用户名: 密码: 验证码:
拦截机动目标末制导技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拦截机动目标技术是现代导弹防御系统研究的热点,也是未来动能防御技术发展必须解决的关键技术之一。本文以拦截机动目标技术需求为主线,系统研究了动能拦截系统的拦截模式、导引头对目标的捕获概率、拦截机动目标的末制导律以及目标机动信息估计方法等问题,主要内容及成果如下:
     分析了动能防御系统的拦截模式。1)建立了拦截器动力学模型,研究了广义顺轨拦截与广义逆轨拦截两种拦截模式各自的特点;2)对比了两种拦截模式对拦截器在末制导段最大修偏能力的影响,讨论了两种拦截模式下拦截弹道的过载分布、弹道稳定性等弹道特性;3)分析了顺轨拦截模式在实际应用中存在的问题,并提出了初步的解决方案。
     提出了拦截器中末制导交班时导引头对目标捕获概率的计算方法并对其影响因素进行了分析。1)将捕获概率转化为拦截器和目标相对位置矢量落在一个圆锥体内的概率问题,并进一步转化为三维概率密度函数在圆锥区域内的积分;2)讨论了该积分的计算方法,得到了捕获概率的解析表达式,并根据实际问题的特点提出了一些假设,将捕获概率表达式进行了简化;3)分析了弹目距离、导引头最大捕获距离、最大视场角和相对位置误差对捕获概率的影响。
     研究了拦截机动目标的末制导律,进而提出了一种新的目标机动信息的估计方法。1)基于微分几何方法分别在二维平面和三维空间内对拦截问题进行了分析,推导了相对运动方程及末制导律;2)为便于实际应用,将微分几何制导律转化为基于时域的表达方式并对制导律的应用方法进行了归纳;3)提出了采用与ARMA新息模型相结合的样条滤波估计目标机动信息的方法,通过ARMA新息模型将目标运动的历史信息用于对当前状态的估计中,提高了状态估计精度。
     针对末制导初始时刻目标与拦截器相对距离测量误差较大而引起末制导过程中目标机动信息估计不准的问题,提出了一种基于拦截器自身主动机动提高相对距离测量精度的方法。1)在末制导初始阶段,拦截器按一定的路线进行主动机动,以机动过程中视线角序列作为观测量,分别采用非线性滤波方法和微分改进方法估计目标的相对状距离等信息,仿真结果显示采用此方法可以满足末制导的需求;2)采用可观测度分析的方法对不同的主动机动路线进行了对比,由分析结果可知在垂直视线方向的机动最为有效。
     利用本文研究的末制导律和目标机动信息估计方法,结合基于四元数理论的大姿态角机动控制策略建立了较为完整的六自由度仿真系统。分别对逆轨拦截模式与顺轨拦截模式下的拦截过程进行了数值仿真,对相关技术进行了验证。
     本文深入探讨了拦截机动目标末制导的相关技术问题,在研究中结合了联合误差协方差分析、时间序列分析等多个技术领域,为此类问题的研究提供了新的思路,具有一定的理论意义;同时本文提出的主动机动测量相对距离信息等方法和对拦截模式的分析成果对拦截机动目标技术的进一步发展具有重要的借鉴意义。
The technology of the interception for maneuvering targets is one of the focuses on the missile defense system. Focusing on technology requirements of intercepting for maneuvering targets, this dissertation studies the interception modes, the seeker’s capture probability, the terminal guidance law and the method to get the maneuver information. The main work and results achieved in this dissertation are summarized as follows:
     The interception modes of the kinetic defense system are studied. 1) The dynamic model of the interceptor is established and the characteristics of the interception along track and the interception head-on are analyzed; 2) During the terminal guidance, the maximal correct warp ability of two interception modes above is compared, then the overload distribution and the stability of corresponding interception trajectories are discussed; 3) Application problems of the interception along track are analyzed, on this basis, the primary scheme is presented.
     The method to calculate the seeker’s capture probability is proposed and the influencing factors of the probability are analyzed. 1) The capture probability is transformed into probability that the relative position vector between the interceptor and the target locates in a cone, further, the probability is transformed to an integral of a 3-D probability density function in a cone; 2) The calculation method of this integral is researched to obtain the analytic expression of capture probability, and then the expression is simplified with some assumptions; 3) The influence on capture probability by the distance between the interceptor and targets, the seeker’s maximum capture distance, the maximum view field angle and the relative position error is respectively discussed.
     The terminal guidance laws of the interception for maneuvering targets are researched. Moreover, a new method to gain the necessary information for terminal guidance laws is put forward. 1) The interception problem is analyzed in 2-D plane and 3-D space with the differential geometry theory, then the relative motion equations and the terminal guidance laws are deduced; 2) For the application of practical work, the differential geometry guidance law is transformed into an expression based on time domain and application methods of the guidance law are concluded; 3) A spline filter method combined with ARMA innovation models to estimate the maneuvering targets information is proposed and it makes progress on the state estimate precision.
     It was noticed that, if the relative position error became bigger, the estimate precision of the relative distance between the interceptor and the target would be damaged significantly. Aiming at the above problem, a new means based on the active maneuver of the interceptor, which can advance the estimate precision of the relative distance, is presented. 1) In the beginning of the terminal guidance, while the interceptor maneuvering with specific path, nonlinear filter and differential correction methods are used in the relative distance estimation by the Line-of-Sight angle sequence. The simulation results indicate this method can satisfy requirements of the terminal guidance. 2) Different maneuvers are discussed with observability analysis, according to the results, the maneuver which is vertical to the Line-of-Sight is most effective.
     Based on the terminal guidance law, the estimate method and the large attitude angle control scheme using the quaternion theory, the integrated 6-DOF simulating system of the terminal guidance is established to analyze two interception modes and to confirm correlative conclusion.
     Combining with multiple technology fields, such as joint error covariance analysis and time series analysis, this dissertation deeply researches some associated problems in the interception terminal guidance and provides a new thought for studying the similar condition. So, the dissertation has some theoretical significance. The estimate method based on the interceptor active maneuver and the analyses of interception modes are a good reference to the development of the interception for maneuvering targets.
引文
[1] Victoria Samson, FLIGHT TESTS FOR GROUND-BASED MIDCOURSE DEFENSE (GMD) SYSTEM, Center for Defense Information [EB/OL], www.cdi.org, 2007.
    [2] Lisbeth Gronlund,David C. Wright,George N. Lewis,Philip E. Coyle III.Technical Realities: An Analysis of the 2004 Deployment of a U.S. National Missile Defense System[R]. Union of Concerned Scientists, 2004, 5.
    [3] Andrew M. Sessler,John M. Cornwall,et al.Countermeasures: A Technical Evaluation of the Operational Effectiveness of the Planned US National Missile Defense System[R].Union of Concerned Scientists and MIT Security Studies Program, 2000, 4.
    [4] Lisbeth Gronlund , David Wright , Stephen Young . An Assessment of Ground-Based Midcourse Missile Defense System[R].Union of Concerned Scientists and MIT Security Studies Program,2001, 11.
    [5]陈磊,周伯昭,吴瑞林.美国动能反导防御系统的发展与对策[C].国防科技与国家安全战略研讨会,长沙,国防科技大学,2003.10.
    [6] Murtaugh, S.A.,and Criel, H.E.,Fundamentals of Proportional Navigation[C], IEEE Spectrum, 1966, 12, (3): 75-85.
    [7] Salmon, D.M.,and Heine, W.,Reachable Sets Analysis- An Efficient Technique for Performing Missile/Sensor Tradeoff Studies[J], AIAA Jorunal, 1973, 11(7) :1707-1716.
    [8] Zarchan, P., When Bad Things Happen to Good Missiles[C], AIAA Guidance Navigation, and Control Conference, AIAA, Washington, DC, 1993, 2.
    [9] Spencer,A., and Moore, W., Design Trade-Offs for Homing Missiles[J], AIAA paper 92-2755, 1992, 5.
    [10] Lawrence, R.V.,Interceptor Line-of-Sight Rate Steerign: Vecessary Conditions for a Direct Hit[J], Journal of Guidance, Control, and Dynamics, 1998, 21(3).
    [11] Hari B.Hablani, David W. Pearson, Miss Distance Error Analysis of Exoatmospheric Interceptors[J], Journal of Guidance, Control ,and Dynamics, 2004, 27(2).
    [12] Seong-Ho Song, In-Joong Ha. A Lyapunov-Like Approach to Performance Analysis of 3-Dimensional Pure PNG Laws [J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(1):238-247.
    [13] Dong-Young Rew, Min-Jea Tahk, Hangju Cho. Short-Time Stability of Proportional Navigation Guidance Loop [J]. IEEE Transactions on Aerospaceand Electronic Systems,1996,32(3):1107-1114.
    [14] M.Guelman. A Qualitative Study of Proportional Navigation [J]. IEEE Trans. Aerospace and Electronic Systems. 1971,7(4): 637-643.
    [15] M.Guelman. Missile Acceleration in Proportional Navigation [J]. IEEE Trans. Aerospace and Electronic Systems. 1973,9(2):462-463.
    [16] Ciaan-Dong Yang, Fei-Bin Hsiao, Fang-Bo Yeh. Generalized Guidance Law for Homing Missiles [J]. IEEE Transactions on Aerospace and Electronic Systems,1989,25(2):197-211.
    [17] S.Vathsal, M.N.Rao. Analysis of Generalized Guidance Laws for Homing Missiles [J]. IEEE Transactions on Aerospace and Electronic Systems, 1995,31(2):514-520.
    [18] D.Ghose. On the Generalization of True Proportional Navigation [J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(2):545-555.
    [19] Ciann-Dong Yang, Chi-Ching yang. A Unified Approach to Proportional Navigation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1997,33(2):557-567.
    [20] M.N.Rao. New Analytical Solutions for Proportional Navigation [J]. Journal of Guidance,1993,16(3):591-594.
    [21] U.S.Shukia, P.R.Mahapatra. Generalized Linear Solution of Proportional Navigation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1988,24(3):231-238.
    [22] Ciaan-Dong Yang, Chi-Ching Yang. Analytical Solution of Three-Dimensional Realistic True Proportional Navigation [J]. Journal of Guidance, Control and Dynamics. 1996,19(3):569-577.
    [23] Tetsuya Takehira, Nguyen X.Vinh, Pierre T.Kabamba. Analytical Solution of Missile Terminal Guidance [C]. AIAA-97-3472: 172-178.
    [24] Donald T.Stansbery, S.N.Balakrishnan. Approximate Analytical Guidance Schemes For Homing Missiles [C]. Proceedings of the American Control Conference, Saltimore, Maryland, June 1994: 1685-1689.
    [25] J.E.Cochran, T.S.No, D.G.Thaxton. Analytical Solution to a Guidance Problem [J]. Journal of Guidance, Control and Dynamics, 1991,14(1):117-122.
    [26] W.R. Chadwick. Miss Distance of Proportional Navigation Missile with Varying Velocity [J]. Journal of Guidance and Control, 1984,8(5):662-666.
    [27] Jae-Hyuk. Zero Miss Distance of Pure PNG. AIAA 2001-4278.
    [28] Ohlmeyer,E.J. Root-mean-square Miss Distance of Proportional Navigation missile against sinusoidal target [J]. Journal of Guidance, Control, and Dynamics, 1996,19(3): 563–568.
    [29] D.har, D.Ghose. Capture Region For a Realistic TPN Guidance Law [J]. IEEETransactions on Aerospace and Electronic Systems,1993,29(3):995-1003.
    [30] Jae-Hyuk Oh, In_Joong Ha. Capturability of the 3-Dimensional Pure PNG Law[J]. IEEE Transactions on Aerospace and Electronic Systems,1999, 35(2): 491-502.
    [31] M.Guelman. The Closed-Form Solution of True Proportional Navigation [J]. IEEE Transaction on Aerospace and Electronic Systems,1976,12(4):472-482.
    [32] K.Becker. Closed Form Solution of Pure Proportional Navigation [J]. IEEE Trans.Aerospace and Electronic Systems, 1990,26(3),526-532.
    [33] Ciaan-Dong Yang, Fang-Bo Yeh. Closed-Form Solution for a Class of Guidance Laws [J]. Journal of Guidance and Control, 1987,10(4):412-415.
    [34] Ciaan-Dong Yang, Fang-Bo Yeh, Jen-Heng Chen. The Closed-Form Solution of Generalized Proportional Navigation [J]. Journal of Guidance and Control, 1987,10(2):216-218.
    [35] P.J.Yuan, S.C.Hsu. Exact Closed Form Solution of Generalized Proportional Navigation [J]. Journal of Guidance, Control and Dynamics, 1993,16(5),963-965.
    [36] P.R. Mahapatra, U.S. Shukla. Accurate Solution of Proportional Navigation for Maneuvering Targets [J]. IEEE Transactions on Aerospace and Electronic Systems, 1989,25(1):81-88.
    [37] D.Ghose. Pure Proportional Navigation With Maneuvering Target [J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(1):229-237.
    [38] M.Guelman. Proportional Navigation With a Maneuvering Target [J]. IEEE Trans. Aerospace and Electronic Systems. 1972,8(3): 364-371.
    [39] S.N. Ghawghawe, D.Ghose. Pure Proportional Navigation Against time-Varying Target Maneuvers [J]. IEEE Transactions on Aerospace and Electronic Systems, 1996,32(4): 1336-1346.
    [40] Pin-Jar Yuan, Jeng-Shing Chern. Solutions of True Proportional Navigation for Maneuvering and Non-maneuvering Targets [J]. Journal of Guidance, Control and Dynamics,1992,15(1):268-271.
    [41] Zarchan, P. Proportional Navigation and Weaving targets [J]. Journal of Guidance , Control and Dynamics. 1995,18(5),967-974.
    [42] B.Boberg, J.LundBerg, J.Wiberg, S.L Wirkander. Estimation of Target Lateral Acceleration for Augmented Proportional Navigation [C]. AIAA-97-3565: 594-602.
    [43] Yongmin Kim, Jin H.Seo. The realization of the 3D guidance law using modified augmented proportional navigation [C]. Proceeding of the 35th CDC. 1996:2070-2712.
    [44] K.Ravindra Babu, I.G.Sarma, K.N.Swamy. Switched Bias Proportional Navigation for Homing Guidance Against Highly Maneuvering Targets [J].Journal of Guidance, Control and Dynamics,1994,17(6):1357-1363.
    [45] P.J.Yuan, J.S.Chern. Analytic Study of Biased Proportional Navigation [J]. Jorunal. of Guidance, Control and Dynamics, 1992,15(1):185-190.
    [46]李君龙,胡恒章.最优偏置比例导引[J].宇航学报, 1998,19(4): 75-80.
    [47] P.J.Yuan, J.S.Chern. Ideal Proportional Navigation [J]. Journal of Guidance, Control and Dynamics, 1992,15(5),1161-1165.
    [48] A.E.Bryson, Y.C.Ho. Applied Optimal Control [M]. Blaisdell Publishing Company, Waltham,Mass,1969.
    [49] Fumiaki Imado, Takeshi Kuroda. Optimal Missile Guidance System Against a Hypersonic Target[C]. AIAA-92-4531-CP: 1006-1011.
    [50] E.H.Michael, Optimal Guidance and Nonlinear Estimation for Interception of Accerlerating Targets [J]. Journal of Guidance, Control and Dynamics, 1995,18(5): 959-968.
    [51] M.Guelman, J.Shinar. Optimal Guidance Law in the Plane [J]. Journal of Guidance,1983,7(4):471-476.
    [52] Pin-Jar Yuan. Optimal Guidance of Proportional Navigation[J]. IEEE Transactions on Aerospace and Electronic Systems,1997,33(3):1007-1012.
    [53] John J.Dougherty, Jason L. Speyer. Near-Optimal Guidance Law for Ballistic Missile Interception [J]. Journal of Guidance, Control and Dynamics, 1997,21(2):355-361.
    [54] Ciann-Dong yang, Chi-Ching Yang. Optimal pure proportional navigation for maneuvering targets [J]. IEEE Transactions on Aerospace and Electronic Systems, 1997,33(3):949-957.
    [55] Pin-Jar Yuan, Ming-Ghow Chen, Men-Jyue Leu. Optimal guidance of extended proportional navigation [C]. AIAA 2001-4345: 1-11.
    [56] J. Shinarl, Y. Oshman, V. Turetsky On the Need for Integrated Estimationl Guidance Design for Hit-to-kill Accuracy [C], Proceedings of the American Control Conference 06.2003.
    [57] E.I.Axelband, F.W.Hardy, Optimal Feedback Missile Guidance[C]. 3rd Hawaii International Conference System Sciences,1970: 847-851.
    [58] Lu-Ping Tsao, Ching-Show Lin. A New Optimal Guidance Law for Short-Range Homing Missiles [C]. Proc. Natl. Sci. Counc. ROC(A), 2000,24(6):422-426.
    [59] D.G.Hull, J.L.Speyer. Maximum-Information Guidance for Homing Missiles [J]. Journal of Guidance,1984,8(4):494-497.
    [60] Ciann-Dong Yang, Fang-Bo Yeh. Optimal Proportional Navigation [J]. Journal of Guidance and Control, 1988,11(4):375-377.
    [61] M.Guelman, Moshe Idan. Three-Dimensional Minimum Energy Guidance [J]. IEEE Transactions on Aerospace and Electronic Systems,1995,31(3):835-841.
    [62] Hangju Chio, Chang Kyung Ryoo. Closed-Form Optimal Guidance Law for Missiles of Time-Varying Velocity [J]. Journal of Guidance Control and Dynamics, 1996,19(5):1017-1022.
    [63] Hangju Cho, Chang Kyung Ryoo. Implementation of Optimal Guidance Laws Using Predicted Missile Velocity Profiles. Journal of Guidance Control and Dynamics [J], 1999,22(4):579-588.
    [64] Der-Ren Taur, Jeng-Shing Chem. An optimal composite guidance strategy for dogfight air-to-air IR missiles [C]. AIAA-99-4066: 662-671.
    [65] N. Rahbar, N.Bahrami, M.B.Menhaj. A New Neuro-Based Soluation for close-Loop Optimal Guidance With Terminal Constraints[C]. AIAA-99-4068.
    [66] J.W.Hardtla. Design and Implementation of a Missile Guidance Law Derived from Modern Control Theory [C], AIAA-87-2447.
    [67]王小虎,张明廉.自寻的导弹攻击机动目标的最优制导规律的研究及实现[J].航空学报, 2000,21(1):30-33.
    [68]李忠应,李秋月.空空导弹全向攻击最优制导规律研究[J].航空学报, 1991,12(3).119-127.
    [69]蔡力军,周凤歧.一种非线性最优导弹制导律[J].宇航学报,1999,20(2):36-40
    [70]史小平,王子才.空间拦截非线性最优末端导引规律研究[J].宇航学报, 1993,14(3):18-25.
    [71]李振营,沈毅,胡恒章.攻击机动目标的最优导引律研究[J].哈尔滨工业大学学报, 1999,31(6):56-58.
    [72]周荻,胡恒章.空间拦截弹的最优制导与非线性滤波[J].哈尔滨工业大学学报, 1997,29(4):76-79.
    [73]雷虎民,梁颖亮,杨强国.基于线性二次型高斯(LQG)理论的最优制导规律[J].空军工程大学学报, 2002,3(2): 27-30.
    [74]李忠应,李秋月.地空导弹最优制导律研究[J].北京航空航天大学学报. 1991,(3):83-90.
    [75]李忠应.大气层内反战术弹道导弹最优制导数学模型[J].现代防御技术, 1998,28(4):42-47.
    [76]庄志洪,路建伟,丁庆海,张清泰.一种基于二阶制导系统的最优导引律研究[J].南京理工大学学报, 1999,23(3):237-240.
    [77] Paul Earchan, Complete Statistical Abalysis of Nonlinear Missile Guidance Systerm SLAM[J], AIAA 77-1094.
    [78] Fumiaki Imado,etc.,A new Missile Guidance Algorithm Against A Maneuvering Target[C], AIAA Paper 98-4114.
    [79] Fumiaki Imado, Makoto Nagayama, Min-jea Tahk, An Extended Study on A New Missile Guidance Algorithm Against A maneuvering Target [C], AIAAGuidance, Navigation, and Control Conference and Exhibit, 8.2001.
    [80] Ilan Rusnak, Optimal Guidance Laws with Uncertain Time-of-Flight against Maneuvering Target and Noisy Measurements [C], AIAA Guidance, Navigation, and Control Conference and Exhibit 8.2003.
    [81] Thomas L. Vincent, Ronald G. Cottrell, and Robert W. Morgant, Mininizing Maneuver Advantage Request fot a Hit-to-Kill Interceptor, AIAA Guidance, Navigation, and Control Conference and Exhibit, 6-9 August 2001.
    [82] Issacs R. Differential games [R ]. Research Memoranda RM 21391, RM 21399, RM 21411, RM 21468, Rand Corporation, 1956.
    [83] Issacs R. Differential Games [M ]. New York: John Wiley , Sons, 1965.
    [84] Friedman A. Dif ferential Games[M ]. New York: John Wiley, 1971.
    [85] Friedman A. Differential Games [M ]. Rhode Island: American Mathematical Society, 1974.
    [86] KrasovskiiN N, Subbotin A I. Positional Differential Games [M ]. Moscom, 1974.
    [87] Leitmann G. Multicriteria Decision Making and Differential Games [M ]. New York & London: Plenum Press, 1976.
    [88] Petrosjan L A. Differential Games of Pursuit [M ]. Singapore: World Scientific Press, 1993.
    [89]张嗣瀛.微分对策[M].北京:科学出版社, 1987.
    [90]李登峰.微分对策及其应用[M].北京:国防工业出版社, 2000.
    [91] M.D.Ardema. Air-to-Air Combat Analysis: Review of Differential-Gaming Approaches[C], Joint Automatic Control Conference,1981,2.
    [92] P.K.Menon, G.B.Chatterji. Differential game based guidance law for high angle of attack missile [J]. AIAA96-3865.
    [93] A.H.Ferraris. Application of Differential Dynamic Progamming to an Air-to-Air Missile Guidance Problem Modeled as a Differential Game[R]. AD-A034896.
    [94] Y.Oshman, D.Arad. Differential game based guidance law using target orientation observations[J]. IEEE Transactions on Aerospace and Electronic Systems. 2006,42(1):316-326.
    [95]万自明.对付目标机动的微分对策制导律[J].战术导弹技术, 1992(4):23-29.
    [96]汤善同.微分对策制导规律与改进的比例导引制导规律性能比较[J].宇航学报, 2002,23(6): 38-42.
    [97] Tal Shima, Josef Shinar, and Haim Weiss, New Interceptor Guidance Law Intergrating Time-Varying and Estimation-Delay Models [J], Jorunal of Guidance, Control and Dynamics, 2003, 26, (4).
    [98]左斌,杨长波,李静.基于微分对策的导弹攻击策略[J].海军航空工程学院学报, 2005, 20(5).
    [99] C. Y. Kuo and Y. C. Chiou. Geometric analysis of missile guidance command. IEE Proceedings: Control Theory and Applications, 2000, 147(2):205-211.
    [100] C. Y. Kuo, D. Soetanto, and Y. C. Chiou. Geometric analysis of flight control command for tactical missile guidance [J]. IEEE Transactions on Control Systems Technology, 2001, 9(2):234-243.
    [101] B.A.White, R.Zbikowski and A.Tsourdos,Direct Intercept Guidance using Differential Geometry Concepts [J], AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005, 8.
    [102] Chaoyong Li, and Wuxing Jing , New Results on Three-dimensional Differential Geometric Guidance and Control Problem [J], AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006, 08.
    [103]黄世同,王永节.关于《微分几何》的几个问题[J].昆明师范学报,2004, 26(4).
    [104]闫炎.空间曲线的主法向量方向的探讨[J].陕西师范大学学报, 2005, 22(3).
    [105] Struik D J. Lectures on Classical Differential Geometry[M], New York: Dover, 1988.
    [106]李超勇,荆武兴,齐志国,王辉.空间微分几何制导律应用研究[J].宇航学报, 2007:28(5).
    [107] C.-F. Lin. Modern Navigation Guidance and Control Processing[R]. Prentice-Hall, New Jersey, 1991.
    [108] D. J. Salmond. Foundations of Modern Missile Guidance [J]. Journal of Defence Science, 1996, 1(2):171-180.
    [109] P. Zarchan. Tactical and Strategic Missile Guidance[J], volume 124 of Progress in Astronautics and Aeronautics. AIAA, 1990.
    [110] M.Guelman. A Qualitive Study of Proportional Navigation [J]. IEEE Transactions on Aerospace and Electronic Systems, July 1971, (7):637-643.
    [111] S. Gutman. On Optimal Guidance for Homing Missiles [J]. AIAAJournal of Guidance and Control, 1979,3(4):296-300.
    [112] J. R. Cloutier, J. H. Evers, and J. J. Feeley. Assessment of Air-To-Air Missile Guidance and Control Technology [J]. IEEE Control Systems Magazine, 1989,9(6):27-34.
    [113] S. N. Balakrishnan, D. T. Stansbery, J. H. Evers, and J. R. Cloutier. Analytical Guidance Laws and Integrated Guidance/Autopilot for Homing Missiles[C]. In IEEE International Conference on Control Applications, 1993:27-32.
    [114] N. A. Shneydor. Missile Guidance and Pursuit. Kinematics, Dynamics and Control[M]. Horwood Publishing, Chichester,1998.
    [115] Ben-Asher J. Z. and Yaesh I. Advances in Missile Guidance Theory[C]. American Institute of Aeronautics and Astronautics, Reston, 1998.
    [116] M. M. Lipschutz. Differential Geometry[M]. Schaum's Outline Series.McGraw-Hill, New York, 1969.
    [117] B. O'Neill. Elementary Differential Geometry[M]. Academic Press, San Diego, 2nd edition, 1997.
    [118] F. P. Adler. Missile Guidance by Three Dimensional Proportional Navigation [J]. Journal of Applied Physics, 27:500-507,1956.
    [119] B. O'Neill. Elementary Differential Geometry[M]. Academic Press, San Diego, Second edition, 1997.
    [120] A. Gray. Modern Differential Geometry of Curves and Surfaces with Mathematic[M]. CRC Press, Boca Raton, Second edition, 1998.
    [121] E. A. Dijksman. Motion Geometry of Mechanisms[M]. Cambridge University Press, Cambridge, 1976.
    [122] Y. C. Chiou and C. Y. Kuo. Geometric approach to three dimensional missile guidance problems [J]. Journal of Guidance, Control, and Dynamics, 1998,21(2): 335-341.
    [123] C. Y. Kuo and Y. C. Chiou. Geometric analysis of missile guidance command [J]. IEE Proceedings: Control Theory and Applications,, 2000,147(2):205-211.
    [124] C. Y. Kuo, D. Soetanto, and Y. C. Chiou. Geometric analysis of flight control command for tactical missile guidance [J]. IEEE Transactions on Control Systems Technology, 9(2):234-243, 2001.
    [125] D. Serakos and C.F. Lin. Liberalized kappa guidance [J]. Journal of Guidance Control and Dynamics, 1995,18(5): 975-980.
    [126] D. Serakos and C.F. Lin. Three dimensional mid-course guidance state equations[C]. In Proceedings of the 1999 American Control Conference, volume 6, 1999:3738-3742.
    [127] G. W. Cherry. A general explicit, optimizing guidance law for rocket-propellant spacecraft[C]. In AIAA/ION Astrodynamics, Guidance and Control Conference, 1964. Paper 64-638.
    [128] B. A. White, R.Z bikowski and A. Tsourdos. Direct Intercept Guidance Using Differential Geometry Concepts[J]. AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 2005, San Francisco, California.
    [129] A Idala V J. Klaman Filter Behavior in Bearing-Only Tracking Applications[J], IEEE Trans on AES, 1979,15.
    [130] Weiss H, Moore J B, Improved Extended Kalman Filter Design for Passive Tracking[J], IEEE Trans on AC, 1980,25.
    [131] Lindgren A G, Gong K F, Postion and Velocity estimation Via Bearing Observations[J], IEEE Trans on AES,1978,14.
    [132]周宏仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社, 1991.
    [133] Daebum Choi , Byungha Ahn , Hanseok Ko. Neural net based variable structuremultiple model reducing mode set jump dela[J]. IEEE Workshop. Statiscal Signal Processing Aug , 2001.
    [134]张兵,陈磊.基于视线角序列的机动目标视线角速率计算[J],航空学报, 2007,28(2).
    [135]张兵,陈磊.基于视线角序列的视线角速率样条滤波[J],系统工程与电子技术,2005, 27(12): 2068-2071.
    [136]张兵,陈磊.基于视线角四元数序列的视线角速率样条滤波[J],宇航学报, 2006,27(3): 369-372.
    [137] B.E.祖耶夫M.B.卡巴诺夫著.殷贤湘译.光信号在大气中的传输[M],北京:科学出版社, 1987,7.
    [138]彭冠一等.防空导弹武器制导控制系统设计[M],北京,宇航出版社, 1996.
    [139]吴健,杨春平,刘健斌.大气中的光传输理论[M].北京:北京邮电大学出版社, 2005,12.
    [140]梅向明,黄敬之.微分几何[M].北京,高等教育出版社, 2001.
    [141] Stallard, D. V. An Angle-Only Tracking Filter in Modified Spherical Coordinates[C]. Proceedings of AIAA Guidance, Navigation and Control Conference, 1987:542-550.
    [142] Balakrishnan, S. N.,.Extension to Modified Polar Coordinates and Applications with Passive Measurements[J]. Journal of Guidance, Control, and Dynamics, Vol.12, No. 6, 1989:906-912.
    [143] Robinson, P. N., and Yin, M. R. Modified Spherical Coordinates for Radar Paper 94-3546, AIAA Guidance, Navigation, and Control Conference, Scottsdale, AZ, August 1994, Part 1, pp. 55-64.
    [144] Hari B. Hablani. Gaussian Second-Order Filter for Proportional Navigation of Exoatmospheric Interceptors with Angles-Only Measurements, AIAA Paper 98-4217,1998: 592-606.
    [145] Gelb, A. (FA.). Applied Optimal Estimation [M], M.I.T, Press, 1974, Sec.6.1.
    [146] Gosher-Meskin D, Bar-Itzhack I Y. Observability Analysis of Piece-Wise Constant System-Part I Theory [J]. IEEE Transactions on Aerospace and Electronics Systems, 1992,28(4):1056-1067.
    [147] Ham F M, Brown R G. Obervability, Eigenvalues and Kalman Filtering [J]. IEEE Transaction on Aerospace and Electronics Systems, 1983,19(2):269-273.
    [148]万德钧,房建成.惯性导航系统初始对准[M].南京:东南大学出版社, 1998:100-106.
    [149]刘长久,杨华军,赖燔.空间交会激光雷达信息测量技术[J].激光技术.2006(12).
    [150]王淑云,王元钦等.基于Kalman滤波的分布式航天器相对状态解算[J].系统仿真学报.2006.08. 18(2).
    [151] Magnus Norgaard, Niels K.Poulsen, Ole Ravn. Advances in Derivative-Free State Estimation for Nonlinear Systems[R]. Technical report:Imm-REP-1998-15, April 7, 2000.
    [152] Magnus Norgaard. State Estimation for Nonlinear Systems [R]. Technical report IMM-REP-2000-06. Nov 10,2000.
    [153] Shieh L S. Linear Systems[M]. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.
    [154]邓自立.最优滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [155] Ravindra Babu, IC, Sarma, I. G. and Swamy, K. N. Trwo Variable-Structure Homing Guidance Schemes With and Without Target Maneuver Estimation [C], Proceedings of AIAA Guidance, Navigation and Control Conference, August 1994, pp. 216-224.
    [156]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社, 1997,11.
    [157]程国采.四元数法及其应用[M].长沙:国防科技大学出版社, 1991,11.
    [158]王巍,隋丽娜.光纤陀螺机载导航系统多信息融合[J].中国惯性技术学报. 2009,17(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700