究奠定基础。
Distribution generation (DG) technology has been rapidly developed in recent years, in order to improve their security and reliability; distributed generators are normally integrated into power grids. The direction and distribution of the short circuit current in distribution power system has changed a lot due to the introduction of DG, as a result, the existing feeder protection there may be reduced sensitivity, tripping failure, malfunction, and so on, which gives distribution network relay protection many problems. Therefore, it is necessary to carry out related research on protection principle and put forward a protection algorithm, which are of great significance for the smart distribution network in the development and promotion.
     When distributed generations integrate into the distribution power system, the traditional single power network changes into a multi-source network. The direction and distribution of the short circuit current in distribution power system of normal operation has changed a lot. The cooperation relationship in traditional distribution protection equipments have been broken, the automatic reclosing in distribution network and the island detection method of smart distribution network will be affected. Although some automation reclosing and island detection methods for distribution power system have been put forward, but they can only improve certain aspects with limitations, and can not satisfy the protection requirements of smart distribution network containing DG.
     On the basis of previous research and longitudinal comparison principle, a new protection scheme which is a kind of substation area longitudinal protection with master-slave structure is presented for smart distribution grid, with the objective to protect the whole distribution substation and all of its outgoing feeders. Every switch in the distribution power system that can cut off short-circuit current is equipped with slave protection device. A host computer of system is set in the substation, which can achieve the interaction of information with slave device by the optical fiber communication network quickly and reliably. When the distribution power system is failure, the fault direction can be obtained from the slave device by calculating local electrical information, which is collected through the communication system and used by fault detection and isolation algorithm. By data operation processing, the host computer can find out the fault section and the breakers needed to be opened, and then send the trap instruction to the slave device so that the fault can be isolated finally.
     Due to a large number of distributed generations (DG) or micro-grid (MG) integrating into smart distribution network, the automatic reclosing in distribution network meets new challenges. When faults occur in smart distribution network, in order to make the instantaneous fault arc disappear as soon as possible and improve the success rate of automatic reclosing, the main switches, DG branch switches or MG switches and load switches of the fault region should be tripped, then according to the strategy reclose tripped switches sequentially. In this paper a method of circuit breaker classification for smart distribution network is proposed, after fault occurs relay protection system accomplish fault detection and isolation. According to the current network topology the host computer forms the types of circuit switches and corresponding incidence matrix which marks each switch in distribution network, finally complete automatic classification of tripped switches with the calculation of the matrix and transmit the classification results and reclosing strategy to smart terminals in order to realize the automation reclosing strategy.
     The node types in distribution network are different, all kinds of DG switch and trip frequently, results that smart distribution network operation is flexible, especially when some switches are tripped, the grid will be divided into different and independent subnets, if the loads in subnet power are supplied by DG or MG, the subnet will run in the form of an island. On one hand the island brings great influence on grid dispatching, automation system, relay protection and automation reclosing in smart distribution system, on the other hand, many problems for security and stability of the island exist. In this paper, a network partition and island identification method based on reachability matrix has been put forward, using the switches position information based on the network topology and reachability matrix, so each regional property can be quickly judged, whether the island exists and the number and range of islands. The research in this paper will lay the foundation for island operation control and protection.
引文
[1]刘振亚.智能电网知识读本[M].北京:中国电力出版社,2010.
    [2]徐丙垠,李天友,薛永端.智能配电网与配电自动化[J].电力系统自动化,2009,33(17):38-41.
    [3]Ackerman T, Anderson G, Seder L.Distributed Generation:a Definition[J]. Electric Power System Research,2001,57(6):195-204.
    [4]Jardian Sam, Haghifam M R, Barazandeh P. Adaptive over-current protection Scheme for MV Distribution Networks Including DG[S]. IEEE,2008,978-108.
    [5]李天友,徐丙垠.智能配电网自愈功能与评价指标[J].电力系统保护与控制,2010,38(22):105-108.
    [6]孙伟,王永新.区域电网小电源并网的保护配置与整定探讨[J].电力学报,2008(5):52-59.
    [7]Katiraei F, Iravani M R, Lehn P W. Micro-grid autonomous operation during and subsequent to islanding process [J]. IEEE Trans on Power Delivery,2005,20(1): 248-257.
    [8]葛耀中.在单相自动重合闸过程中判别瞬时性故障和永久性故障的方法[J].西安交通大学学报,1984,18(2):23-32.
    [9]索南加乐,邵文权,宋国兵.基于参数识别的单相自适应重合闸研究[J].中国电机工程学报,2009,29(1):48-54.
    [10]索南加乐,孙丹丹,付伟,等.带并联电抗器输电线路单相自动重合闸永久故障的识别原理研究[J].中国电机工程学报,2006,26(11):75-81.
    [11]李斌,李永丽,曾志安,等.基于电压谐波信号分析的单相自适应重合闸[J].电网技术,2002,26(10):53-57.
    [12]商立群,白维祖,程刚,等.带并联电抗器的线路单相自适应重合闸故障判别原理[J].电力系统自动化,2008,30(6):81-84.
    [13]Caldon R, Stocco A, Turri R. Feasible of adaptive intentional islanding operation of electric utility systems with distributed generation[J]. Electric Power Systems Research,2008,78(12):2017-2023.
    [14]刘传铨,张焰.计及分布式电源的配电网供电可靠性[J].电力系统自动化,2011,31(22):46-48.
    [15]易新,陆于平.分布式发电条件下的配电网孤岛划分算法[J].电网技术,2006,30(7): 49-54.
    [16]Mao Y, Miu K N. Switch placement to improve system reliability for radial distribution system with distributed generation[J]. IEEE Trans.on Power Systems.2003,18(4):1346-1352.
    [17]Barman K P, Chen J, Hopkinson E M. Overcoming communications challenges in software for monitoring and controlling power systems[C]. Proceeding of the IEEE,2005(5):1028-1041.
    [18]丁磊,潘贞存,丛伟.基于有根树的分布式发电孤岛搜索[J].中国电机工程学报[J],2008,28(25):62-67.
    [19]YE Zhihong, ZHANG Yu. Evaluation of anti-Islanding schemes based on non-detection zone concept [J]. IEEE Transactions on Power Electronics,2011, 19(5):1171-1176.
    [20]Lopes L A C, Sun H. Performance assessment of active frequency drifting islanding detection methods [J]. IEEE Transactions on Energy Conversion,2011, 21(1):171-180.
    [21]Ropp M E, Begovic M, Rohatgi A, et al. Determining the relative effectiveness of islanding detection methods using phase criteria and non-detection zones [J]. IEEE Transactions on Energy Conversion,2010,15(3):290-296.
    [22]赵清林,郭小强,邬伟扬.光伏发电系统孤岛保护建模与仿真研究[J].太阳能学报,2007,28(7):721-726.
    [23]殷桂梁,孙美玲,肖丽萍.分布式发电系统孤岛检测方法研究[J].电子测量技术,2007,30(1):1-6.
    [24]禹华军,潘俊民.无功补偿技术在光伏并网发电系统孤岛检测中的应用[J].电工电能新技术,2010,24(3):22-26.
    [25]禹华军,潘俊民.并网发电逆变系统孤岛检测新方法的研究[J].电力系统及 其自动化学报,2010,17(5):55-59.
    [26]Roop M E, Begovic M, Rohatgi A. Analysis and performance assessment of the active frequency drift method of islanding prevention [J]. IEEE Transactions on Energy Conversion,2009,14(3):810-816.
    [27]IEEE draft application guide for IEEE standard 1547, interconnecting distributed resources with electric power systems[S]. IEEE P15472/D10,2008.
    [28]任碧莹,钟彦儒,孙向东,等.基于周期交替电流扰动的孤岛检测方法[J].电力系统自动化,2008,32(19):81-84.
    [29]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14.
    [30]王建,李兴源,等.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [31]赵上林,吴在军,等.关于分布式发电保护与微网保护的思考[J].电力系统自动化,2010,34(1):73-77.
    [32]许奎,张雪松,等.配电网故障定位的改进通用矩阵算法[J].继电器,2007,35(3):6-8.
    [33]LI Bin, YU Xuan, et al. Investigation of Protection Schemes for Closed Loop Distribution Network with Distributed Generators. Automation of Electric Power Systems,2010,34(7):79-84.
    [34]刘健,倪建立,邓永辉.配电网自动化系统[M].北京:中国水利水电出版社,2003.
    [35]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.
    [36]林宇锋,钟金,吴复立.智能电网技术体系探讨[J].电网技术,2009,33(12):8-14.
    [37]庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响[J].继电器,2007,35(11):5-8.
    [38]郑彰华,艾芊.微电网的研究现状及在我国的应用前景[J].电网技术,2008,32(16):27-31.
    [39]邱晓燕,夏莉丽,李兴源.智能电网建设中分布式电源的规划[J].电网技术, 2010,34(4):7-11.
    [40]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-4,31.
    [41]GIRI J, SUN D, AVILA-ROSAL ES R. Wanted:a more intelligent grid. IEEE Power & Energy,2007,7(2):34-40.
    [42]钟金,郑睿敏,杨卫红,等.建设信息时代的智能电网[J].电网技术,2009,33(13):12-18.
    [43]丛伟,荀堂生,肖静,等.包含多微网的配电系统故障检测算法[J].电力自动化设备,2010,30(7):50-53.
    [44]Zeng Xiangjun, Li K.K. Multi-agents based protection for distributed generation Systems[C].2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT2004) April 2004 Hong Kong.
    [45]丛伟,潘贞存,郑罡,等.配电线路全线速切继电保护技术[J].电力自动化设备,2009,29(4):91-95.
    [46]丛伟,潘贞存,王成山,等.含高渗透率DG的配电系统区域纵联保护方案[J].电力系统自动化,2009,33(10):81-85.
    [47]康文文,赵建国,丛伟,等.包含分布式电源的配电网故障隔离与检测算法[J].电力系统自动化,2011,35(9):25-29
    [48]周念成,谢开贵,周家启,等.基于最短路的复杂配电可靠性评估分块算法[J].电力系统自动化,2005,29(22):39-44.
    [49]颜秋容,曾庆辉.多重故障对配电网可靠性指标的影响度[J].电网技术,2010,34(8):108-111.
    [50]万官泉,张尧,汪穗峰.基于联系数的配电系统可靠不确定性评估[J].电力系统自动化,2008,32(4):30-34.
    [51]张国华,杨京燕,张建华,等.计及电压暂降和保护性能的配网可靠性算法[J].中国电机工程学报,2009,29(1):28-34.
    [52]丁磊,潘贞存,王宾.分散电源并网对供电可靠性的影响分析[J].电力系统自动化,2007,31(20):89-93.
    [53]Billinton R. Application of adverse and extreme adverse weather:modelling in transmission and distribution system reliability evaluation [J]. IEE Proceedings on Generation, Transmission and Distribution,2006,153(1):115-120.
    [54]郭键.图的可达性矩阵的一种新求法[J].数学的实践与认识.2009,39(12):223-225.
    [55]Roy Billinton, Satish Jonnavithula. A test system for teaching overall power system reliability assessment [J]. IEEE Transactions on Power Systems,2011, 11(4):1670-1676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700