用户名: 密码: 验证码:
米波数字阵列雷达低仰角测高方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
米波雷达波长较长,在反隐身、抗反辐射导弹等方面具有独特的优势,且作用距离远,衰减比微波小,近年来受到世界各国的普遍重视。但受天线尺寸的限制,米波阵列雷达天线主瓣波束较宽,角分辨率差,天线副瓣高,抗干扰能力差。在探测远距离目标时,由于波束较宽,俯仰维波束会打地,雷达接收信号中除了直接从目标反射回来的信号外,还有从多径效应产生的镜面反射和漫反射等多径信号。多径效应对低空目标的仰角测量影响较大,从而影响了对目标高度的准确测量。因此提高米波雷达在低仰角区的测角和测高精度是亟待解决的关键难题。
     本人在前人工作的基础上,结合目前承担的科研任务,从若干方面围绕米波数字阵列雷达的低仰角测高问题展开工作,具体工作概括如下:
     1.在综合考虑数字阵列雷达信号处理系统的基础上,采用DSP和FPGA相结合的方法,设计一种高性能软件化数字信号处理机,整个信号处理机基于CPCI总线,采用高速串行通道提高板间数据传输速率,采用交叉开关技术实现信号处理板间的动态互联,提高雷达信号处理机的性能。该系统结构简单,具有很好的通用性和可扩展性,具有较高的实用价值。另外,研究两维数字阵列雷达的数字单脉冲测角方法,分析基本单脉冲测角过程中存在的问题,提出一种改进的基于窗函数的二维数字阵列雷达单脉冲测角方法。该方法在差波束形成过程中考虑不同工作频率、不同波位的天线等效孔径的变化。针对测角误差信号的非线性特征,在根据误差信号计算目标角度时采用多阶多项式拟合的方法,不仅减少单脉冲误差曲线的数目,而且简化数据处理中大量的数据存储和查表的运算,便于工程实现,更重要的是消除建立误差曲线表时的量化误差和减小线性近似时的测量误差。
     2.研究基于广义约束MUSIC算法的低仰角测高方法。约束MUSIC算法利用已知的信源方向来提高未知信源估计精度,而且不受信源相干的影响。把该算法应用于米波雷达低仰角测高中,提出一种广义约束MUSIC算法,将多径方向的导向矢量构成约束矩阵,生成投影算子,通过对协方差矩阵的投影来消除多径信号对协方差矩阵的影响,从而提高直达波的DOA估计精度。该算法的优点在于能直接处理相干信号,并且不用考虑地面反射系数的影响。再结合雷达测高的特点,对该算法进行改进,将二维搜索降为一维搜索,在保持良好性能的同时降低运算量。该方法在快拍数大于阵元数时就能超过空间平滑MUSIC的测角精度。
     3.研究基于精确多径信号模型的合成导向矢量测高方法。精确多径信号模型考虑入射信号极化信息、镜面反射、散射、漫反射、地形及掠射角等因素对多径信号的影响,利用天线高度、目标和雷达之间的距离、地球曲率、大气折射等先验信息,给出球面模型复杂地形下反射系数以及直达波、反射波波程的计算方法,提出基于地形匹配的合成导向矢量超分辨算法,将搜索导向矢量表示为直达波和反射波导向矢量之和的形式,然后使用超分辨算法进行DOA估计,提高角度估计精度。另外,当地面粗糙度增加到不能满足瑞利准则时,雷达天线接收的信号应该看成是镜面反射分量与漫反射分量之和,表面越粗糙,雷达仰角越低,漫散射功率越占主导地位,建立存在地面漫反射时的信号模型,将多径信号认为是相干分布源,提出利用多维交替投影和合成导向矢量超分辨算法进行低仰角测高。但是实际中,地面反射区的多径分布源模型很难确定,需要通过大量的实验来进行验证。
     4.将稀疏分析应用于米波数字阵列雷达低仰角测高中,利用实际空间中被测目标在空域内分布的稀疏性,利用压缩感知思想来进行低仰角估计。提出协方差矩阵压缩感知、内插阵压缩感知和波束空间压缩感知DOA估计算法,分别在协方差矩阵、虚拟内插阵和波束空间上进行压缩采样,构建出新的DOA估计压缩感知模型,最后通过稀疏重建算法来进行信号重构,得到目标的高分辨DOA估计。该方法突破阵列分辨率的瑞利限,降低信号功率谱和空间谱的旁瓣,在低信噪比和快拍数较少的环境下也能达到较好的效果,而且对空域信号的相关性不敏感,可以直接用于相干信号的DOA估计,具有较高的角度分辨力。
     5.研究干涉式APES算法在分布式相参阵列DOA估计中的应用。利用干涉式APES算法得到的空间谱和模型阶数选择准则获得目标个数和目标方向余弦的粗估计,同时利用子阵间的相位中心偏移来获得目标方向余弦的精估计,再使用双尺度解模糊算法得到高精度且无模糊的目标DOA估计。该算法不依赖于信源数、信源相关性等参数,是一种盲DOA估计方法,而且在样本少时性能较好。该算法以增大运算量为代价来得到更高的角度分辨率和测角精度,能有效地应用于米波雷达低仰角多径环境下的测高问题。同时对分布式阵列中的基线模糊门限与信噪比门限进行讨论,并对算法的运算量和克拉美罗界进行分析。
     论文针对这些方法,在仿真分析的基础上,结合了实际雷达的实测数据结果。因此,论文理论紧密联系实际,解决了某型米波雷达在一些典型阵地上遇到的实际问题,并给出了实际的测高结果。本论文为该型雷达的研制发挥了重要作用。
As a kind of meter-wave radar, it has good anti-stealth effect, anti-arm capacity, lessattenuation compared with microwave radar, and large detection range. In recent years,the research in VHF radar has been attached great importance. Limited by aperture,meter-wave radar has wide beam, which usually causes bad angular resolution.Furthermore, high sidelobe excludes good anti-interference capacity. Because of thebeam wideness, the beam often reflects to the ground when radar detects the long rangetargets, the received signal in the mainlobe includes the direct path echo from the targetdirectly and the reflection multipath echo which are reflected from the ground (sea)surface. The reflection multipath echo cause the measurement accuracy of elevationdeteriorates sharply. The key technology to be solved is improving the low-elevationangle accuracy.
     On the basis of the achievements obtained by now, combined with my researchproject, this dissertation starts from low angle estimation in meter-wave radar. The maincontent of this dissertation is summarized as follows.
     1. Considering the demand and technical characteristic of radar signal processingsystem, a new high-powered radar signal processing system architecture based onFPGA and DSP is proposed. The architecture is based on cPCI standard platform.High-speed serial channel improves data Transmission rate. The crosspoint switch isable to make circuit boards connection dynamically. These greatly improve theperformance of the radar signal processor. This system is simple in structure and hasgood universality and extendibility which is in agreement with the forthcomingdirection of radar signal processors and has high engineering value. Additionally, theangle measurement method with digital monopulse for2-Dimensional digital arrayradar is studied in the paper. The variations of equivalent aperture of antenna array withdifferent frequencies and different beam positions are taken into account in the processof difference patterns synthesis. Multi-order polynomial fitting method is adopted tocalculate the target’s angle according to the angle error signal whose characteristic isnonlinear. This technique decreases the number of monopulse error cures and simplifiesthe huge data storage and the calculation of lookup table, facilitated engineeringimplementation. It is important to eliminate the quantized error of error curve tables anddecrease the measuring error of linear approximation.
     2. A generalized constrained MUSIC is studied for low-angle altitude estimation.Constrained MUSIC improves the estimation precision of unknown source directions byincorporating the prior known source directions and has no influence caused bycoherence of sources. A generalized constrained MUSIC is proposed, which is modifiedin terms of the low-angle environment of VHF radar, improves the estimation precisionof direct signal with multi-path signal as a constraint. The proposed method deal withcoherent sources directly and doesn’t considering the affect caused by reflectioncoefficient. According to the characteristic of height-finding, some improvement ismade on the proposed algorithm, change2-D search to1-D search, which reducescomputation complexity and gets good performances. The proposed method obtainsgood performance while the number of snapshot is more than the number of elementcompared with the spatial smoothing MUSIC.
     3. A synthetic steering vector superresolution algorithm based on a highlydeterministic multipath signal model is proposed. To model the signal more accurately,signal polarization, mirror reflection, dispersion, diffuse reflection, the terrainparameters of the reflection region and grazing angle must be taken into account, inaddition to antenna height, distance between target and array, the curvature of the signalpath due to refraction in the troposphere and the curvature of the earth itself. Thecalculation methods of the reflection coefficient and lengths of the direct path andindirect path are given. A synthetic steering vector superresolution algorithm based onterrain matching is proposed. The accuracy DOA is obtained by superresolutionalgorithm that makes use of the synthetic steering vector which is the sum of directsteering vector and indirect steering vector. In additional, if the roughness dissatisfiesthe Reileigh rule, the received signal includes the direct component and diffusereflection component. The reflection surface is rougher; the power of diffuse reflectioncomponent is stronger. The diffuse reflection component in signal module can be takenfor coherent distributed source. The DOA could be obtained by multi-dimensionalternating projection and synthetic steering vector superresolution algorithm. But inpractice, it is hard to ascertain the multipath distributed source model that should bevalidated by lots of experiments.
     4. Making use of the sparsity of targets, some novel direction-of-arrival models forlow-angel estimation in VHF radar based on compressive sensing are proposed.Covariance matrix compressive sensing, interpolated array compressive sensing andbeam space compressive sensing carry out compressive sampling on covariance matrix,interpolated array and beam space, respectively, and three new three new direction-of-arrival models based on compressive sensing are built. The accuracy DOAestimation is achieved by sparse reconstruction algorithm. The proposed methodsachieve resolution beyond Rayleigh limit, get low sidelobe in spatial spectrum andobtain good performance at low SNR and less snapshots environment. The proposedmethods are conceptually different from subspace-based methods and provide highresolution using a uniform linear array without restricting requirements on the spatialand temporal stationary and correlation properties of the sources and the noise and gethigh angular resolution.
     5. An interferometric-like APES algorithm is studied for DOA estimation ofdistributed coherent arrays. The number of targets and coarse direction cosine estimatesare obtained from interferometric-like APES spatial spectral and model-order selectioncriterion. The high accuracy direction cosine estimates are derived from phase centershift between subarrays. A dual-size algorithm is used to resolve the ambiguity in DOAestimation resulted from the distributed coherent arrays. Then the low variance andunambiguous DOA estimates are achieved. The proposed approach is a blind DOAestimation method and is independent of the number of sources and the coherence ofsources and has good performance while the sample is less. The algorithm enhancesangle resolution and accuracy at the cost of huge computation and can be applied inVHF radar low-angle DOA problem. Also the baseline ambiguity threshold and SNRambiguity threshold in distributed coherent arrays are demonstrated, the computationcost and CRB of the proposed method are analysed.
     On the basis of simulations and analysis, the real data of some VHF radar isincorporated into these methods above. Therefore, this dissertation realizes the closerelation between the theory and practice or implementation, and solve some practicalissues of the VHF radar in some typical positions.This dissertation is of vast importancefor the research and development of this VHF radar.
引文
[1]董玫.米波雷达测高算法及应用研究[D].西安:西安电子科技大学博士学位论文,2008.
    [2]吴向东.米波雷达低仰角测高算法及相关技术研究[D].西安:西安电子科技大学博士学位论文,2008.
    [3] Heiner Kuschel. VHF/UHF radar Part1: Characteristics[J]. Electronics&Communication Engineering Journal,2002, April:61-72.
    [4] Heiner Kuschel. VHF/UHF radar Part2: Operational aspects and applications[J].Electronics&Communication Engineering Journal,2002, June:101-111.
    [5]李金梁,李永祯,王雪松.米波极化雷达的反隐身研究[J].雷达科学与技术,2005,3(6):321-326.
    [6]刘剑,王丰华,黄知涛,等.阵列扩展用于反辐射导弹抗诱偏的研究[J].系统工程与电子技术,2007,29(3):365-367.
    [7]谭怀英,郭建明. VHF/UHF雷达特性及其应用[C].中国雷达技术论坛,南京,2006,83-87.
    [8]王德纯.雷达五十年[J].现代雷达,1986,01:6-14.
    [9]古奥.米波三坐标雷达的发展现状[J].现代兵器,2009,04:50-51.
    [10]刘俊.米波雷达低仰角估计方法研究[D].西安:西安电子科技大学博士学位论文,2012.
    [11]李特.国内外三坐标雷达发展现状[J].舰船电子对抗,2006,29(1):23-26.
    [12]陈伯孝. SIAR四维跟踪及其长相干积累等技术研究[D].西安:西安电子科技大学博士学位论文,1997.
    [13]杨雪亚.米波雷达阵列超分辨和测高方法研究[D].西安:西安电子科技大学博士学位论文,2011.
    [14]杨克虎,保铮.多频应用对低角跟踪方向估计性能的改善[J].西安电子科技大学学报,1993,20(4):1-12.
    [15]张平,张晓华.一种低仰角跟踪的新方法[J].现代雷达,2009(6):9-12.
    [16]何子述,黎敏,荆玉兰.频率捷变的相控阵雷达目标多径DOA估计算法[J].系统工程与电子技术,2006,27(11):1880-1882.
    [17]Abramovich Y I, Gorokhov A Y, Spencer N K. Convergence analysis ofstochastically-constrained spatial and spatio-temporal adaptive processing forhot-clutter mitigation[C]. Information, Decision and Control,1999. IDC99.Proceedings.1999. IEEE,1999:61-64.
    [18]Bisiaux A, Lemur D, Bertel L. Source separation with collocated antennas:application to digital communications in HF[C]. Antennas and Propagation,2001.11-th International Conference on (IEE Conf. Publ. No.480). IET,2001,1:311-314.
    [19]Peebles P Z, Goldman L. Radar performance with multipath using the complexangle[J]. IEEE Trans. on Aerospace and Electronic Systems,1971(1):171-178.
    [20]Howard D D, Sherman S M, Thomson D N, et al. Experimental Results of theComplex Indicated Angle Techique for Multipath Correction[J]. IEEE Trans. onAerospace and Electronic Systems,1974(6):779-787.
    [21]Letva J. Use of highly deterministic model in signal bearing estimation[J].Electronics letters,1989,25(5):346-348.
    [22]董玫,张守宏,吴向东.距离高分辨测高技术[J].火控雷达技术,2006,35(1):10-14.
    [23]范志杰,尚社.一种用于低空目标探测与跟踪的新方法[J].雷达科学与技术,2004,2(3):153-157.
    [24]Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEETrans. on Antennas and Propagation,1986,34(3):276-280.
    [25]Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariancetechniques[J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1989,37(7):984-995.
    [26]Roy R, Paulraj A, Kailath T. ESPRIT--A subspace rotation approach to estimationof parameters of cisoids in noise[J]. IEEE Trans. on Acoustics, Speech and SignalProcessing,1986,34(5):1340-1342.
    [27]王永良.空间谱估计理论与算法[M].清华大学出版社,2004.
    [28]Evans J E, Johnson J R, Sun D F. High resolution angular spectrum estimationtechniques for terrain scattering analysis and angle of arrival estimation[C]. Proc.1st ASSP Workshop Spectral Estimation.1981:134-139.
    [29]Shan T J, Kailath T. Adaptive beamforming for coherent signals and interference[J].IEEE Trans. on Acoustics, Speech and Signal Processing,1985,33(3):527-536.
    [30]Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques forcoherent signal identification[J]. IEEE Trans. on Acoustics, Speech and SignalProcessing,1989,37(1):8-15.
    [31]Di A. Multiple source location--A matrix decomposition approach[J]. IEEE Trans.on Acoustics, Speech and Signal Processing,1985,33(5):1086-1091.
    [32]Cadzow J A, Kim Y S, Shiue D C. General direction-of-arrival estimation: a signalsubspace approach[J]. IEEE Trans. on Aerospace and Electronic Systems,1989,25(1):31-47.
    [33]Kung S, Lo C, Foka R. A Toeplitz approximation approach to coherent sourcedirection finding[C]. Acoustics, Speech, and Signal Processing, IEEE InternationalConference on ICASSP'86. IEEE,1986,11:193-196.
    [34]Park H R, Kim Y S. A solution to the narrow-band coherency problem in multiplesource location[J]. IEEE Trans. on signal processing,1993,41(1):473-476.
    [35]Rao B D, Hari K V S. Weighted subspace methods and spatial smoothing: analysisand comparison[J]. IEEE Trans. on Signal Processing,1993,41(2):788-803.
    [36]Li J. Improved angular resolution for spatial smoothing techniques[J]. IEEE Trans.on Signal Processing,1992,40(12):3078-3081.
    [37]叶中付.空间平滑差分方法[J].通信学报,1997,18(9):1-7.
    [38]王布宏,王水良,陈辉.相干信源波达方向估计的加权空间平滑算法[J].通信学报,2003,24(4):31-40.
    [39]王布宏,王永良,陈辉.一种新的相干信源DOA估计算法:加权空间平滑协方差矩阵的Toeplitz矩阵拟合[J].电子学报,2003,31(9):1394-1397.
    [40]陈辉,王永良.基于空间平滑的矩阵分解算法[J].信号处理,2002,18(4):324-327.
    [41]张聪,胡谋法,卢焕章.基于虚拟阵列空间平滑的相干信号DOA估计[J].电子学报,2010,38(004):929-933.
    [42]刘志刚,汪晋宽.虚拟空间平滑算法[J].电子学报,2007,35(9):1762-1765.
    [43]董玫,张守宏,吴向东,等.一种改进的空间平滑算法[J].电子与信息学报,2008,30(4):859-862.
    [44]Friedlander B, Weiss A J. Direction finding using spatial smoothing withinterpolated arrays[J]. IEEE Trans. on Aerospace and Electronic Systems,1992,28(2):574-587.
    [45]Qian-Jun D, Yong-Liang W, Yong-Shun Z. An adaptive weighted spatial smoothingalgorithm utilizing virtual beamforming[C]. Radar Conference,2005IEEEInternational. IEEE,2005:612-617.
    [46]黄磊,吴顺君,张林让.一种快速的相干信源超分辨方法[J].西安电子科技大学学报,2006,33(1).
    [47]曾操,廖桂生.基于数据矩阵分解的相干源方向估计新方法[J].系统工程与电子技术,2005,27(4):603-605.
    [48]朱圣棋,廖桂生,周争光.基于数据矩阵重构的相干源波达方向共轭ESPRIT(C-SPRIT)估计方法[J].电子学报,2009,37(12):2838-2844.
    [49]韩芳明,张守宏.用改进的MUSIC算法实现相干多径信号分离[J].系统工程与电子技术,2004,26(6):721-723.
    [50]Han F M, Zhang X D. An ESPRIT-like algorithm for coherent DOA estimation[J].Antennas and Wireless Propagation Letters, IEEE,2005,4:443-446.
    [51]郭艺夺,童宁宁,张永顺,等.相关噪声下基于对角加载的相干信源DOA估计算法[J].系统工程与电子技术,2009(011):2582-2586.
    [52]齐崇英,张永顺,韩颖.相干信源DOA估计的非对称加权空间平滑差分算法[J].航天电子对抗,2005,21(005):35-39.
    [53]齐崇英,王永良,张永顺,等.色噪声背景下相干信源DOA估计的空间差分平滑算法[J].电子学报,2005,33(007):1314-1318.
    [54]谢鑫,李国林,刘华文.采用单次快拍数据实现相干信号DOA估计[J].电子与信息学报,2010,32(3):604-608.
    [55]吴向东,赵永波,张守宏,等.利用改进的Toeplitz化技术实现米波雷达低仰角测高[J].电子与信息学报,2010,32(3):570-574.
    [56]Gu Z, Gunawan E. A performance analysis of multipath direction finding withtemporal smoothing[J]. Signal Processing Letters, IEEE,2003,10(7):200-203.
    [57]Xin J, Sano A. Computationally efficient subspace-based method fordirection-of-arrival estimation without eigendecomposition[J]. IEEE Trans. onSignal Processing,2004,52(4):876-893.
    [58]Stoica P, Arye N. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEETrans. on Acoustics, Speech and Signal Processing,1989,37(5):720-741.
    [59]Clergeot H, Tressens S, Ouamri A. Performance of high resolution frequenciesestimation methods compared to the Cramer-Rao bounds[J]. IEEE Trans. onAcoustics, Speech and Signal Processing,1989,37(11):1703-1720.
    [60]Viberg M, Ottersten B. Sensor array processing based on subspace fitting[J]. IEEETrans. on Signal Processing,1991,39(5):1110-1121.
    [61]Krim H, Viberg M. Two decades of array signal processing research: the parametricapproach[J]. Signal Processing Magazine, IEEE,1996,13(4):67-94.
    [62]Ziskind I, Wax M. Maximum likelihood localization of multiple sources byalternating projection[J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1988,36(10):1553-1560.
    [63]Bresler Y, Macovski A. Exact maximum likelihood parameter estimation ofsuperimposed exponential signals in noise[J]. IEEE Trans. on Acoustics, Speechand Signal Processing,1986,34(5):1081-1089.
    [64]Stoica P, Sharman K C. Novel eigenanalysis method for direction estimation[C].Radar and Signal Processing, IEE Proceedings F. IET,1990,137(1):19-26.
    [65]Sharman K C, McClurkin G D. Genetic algorithms for maximum likelihoodparameter estimation[C]. Acoustics, Speech, and Signal Processing,1989.ICASSP-89.,1989International Conference on. IEEE,1989:2716-2719.
    [66]Stoica P, Gershman A B. Maximum-likelihood DOA estimation by data-supportedgrid search[J]. Signal Processing Letters, IEEE,1999,6(10):273-275.
    [67]王布宏,王永良,陈辉.相干信源波达方向估计的广义最大似然算法[J].电子与信息学报,2004,26(2):225-232.
    [68]李雄,黄建国,张群飞.基于重要性抽样的最大似然方位估计方法[J].电子学报,2005,33(8):1529-1532.
    [69]贾永康,保铮.利用多普勒信息的波达方向最大似然估计方法[J].电子学报,1997,25(006):71-76.
    [70]贾永康,保铮.时-空二维信号模型下的波达方向估计方法及其性能分析[J].电子学报,1997,25(9):69-73.
    [71]赵永波,张守宏.雷达低角跟踪环境下的最大似然波达方向估计方法[J].电子学报,2004,32(9):1520-1523.
    [72]廖桂生,杨克虎.多项式相位信号空时多变量交替投影最大似然参数估计[J].西安电子科技大学学报,1997,24(A00):53-61.
    [73]赵光辉,陈伯孝,董玫.基于交替投影的DOA估计方法及其在米波雷达中的应用[J].电子与信息学报,2008,30(1):224-227.
    [74]胡铁军,杨雪亚,陈伯孝.阵列内插的波束域ML米波雷达测高方法[J].电波科学学报,2009,24(004):660-666.
    [75]陈建文,王布宏,胡晓琴.径向基函数神经网络在米波雷达测高中的应用[J].第九届全国雷达学术年会论文集,2004:307-309.
    [76]胡晓琴,陈建文,陈辉.神经网络用于米波雷达测高[J].空军雷达学院学报,2004,18(3):16-19.
    [77]庞伟正,高洪元,王艳丽,等.基于粒子群优化算法的相干信源波达方向估计[J].哈尔滨工程大学学报,2006,27(3):453-456.
    [78]刁鸣,袁熹,高洪元,等.一种运动目标的相干信号源DOA跟踪方法[J].应用科技,2008,35(11):26-30.
    [79]张陆游,张永顺,杨云.基于混沌自适应变异粒子群优化的解相干算法[J].电子与信息学报,2009,31(8):1825-1829.
    [80]Lo T, Litva J. Low-angle tracking using a multifrequency sampled aperture radar[J].IEEE Trans. on Aerospace and Electronic Systems,1991,27(5):797-805.
    [81]Lo T, Litva J. Use of a highly deterministic multipath signal model in low-angletracking[C]. Radar and Signal Processing, IEE Proceedings,1991,138(2):163-171.
    [82]Lo T, Wong T, and Litva J. New technique for low-angle radar tracking[J].Electronics Letters,1991,27(6):529-531.
    [83]Cedervall M, Moses R L. Efficient maximum likelihood DOA estimation forsignals with known waveforms in the presence of multipath[J]. IEEE Trans. onSignal Processing,1997,45(3):808-811.
    [84]Bosse E, Turner R M, Brookes D. Improved radar tracking using a multipath model:maximum likelihood compared with eigenvector analysis[C]. Radar, Sonar andNavigation, IEE Proceedings. IET,1994,141(4):213-222.
    [85]胡晓琴,陈建文,王永良.米波雷达测高多径模型研究[J].电波科学学报,2008,23(4):651-657.
    [86]刘张林,陈伯孝,杨雪亚,等.米波雷达最大似然超分辨测高技术研究[J].雷达科学与技术,2011,9(4):308-310.
    [87]陈伯孝,胡铁军,郑自良,等.基于波瓣分裂的米波雷达低仰角测高方法及其应用[J].电子学报,2007,35(6):1021-1025.
    [88]徐源,陈伯孝.地形对基于波瓣分裂的米波雷达测高方法的影响[J].雷达科学与技术,2008,6(001):9-14.
    [89]徐源.基于波瓣分裂的米波雷达测高方法在复杂地形中的应用与研究[D].西安电子科技大学硕士学位论文,2008.
    [90]何为民.米波雷达测高方法及复杂地形研究[D].西安电子科技大学硕士学位论文,2007.
    [91]李文锋,陈伯孝. DBF技术在扩大米波雷达测高范围中的应用[J].雷达科学与技术,2006,4(2):65-70.
    [92]吴向东,张守宏,董玫.一种基于线性预处理的米波雷达低仰角处理算法[J].电子学报,2006.
    [93]赵光辉,陈伯孝,吴向东,等.基于差分预处理的米波雷达低仰角处理算法[J].电子与信息学报,2009,31(2):363-365.
    [94]符渭波. MIMO雷达参数估计技术研究[D].西安电子科技大学博士学位论文,2012.
    [95]徐振海,张亮,熊子源,等.多径条件下子阵级低角测高算法[J].国防科技大学学报,2012,34-44.
    [96]Song W S. A new3-GSPS65-GOPS UHF digital radar receiver and itsperformance characteristics[C]. Signals, Systems&Computers,1997. ConferenceRecord of the Thirty-First Asilomar Conference on. IEEE,1997,2:1542-1546.
    [97]吴曼青.数字阵列雷达及其进展[J].中国电子科学研究院学报,2006,1(1):11-16.
    [98]汤小为,汤俊,彭应宁.数字阵列雷达并行信号处理算法及实现[J].信息与电子工程,2009,7(004):294-299.
    [99]丁鹭飞,耿富录.雷达原理[M].西安电子科技大学出版社,2003.
    [100] Skolnik M I. Radar handbook[M]. McGraw-Hill,1990.
    [101] Lee T S, Dai T Y. Optimum beamformers for monopulse angle estimation usingoverlapping subarrays[J]. IEEE Trans on Antennas and Propagation,1994,42(5):651-657.
    [102] Manica L, Rocca P, Martini A, et al. An innovative approach based on atree-searching algorithm for the optimal matching of independently optimum sumand difference excitations[J]. IEEE Trans. on Antennas and Propagation,2008,56(1):58-66
    [103] Rocca P, Manica L, Martini A, et al. Design of compromise sum-differencepatterns through the iterative contiguous partition method[J]. Microwaves,Antennas&Propagation, IET,2009,3(2):348-361.
    [104] Caorsi S, Massa A, Pastorino M, et al. Optimization of the difference patternsfor monopulse antennas by a hybrid real/integer-coded differential evolutionmethod[J]. IEEE Trans. on Antennas and Propagation,2005,53(1):372-376.
    [105] Manica L, Rocca P, Martini A. On the synthesis of sub-arrayed planar arrayantennas for tracking radar applications[J]. IEEE Antennas and WirelessPropagation Letters,2008(7):599-602.
    [106] Nickel U. Performance of corrected adaptive monopulse estimation[J]. Radar,Sonar and Navigation, IEE Proceedings. IET,1999,146(1):17-24.
    [107]贾一凡,谢俊好.传统单脉冲角分辨力统计分析[J].微计算机信息,2009(10):308-309.
    [108]毛祺,安红,周先敏.二维相位和差单脉冲雷达的测角性能分析[J].电子信息对抗技术,2007,22(6):15-18.
    [109]马振球,崔嵬.相位和差单脉冲雷达测角性能分析[J].北京理工大学学报,2009,29(8):726-731.
    [110]胡航,张皓.一种改进的两级子阵级自适应单脉冲方法[J].电子学报,200937(9):1996-2003.
    [111]胡航,张皓,宗成阁,等.子阵级自适应单脉冲的四通道主瓣干扰抑制[J].电波科学学报,2009,24(5):820-825.
    [112]雷剑梅,陈世勇,陈旻.单元波束夹角对和差单脉冲测角性能的影响研究[J].电子测量与仪器学报,2007,21(5):26-30.
    [113]刘宏伟,张守宏.平面阵线性约束自适应单脉冲测角算法[J].电子与信息学报,2001,23(3):275-279.
    [114]徐伟.线性约束自适应单脉冲测角算法约束条件研究[J].火控雷达技术,2005,34(1):38-42.
    [115]余继周,陈定昌.相控阵单脉冲雷达自适应旁瓣对消研究[J].航天电子对抗,2006,21(5):4-6.
    [116]李颖,李少洪.改进类单脉冲测角算法[J].电子测量技术,2003,(3):18-19.
    [117]牛宝君,李延波.二维相控阵单脉冲跟踪测角方法的研究与应用[J].现代雷达,2003,25(5):16-18.
    [118]朱庆明.数字阵列雷达述评[J].雷达科学与技术,2004,2(3):136-141.
    [119] Kahrilas P J, Miller T W, Lazzara S P. Digital beamforming for multipleindependent transmit beams: U.S. Patent4,965,602[P].1990-10-23.
    [120]徐光争,纪宝.未来相控阵天线的波束控制[C].电子工业部雷达专业情报网第十届年会论文集,1993:238-243.
    [121]陈俊峰.新型舰载数字阵列雷达[J].雷达与探测技术动态,2002,7:23-25.
    [122] Garrod A. Digital modules for phased array radar[C]. Phased Array Systemsand Technology,1996, IEEE International Symposium on. IEEE,1996:81-86.
    [123]吴曼青. DDS技术及其在发射DBF中的应用[J].现代电子,1996,2:9-13.
    [124]吴曼青,王爽.基于DDS的收发全DBF相控阵技术[J].高技术通讯,2000,10(8):42-44.
    [125] Edward M. Digital Beamforming Phased Array Transmit antenna[C]. AP2000Millennium Conf on Antennas&Propagation,2000,426-429.
    [126] Rudish R M, Magill E G. Direct digital synthesizer driven phased arrayantenna: U.S. Patent5,764,187[P].1998-6-9.
    [127] Digital Beamforming Technology [EB/OL]. http://www.appliedradar. com/.
    [128] Ney R, Berthelier J J. Electronic Digital Beamforming Implementation forRadars[C]. MST10Workshop on Technical and Scientific Aspect of MST,2003.
    [129] Berthelier J J, Ney R, Ciarletti V, et al. GPR, a ground-penetrating radar for theNetlander mission[J]. Journal of Geophysical Research,2003,108(E4):8027.
    [130]於洪标.数字T/R组件中DBF发射技术的研究[J].现代雷达,2001,23(1):77-80.
    [131]吴曼青.收发全数字波束形成相控阵雷达关键技术研究[J].系统工程与电子技术,200l,23(4):45-47.
    [132]吴曼青.数字阵列雷达及其进展[J].中国电子科学研究院学报,2006,1(1):11-16.
    [133] Cantrell B, De Graaf J, Leibowitz L, et al. Development of a digital array radar(DAR)[C]. Radar Conference. Proceedings of the2001IEEE,2001:157-162.
    [134] Stapleton R A, Tua C G. Digital Array Radar Test Bed[R]. Naval SurfaceWarfare Center, Dahlgren Division, Corporate Communications, C6,6149WelshRoad, Suite239, Dahlgren, VA,2000.
    [135]吴曼青.数字阵列雷达的发展与构想[J].雷达科学与技术,2009,6(6):401-405.
    [136]徐海洲,吴曼青.数字阵列雷达系统[J].合肥工业大学学报:自然科学版,2008,31(005):718-720.
    [137]张明友.数字阵列雷达和软件化雷达[M].电子工业出版社,2008.
    [138]胡坤娇.米波段数字阵列雷达的设计[J].雷达科学与技术,2009,6(6):422-425.
    [139] Garrod A. Digital modules for phased array radar[C]. Phased Array Systemsand Technology,1996., IEEE International Symposium on. IEEE,1996:81-86.
    [140]陈曾平,张月,鲍庆龙.数字阵列雷达及其关键技术进展[J].国防科技大学学报,2011(6):1-7.
    [141]朱庆明.数字阵列雷达述评[J].雷达科学与技术,2004,2(3):136-141.
    [142]陈新峰,张军杰,赵非,等.基于TS201芯片的雷达信号处理机设计[J].电子设计工程,2011,19(13):156-158.
    [143] Wen F, Zhu W, Chen B. Design of Universal Radar Signal ProcessorArchitecture Based on Crosspoint Switch[C]. Multimedia Technology (ICMT),2010International Conference on. IEEE,2010:1-4.
    [144]鲁千红,杨军.基于CPCI总线的雷达信号处理系统[J].空军雷达学院学报,2007,21(2):118-120.
    [145]史鸿声,穆文争,刘丽.基于魂芯一号的雷达信号处理机设计[J].雷达科学与技术,2012,10(2):161-164.
    [146]穆文争,史鸿声,刘丽.国产高性能通用数字信号处理器的DEMO板设计[J].火控雷达技术,2012(3):33-36.
    [147]中国电科集团第38研究所. BWDSPl00硬件用户手册[M].中国电子科技集团公司第三十八研究所,2011.
    [148]中国电科集团第38研究所. BWDSPl00简介[M].中国电子科技集团公司第三十八研究所,2011.
    [149] Vitesse. VSC3172-6.5Gbps72*72Asynchronous crosspoint switchdatasheet[OL]. https://www.vitesse.com/products/product.php?number=VSC3172.
    [150] Burrell R H. Granularity of beam positions in digital phased arrays[J].Proceedings of IEEE,1968,56(11):1795-1800.
    [151] Mailloux R J. Phased array antenna handbook[M]. Artech House,2005.
    [152] Shelton J, Kelleher K. Multiple beams from linear arrays[J]. Antennas andPropagation, IRE Trans. on,1961,9(2):154-161.
    [153] Richard O N. Accuracy of angle estimation with monopulse processing usingtwo beams[J]. IEEE Trans on Aerospace and Electronic Systems,2001,37(4):1419-1423.
    [154] Zhen W, Abhijit S, Peter W, et al. Angle estimation for two unresolved targetswith monopulse radar[J]. IEEE Trans on Aerospace and Electronic Systems,2004,40(3):998-1019.
    [155]彭家庭.近来的局部战争对陆基防空雷达的需求[J].中国工程科学,1999,1(2):19-23.
    [156] Nickel U. Overview of generalized monopulse estimation[J]. Aerospace andElectronic Systems Magazine, IEEE,2006,21(6):27-56.
    [157]刘继东,吴金亮,孙书恩.某单脉冲雷达多路径仰角跟踪误差建模与计算[J].装备指挥技术学院学报,2007,18(1):83-86.
    [158]王顺民,李兵,张艳颖.雷达低仰角偏轴跟踪测量偏差补偿算法的改进研究[J].计算机测量与控制,2009,16(12):1890-1892.
    [159]吕韶昱,万建伟.雷达低空目标俯仰角提取的偏差补偿技术[J].弹箭与制导学报,2007,27(4):352-356.
    [160]吕韶昱,万建伟.雷达低空目标闭环跟踪的C2偏差补偿算法研究[J].信号处理,2008,24(4):604-608.
    [161]祝一薇,楼生强,王展,等.单脉冲雷达低仰角测量的C2算法研究[J].电光与控制,2008,15(11):36-40.
    [162]吕韶里,杨俊吟,万建伟.雷达自动跟踪测量的C2算法抗多径干扰研究[J].计算机测量与控制,2006,14(12):1654-1656.
    [163] Sherman S M, Barton D K. Monopulse principles and techniques[M]. ArtechHouse,2011.
    [164] Sherman S M. Complex indicated angles applied to unresolved radar targetsand multipath[J]. IEEE Trans. on Aerospace and Electronic Systems,1971,(1):160-170.
    [165] Peebles P Z, Goldman L. Radar performance with multipath using the complexangle[J]. IEEE Trans. on Aerospace and Electronic Systems,1971,(1):171-178.
    [166]杨世海.相控阵雷达低空目标探测与跟踪技术研究[D].中国人民解放军国防科学技术大学博士学位论文,2002.
    [167] Zoltowski M, Haber F. A vector space approach to direction finding in acoherent multipath environment[J]. IEEE Trans. on Antennas and Propagation,1986,34(9):1069-1079.
    [168]张文俊,赵永波,张守宏.广义MUSIC算法在米波雷达测高中的应用及其改进[J].电子与信息学报,2007,29(2):387-390.
    [169] DeGroat R D, Dowling E M. The constrained MUSIC Problem[J]. IEEE Trans.on Signal Processing,1993,41(3):1445-1449.
    [170] Linebarger D A, DeGroat R D, and Dowling E M. Constrained beamspaceMUSIC[C]. IEEE International Conference on Acoustics, Speech, and SignalProcessing,1993,4(4):548-551.
    [171] Petre S and Torsten S. On the constrained MUSIC Technique[J]. IEEE Trans.On Signal Processing,1993,41(11):3190-3193.
    [172]张忠,袁业术,孟宪德. Constrained MUSIC算法在高频地波舰载超视距雷达中的应用[J].系统工程与电子技术,2002,24(5):20-22.
    [173] DeGroat R D, Dowling E M. The constrained MUSIC Problem[J]. IEEE Trans.on Signal Processing,1993,41(3):1445-1449.
    [174] Sharman K C, Durrani T S. A comparative study of modern eigenstructuremethods for bearing estimation-a new high performance approach[C]. Decision andControl,198625th IEEE Conference on. IEEE,1986,25:1737-1742.
    [175]吴向东,赵永波,张守宏等.利用改进的Toeplitz化技术实现米波雷达低仰角测高[J].电子与信息学报,2010,32(3):570-574.
    [176]谢益溪.电波传播:超短波·微波·毫米波[M].电子工业出版社,1990.
    [177] Long M W.陆地和海面的雷达波散射特性[M].科学出版社,1981.
    [178]王元坤.电波传播概论[M].国防工业出版社,1984.
    [179] Blake L V. Radar range-performance analysis[M]. Artech House, Inc.,1986.
    [180]阿尔别尔特.无线电传播和电离层(第二卷)[M].人民邮电出版社,1981.
    [181]王增和,物理,卢春兰,等.天线与电波传播[M].机械工业出版社,2003.
    [182]肖景明,王元坤.电波传播工程计算[M].西安电子科技大学出版社,1989.
    [183]张瑜,李玲玲.低角雷达跟踪时的多路径散射模型[J].电波科学学报,2004,19(1):83-86.
    [184] Meng Y, Wong K M, Wu Q. Estimation of the direction of arrival of spreadsource in sensor array processing[C]. Proc. ICSP.1993,10:430-434.
    [185] Candès E J. Compressive sampling[C]. Proceedings of the InternationalCongress of Mathematicians: Madrid, August22-30,2006: invited lectures.2006:1433-1452.
    [186] Emmanuel C, Romberg J, Tao T. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information[J]. IEEE Trans.onInformation Theory,2006,52(2):489-509.
    [187] Candes E J, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Trans. on Information Theory,2006,52(12):5406-5425.
    [188] Donoho D L. Compressed sensing[J]. IEEE Trans. on Information Theory,2006,52(4):1289-1306.
    [189]石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081.
    [190]焦李成,杨淑媛,刘芳,等.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662.
    [191]林波.基于压缩感知的辐射源DOA估计[D].国防科学技术大学硕士学位论文,2010.
    [192] Cetin M, Malioutov D M, Willsky A S. A variational technique for sourcelocalization based on a sparse signal reconstruction perspective[C]. Acoustics,Speech, and Signal Processing (ICASSP),2002IEEE International Conference on.IEEE,2002,3: III-2965-III-2968.
    [193] Malioutov D, etin M, Willsky A S. A sparse signal reconstruction perspectivefor source localization with sensor arrays[J]. IEEE Trans. on Signal Processing,2005,53(8):3010-3022.
    [194]贺亚鹏,李洪涛,王克让,等.基干压缩感知的高分辩DOA估计[J].宇航学报,2011,32(6):1344-1349.
    [195] Cotter S. Multiple snapshot matching pursuit for direction of arrival estimation
    [C]. Proceedings of European Signal Processing Conference.2007:247-251.
    [196] Malioutov D, etin M, Willsky A S. A sparse signal reconstruction perspectivefor source localization with sensor arrays[J]. IEEE Trans. on Signal Processing,2005,53(8):3010-3022.
    [197] Cevher V, Gurbuz A C, McClellan J H, et al. Compressive wireless arrays forbearing estimation[C]. Acoustics, Speech and Signal Processing,2008. ICASSP2008. IEEE International Conference on. IEEE,2008:2497-2500.
    [198] Wang Y, Leus G, Pandharipande A. Direction estimation using compressivesampling array processing[C]. Statistical Signal Processing,2009. SSP'09. IEEE/SP15th Workshop on. IEEE,2009:626-629.
    [199]薛会祥,赵拥军.基于CS阵列的DOA估计[J].电子测量与仪器学报,2012,26(3):208-214.
    [200] Gurbuz A C, McClellan J H, Cevher V. A compressive beamforming method[C].Acoustics, Speech and Signal Processing,2008. ICASSP2008. IEEE InternationalConference on. IEEE,2008:2617-2620.
    [201]杨璋,程旺宗.基于CS理论的LFM信号DOA估计倡[J].计算机应用研究,2009,26(12):4642-4644
    [202] Yu Y, Petropulu A P, Poor H V. MIMO radar using compressive sampling[J].Selected Topics in Signal Processing, IEEE Journal of,2010,4(1):146-163.
    [203]孙磊,王华力,熊林林,等.基于贝叶斯压缩感知的子空间拟合DOA估计方法[J].信号处理,2012,28(6):827-833.
    [204] Richard B. A lecture on compressive sensing[J]. IEEE Signal ProcessingMagazine,2007,(7):118-124
    [205] Candes E J, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Trans. on Information Theory,2006,52(12):5406-5425.
    [206]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633.
    [207] Candès E J. The restricted isometry property and its implications forcompressed sensing[J]. Comptes Rendus Mathematique,2008,346(9):589-592.
    [208] Baraniuk R G. Compressive sensing [lecture notes][J]. Signal ProcessingMagazine, IEEE,2007,24(4):118-121.
    [209] Herman M A, Strohmer T. General deviants: An analysis of perturbations incompressed sensing[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):342-349.
    [210]薛会祥,赵拥军,郭磊.基于交替下降求解的稀疏信号重建算法[J].信息工程大学学报,2012,13(2):211-217.
    [211] Sarvotham S, Baron D, Baraniuk R G. Measurements vs. bits: Compressedsensing meets information theory[C]. Proceedings of44th Allerton Conf. Comm.,Ctrl., Computing.2006:1419-1423.
    [212] Mallat S and Zhang Z. Matching pursuit with time-frequency dictionaries[J].IEEE Trans. on Signal Processing,1993,41(12):3397-3415.
    [213] Tropp J, Gilbert A C. Signal recovery from partial information via orthogonalmatching pursuit[J].2005:4655-4666.
    [214] Schniter P, Potter L C, Ziniel J. Fast Bayesian matching pursuit[C]. InformationTheory and Applications Workshop, San Diego, CA,2008,326-333.
    [215] Donoho D L, Drori I, Tsaig Y, et al. Sparse solution of underdetermined linearequations by stagewise orthogonal matching pursuit[R]. Department of Statistics,Stanford University,2006.
    [216] Needell D, Vershynin R.Signal recovery from incomplete and inaccuratemeasurements via regularized orthogonal matching pursuit [OL].http://www.math.ucdavis.edtt/%7Evershynir/papers/ROMP-stability.pdf.
    [217] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basispursuit[J]. SIAM journal on scientific computing,1998,20(1):33-61.
    [218] Kim S J, Koh K, Lustig M, et al. A method for large-scale regularizedleast-squares[J]. IEEE Journal of Selected Topics in Signal Processing,2007,4(1):606-617
    [219] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparsereconstruction: Application to compressed sensing and other inverse problems[J].Selected Topics in Signal Processing, IEEE Journal of,2007,1(4):586-597.
    [220] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm forlinear invers Algorithmic linear dimension e problems with a sparsity constraint[J].Communications on pure and applied mathematics,2004,57(11):1413-1457.
    [221] Gilbert A C, Guha S, Indyk P, et al. Near-optimal sparse Fourier representationsvia sampling[C]. Proceedings of the thiry-fourth annual ACM symposium onTheory of computing. ACM,2002:152-161.
    [222] Gilbert A C, Li Y, Porat E, et al. Approximate sparse recovery: optimizing timeand measurements[J]. SIAM Journal on Computing,2012,41(2):436-453.
    [223] Bilik I. Spatial Compressive Sensing for Direction-of-Arrival Estimation ofMultiple Sources using Dynamic Sensor Arrays[J]. IEEE Trans. on Aerospace andElectronic Systems,2011,47(3):1754-1769.
    [224] Candes E J, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Trans. on Information Theory,2006,52(12):5406-5425.
    [225] Zheng J, Kaveh M. Directions-of-arrival estimation using a sparse spatialspectrum model with uncertainty[C]. Acoustics, Speech and Signal Processing(ICASSP),2011IEEE International Conference on. IEEE,2011:2848-2851.
    [226] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data usingFOCUSS: a re-weighted minimum norm algorithm[J]. IEEE Trans. On SignalProcessing,1997,45(3):600-616.
    [227] Wong K T, Zoltowski M D. High accuracy2D angle estimation with extendedaperture vector sensor arrays[C]. Acoustics, Speech, and Signal Processing,1996.ICASSP-96. Conference Proceedings.,1996IEEE International Conference on.IEEE,1996,5:2789-2792.
    [228] Dogan M C, Mendel J M. Applications of cumulants to array processing. I.aperture extension and array calibration[J]. IEEE Trans. on Signal Processing,1995,43(5):1200-1216.
    [229] Jacobs E, Ralston E W. Ambiguity resolution in interferometry[J]. IEEE Trans.on Aerospace and Electronic Systems,1981(6):766-780.
    [230] Nilsson J E, Warston H. Radar with separated subarray antennas[C]. RadarConference,2003. Proceedings of the International. IEEE,2003:194-199.
    [231] He J, Jiang S, Wang J, et al. Direction finding in spatially correlated noisefields with arbitrarily-spaced and far-separated subarrays at unknown locations[J].Radar, Sonar&Navigation, IET,2009,3(3):278-284.
    [232] Coutts S, Cuomo K, McHarg J, et al. Distributed coherent aperturemeasurements for next generation BMD radar[C]. Sensor Array and MultichannelProcessing,2006. Fourth IEEE Workshop on. IEEE,2006:390-393.
    [233] Van Trees H L. Optimum array processing[M]. Wiley-Interscience,2002.
    [234] Jacobs E, Ralston E W. Ambiguity resolution in interferometry[J]. IEEE Trans.on Aerospace and Electronic Systems,1981(6):766-780.
    [235] Chih H L. Distributed subarray antenna for multifunction phased arrayradar[D].Naval postgraduate school,2004.
    [236] Wong K T and Zoltowski M D. Direction finding with sparse rectangulardual-size spatial invariance array[J]. IEEE Trans. on Aerospace and Electronicsystems,1998,34(4):1320-1335.
    [237] Zoltowski M D and Wong K T. Closed-form eigenstructure-based directionfinding using arbitrary but identical subarrays on a sparse uniform cartesian arraygrid[J]. IEEE Trans. on Signal Processing,2000,48(8):2205-2210.
    [238] Engdahl C. Model-based adaptive detection and DOA estimation usingseparated subarrays[C]. IEEE Radar Conference,2002:104-109.
    [239] Yang X Y and Chen B X. An eigenstructure-based2D DOA estimation methodusing dual-size spatial invariance array[J]. Science China, Part F,2011,54(1):163-171.
    [240] Li J, Stoica P. An adaptive filtering approach to spectral estimation and SARimaging[J]. IEEE Trans. on Signal Processing,1996,44(6):1469-1484.
    [241] Stoica P, Li H, Li J. A new derivation of the APES filter[J]. Signal ProcessingLetters, IEEE,1999,6(8):205-206.
    [242] Gini F, Lombardini F. Multilook APES for multibaseline SAR interferometry[J].IEEE Trans. on Signal Processing,2002,50(7):1800-1803.
    [243] Russell D J, Palmer R D. Application of APES to adaptive arrays on theCDMA reverse channel[J]. IEEE Trans. on Vehicular Technology,2004,53(1):3-17.
    [244] Stoica P and Moses R. Spectral analysis of signals[M]. Pearson Prentice Hall,2005.
    [245] Glentis G O. A Fast Algorithm for APES and Capon Spectral Estimation[J].IEEE Trans. on Signal Processing,2008,56(9):4207-4220.
    [246] Glentis G O. Efficient Algorithms for Adaptive Capon and APES SpectralEstimation[J]. IEEE Trans. on Signal Processing,2010,58(1):84-96.
    [247] Kenny S R, MOE S and Ahmed A K. High Accuracy Peak Location andAmplitude Spectral Estimation via Tuning APES Method[J]. Digital SignalProcessing,2010,20:552-560.
    [248] Ding Q and Kay S. Inconsistency of The MDL: On The Performance of ModelOrder Selection Criteria with Increasing Signal-to-Noise Ratio[J]. IEEE Trans. onSignal Processing,2011,59(5):1959-1969.
    [249] Stoica P and Selen Y. Model-Order Selection: A Review of InformationCriterion Rules[J]. IEEE Signal Processing Magazine,2004:36-47.
    [250] Yardibi T, LI J, Stoica P, et al. Source Localization and Sensing: ANonparametric Iterative Adaptive Approach Based on Weighted Least Squares[J].IEEE Trans. on Aerospace and Electronic Systems,2010,46(1):425-443.
    [251] Wong K T and Zoltowski M D. Direction Finding with Sparse RectangularDual-Size Spatial Invariance Array[J]. IEEE Trans. on Aerospace and Electronicsystems,1998,34(4):1320-1335.
    [252]陈根华,陈伯孝,杨明磊等.干涉式L形阵的二维高精度方向估计[J].系统工程与电子技术,2012,34(1):17-23.
    [253]陈根华,陈伯孝,朱伟.干涉阵列米波雷达的低仰角高精度估计方法[J].西安电子科技大学学报,2012,39(6):42-48.
    [254] Stoica P, Nehorai A. Performance study of conditional and unconditionaldirection-of-arrival estimation[J]. IEEE Trans. on Signal Process,1990,38(10):1783-1795

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700