用户名: 密码: 验证码:
分布式多载舰地波超视距雷达阵列与信号重构技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式多载舰地波超视距雷达,简记为DMS-SWOTHR (Distributed Multi-Ship based Surface Wave Over-The-Horizen Radar),是一个在岸基和单载舰地波超视距雷达基础上发展起来的、以海上舰队为装载平台的全新体制的地波超视距对海探测雷达系统。相对于前两种雷达,它功能更强大、性能更先进,结构也更趋复杂。这种雷达除具有舰载OTHR (Over-The-Horizen Radar)机动性强的特点之外,最突出的优点是整体雷达系统资源可根据探测需求、信号环境和目标类型进行灵活配置和重构,因此能够实现雷达系统资源对作战使命的最佳匹配和对探测任务的使用效率最大化。同时,这种体制的雷达又是一个高度复杂而又精密的多普勒分析与分辨系统,它是靠在多普勒域里鉴别雷达目标和背景杂波在运动特性上的微小差别来区分和检测目标的。因此,它既是一个功能强大的对海探测系统,同时也是一个极富挑战性的研究课题。目前在国际上,对这种新体制超视距雷达的研究还是一个空白。
     本文就是以这种新体制超视距对海雷达为研究背景,从建立分布式移动多基系统的雷达系统模型和推导分布式移动多基系统的目标特性和杂波特性等基础研究开始,对分布式移动多基系统中的目标与杂波特性、分布式移动多基系统的阵列重构与信号重构技术以及基于重构虚拟大孔径阵列的信号相参处理等重要技术进行了比较深入的研究。在详细推导了分布式移动多基系统的复杂动态几何关系、回波信号模型以及一阶Bragg海浪展宽谱表达式基础上,重点开展了一阶海杂波展宽谱中的舰船目标提取、基于分布式系统的虚拟大孔径阵列重构以及在重构大阵列上应用空间超分辨技术来改善系统角分辨能力等技术的研究。
     首先,针对一发多收DMS-SWOTHR的几何结构特点,分析了岸基窄波束条件下双基地SWOTHR的海杂波基本理论,阐述了一、二阶海杂波的产生机理及数学模型。海面对高频段电磁波能产生Bragg谐振散射,海浪回波中的一阶分量是由满足Bragg谐振散射条件的重力波导致的,谐振散射条件不仅与雷达工作频率有关而且是双基地角的函数;二阶海杂波的回波能量比一阶海杂波小很多,但其产生机理却复杂得多;有向波高谱对一、二阶海杂波谱的大小起着重要作用。
     继而,推导了DMS-SWOTHR中任意收、发站平台与运动点目标三者之间的动态几何模型;并以此为基础分析了一阶海杂波谱的展宽机理,给出了DMS-SWOTHR中一阶Bragg海浪回波谱展宽的数学模型。雷达平台运动时,雷达距离分辨单元内不同方向的一阶海杂波谱受到不同程度的调制,导致一阶Bragg峰被展宽;而收、发站平台之间不可避免的相对运动又引入了时变的多普勒频移,这使得在多普勒域里一阶海杂波展宽谱的结构变得异常复杂,进而导致在DMS-SWOTHR系统中检测舰船目标变得非常困难。影响展宽谱中舰船目标检测的主要干扰是由于雷达平台运动而扩散到目标所在多普勒单元的一阶海杂波,通过对雷达平台运动合成孔径效应的分析可知:由于雷达平台运动而映射到任一雷达分辨单元里的一阶海浪的空间方位是已知的;且从概率意义上讲,落入目标所在分辨单元的一阶海杂波的空间方位与目标方位在绝大多数情况下是不同的。这种特定的动态空间几何关系,为在展宽的一阶海浪谱中检测舰船目标提供了技术上的可能性,这也构成了本文的基础和出发点。而对于舰船目标与一阶展宽海浪处于同一方位的特殊情况,可通过改变雷达系统工作频率和雷达系统的运动状态(或雷达平台的相对位置或运动速度或运动方向)来解决。
     接着,推导了DMS-SWOTHR系统中雷达回波信号的数学表达式。从其相位表达式来看,无论是径向匀加速船目标、向心加速度较大的船目标,还是具有时变多普勒频移的一阶海杂波,其相位关系都是相同的;但其物理意义却不尽相同。若不考虑统计特性的影响,同一距离单元中不同方向的一阶海杂波相对幅度可由双基地雷达方程求得。虽然二阶海杂波也同样会受到平台运动的调制,但由于它本身就是方位向上的全谱,在DMS-SWOTHR系统中与在岸基OTHR中的谱线结构变化不大,仍为一连续谱。因此,依据对高频段海浪回波统计特性分析结果,每个距离-多普勒单元中的二阶海杂波谱和大气噪声,在统计意义上可统一看作是加性高斯噪声。综合以上信号模型分别给出了海杂波展宽谱中有无船目标情况下的仿真结果,这些数据将用于目标提取。
     然后,针对回波信号多普勒谱中时变与非时变信号分量并存的情况,本文提出了基于施密特正交化理论的空域零点自适应方法来对消一阶海杂波,从而实现了在展宽的一阶海杂波谱中的船目标检测。这样不但能首先检测出非时变目标信号分量,而且可以大大减少多分量干扰源在后续处理中产生的交叉项。基于乘积型高阶模糊函数(PHAF)的迭代算法被用来提取时变目标信号对应的径向运动参数。在应用迭代算法过程中,当估计出一个目标的所有相位参数后即将该目标从待分析信号中剔除,这样做的优点是能有效降低由交叉项引起的确定性噪声水平。仿真结果表明基于PHAF的相位参数估计方法存在信噪比门限,但高信噪比时的均方误差(MSE)曲线非常接近克拉美-罗下限(CRLB);另外,在检测方案的循环处理过程中,参数估计精度因误差传播而有所下降。
     最后,基于DMS-SWOTHR的特定系统结构,提出了面向雷达系统分辨单元的阵列重构方法。针对入射到不同载舰上均匀线阵(ULA)的同一信号源所在的距离单元和多普勒单元,分别给出了实现大阵列相参信号处理所要满足的充分条件。在条件满足情况下,每个接收阵可视为某一分布式阵列的均匀线性子阵(ULSA)。为实现基于子阵列的跨平台相参信号处理,本文引入了虚拟插值阵列(VIA)变换方法。针对DMS-SWOTHR系统中各子阵间的高稀疏性使现有VIA变换技术在整个观测域上产生较大插值误差的情况,提出了一种基于预估计的VIA变换方法。其基本思想是:假设至少一个ULSA的接收数据可用来定位距离-多普勒单元内的强相关源,并指定若干较窄且不相重合的角度区间的并集作为插值区,插值区仅覆盖方位预估值而不考虑整个非插值区。该方法不仅保证了插值区的变换精度,而且避免了同一分辨单元内的强干扰源入射到非插值区的情形。此外,该方法舍弃了噪声预白化处理,代之以适当增加用于前后向空间平滑(FBSS)处理的虚拟ULA的子阵个数。这样不但可以达到解相关的目的,而且压低了噪声基底。通过蒙特卡洛仿真,本文提出的方法应用在DMS-SWOTHR中在低信噪比条件下比单载舰阵列情形获得更高的目标方位分辨性能和估值精度。
On the basis of both shore-based and shipborne surface wave over-the-horizon radar (SWOTHR), Distributed Multi-Ship based SWOTHR (DMS-SWOTHR) system is just beginning to develop, which employs more transmitters and receivers mounted on various ships in a battle group. Compared with the first two radar systems, DMS-SWOTHR is more advanced, but it has a much more complex configuration. Besides outstanding agility and maneuverability, DMS-SWOTHR can flexibly configure and reconstruct the entire system resource according to the detection requirement, the signal environment and the target type, and hence it can provide the optimal matching for the operational mission and the maximum using efficiency for the detection task. Also, DMS-SWOTHR is a highly complex and delicate Doppler resolution system that implements target detection and extraction by distinguishing the weak motion difference between the target and the background clutter in the Doppler domain. By far, the referable data of the researches on DMS-SWOTHR system are still absent, and this radar system has to be confronted with great challenges.
     Based on the above background, this dissertation begins with the fundamental researches on the distributed mobile radar system model and the characteristics of target and clutter, and then the further researches on the array and signal reconstruction techniques and the coherent signal processing techniques based on a reconstructed large array are made. After obtaining the dynamic geometry model, the received signal model and the Doppler-broadening expression of the first-order Bragg sea waves, this dissertation concentrates on the following problems both in theory and in simulation: how to extract the ships whose Doppler frequencies appear in the spreading domain of the first-order Bragg lines, how to perform the array reconstruction, and how to make the existing spatial super-resolution algorithms be applicable to the reconstructed large array.
     Firstly, in the DMS-SWOTHR system with a single transmitter and multiple receivers, since the receivers are mounted on different ships and separated from each other physically, this dissertation analyzes the basic theory of sea clutter for the shore-based narrowbeam bistatic SWOTHR, including the mechanisms of first- and second-order sea clutter and their mathematical models. According to the analysis, the sea surface is a type of special scatterer in high frequency bands. The first-order Bragg scattering is caused by gravity-waves with specific wavelength that is related to the radar operating frequency and the bistatic angle; the second-order sea clutter power is much weaker than the first-order power but its mechanism is much more complex; and the directional sea wave height spectrum has a remarkable effect on the first- and second-order sea clutter.
     Next, the dynamic geometry model of the transmitter platform, an arbitrary receiver platform and a moving target is derived. Based on the model, this dissertation analyzes the spreading mechanism of the first-order Bragg line in DMS-SWOTHR and presents a mathematical spreading model. The Doppler frequencies of sea echoes are simultaneously modulated by different radial velocity components projected from the radar platform motion, which results in the spreading of the first-order Bragg line; moreover, the time-varying Doppler frequencies are imparted due to the unavoidable motion difference between the transmitter and receiver platforms. Hence, the Doppler-broadening spectrum of the first-order sea clutter becomes very complex, which further weakens the ship target detection. The main interference for the detection of ship targets in the spreading domain is the first-order sea clutter from the direction different from the targets’azimuth angles but with the same Doppler frequency considering the platform motion. According to the synthetic aperture effect of radar platform motion, the azimuth of the first-order sea clutter falling into an arbitrary Doppler cell is known, and in a statistical sense, it is different from that of the target in the same cell. These conditions offer the technical possibilities for the target extraction. When the azimuth angles of the target and the first-order sea clutter are equal, changing the radar operating frequency or the motion of the radar system is effective.
     The above-mentioned geometrical relation is further employed to obtain the received signal model. As viewed from the phase expression after demodulation process and conventional range transform, the mathematical forms are the same for the ship target with a constant radial acceleration, the ship target with a relative centripetal acceleration, and the first-order sea clutter interference with a time-varying Doppler shift. Based on the bistatic radar equation, the relative amplitudes of the first-order sea clutter from different directions within the range cell are not equal when neglecting the statistical factor. Although the second-order sea clutter are also affected by the platform motion, the second-order spectrum, compared with that in the shore-based case, is still a continuum and changes indistinctively. Thus, the second-order sea clutter continuum and the atmospheric noise in each range-Doppler cell are both considered as the additive noise whose amplitude and phase are modeled by Rayleigh and uniform distributions, respectively. This dissertation gives the simulation results under different conditions based on the above signal models.
     Then, for the radar echoes containing time-varying and non-time-varying signal components in the Doppler domain, this dissertation proposes a scheme that is a recursive procedure for target extraction. The main idea is that the orthogonal weighting technique is performed to cancel the broadened first-order Bragg lines, so that not only the uniformly moving targets could be first detected due to little coherent integration loss (CIL) but also the cross-terms to be produced in the subsequent steps are greatly reduced in advance, and then the product high-order ambiguity function (PHAF) based spectra are obtained to estimate the corresponding radial motion parameters of the nonuniformly moving targets, respectively. In this scheme, an arbitrary target, once extracted fully, has to be removed for the purpose of suppressing the deterministic noise generated by the cross-terms. The simulation results shows that at low peak SNR, the PHAF-based method exhibits a threshold effect, but at high peak SNR, the performance is very close to the corresponding Cramer-Rao lower bound (CRLB). In addition, the estimation accuracy degrades because of the error propagation as the“peeling”algorithm proceeds.
     Finally, based on the special configuration of DMS-SWOTHR, this dissertation proposes a radar resolution cell oriented array reconstruction method. The coherence conditions for a given signal source are analyzed in both the range and Doppler domains, respectively, when impinging on multiple uniform linear arrays (ULAs) mounted on the DMS-WOTHR platforms, respectively. If the conditions are both satisfied, all the receiving arrays can be regarded as the uniform linear subarrays (ULSAs) of a distributed array. To implement the cross-platform coherent signal processing by using the array reconstruction technique to synthesize a larger receiving array, the virtual interpolated array (VIA) transform is introduced. The existing robust VIA transform techniques can cause unacceptable interpolation errors over the entire field of view because of high sparseness of the distributed array. For that, this dissertation proposes a preestimation-based VIA transform method by specifying a union of nonoverlapping narrow subsectors as the interpolated sector to cover only the source locations preestiamted roughly on an assumption that at least a single ULSA is available for localizing highly correlated sources within the range-Doppler cell. This method not only guarantees the interpolation precision in the interpolated sector but also avoids the situation of strong interference sources in the same cell impinging on the array outside the sector in multisource scenarios. In addition, it skips noise prewhitening and employs more subarrays of the virtual ULA for forward-backward spatial smoothing (FBSS) that plays a key role in noise floor reduction as well as correlated source decorrelation. Monte Carlo simulations show that the proposed method used in DMS-SWOTHR performs much better in both the azimuth resolution and estimation precision at low SNRs.
引文
1 D. D. Crombie. Doppler Spectrum of Sea Echo at 13.56 Mc/s. Nature. 1955, 175: 681~682
    2 D. E. Barrick. Theory of HF and VHF Propagation across the Rough Sea and Application to HF and VHF Propagation above the Sea. Radio science. 1971, 6(6): 517~526
    3 D. E. Barrick. Extraction of Wave Parameters from Measured HF Radar Sea Echo Doppler Spectra. Radio science. 1977, 12(3): 415~424
    4 R. H. Khan. Ocean-Clutter Model for High-Frequency Radar. IEEE Journal of Oceanic Engineering. 1991, 16(2): 181~188
    5刘永坦.高频地波超视距雷达.航天雷达技术. 1991: 1~8
    6刘春阳,王义雅.高频地波超视距雷达述评.现代防御技术. 2002, 30(6): 38~46
    7周文瑜,焦培南.超视距雷达技术.电子工业出版社. 2008: 28~37
    8 J. M. Headrick. Looking Over the Horizon. IEEE Spectrum. 1990, 27(7): 36~39
    9 Research news: Over-the-Horizon (OTH) Maritime Sensor. GEC Journal of Research, 1996, 13(1): 54~55
    10陈详占.国外地波超视距雷达的研究和应用.电子工程信息. 1994, 9: 19~23
    11 E. D. R. Shearman. Over-the-Horizon Radar, Ch. 5 of Modern Radar Techniques. M. J. B. Scanlan ed., 1987
    12 Y. Liu, R. Xu and N. Zhang. Progress in HFSWR Research at Harbin Institute of Technology. RADAR’03. Adelaide, Australia, 2003: 522~528
    13陈振邦.舰载超视距雷达发展研究.雷达与对抗. 1997, (1): 1~8, 35
    14 J. Xie, Y. Yuan and Y. Liu. Experimental Analysis of Sea Clutter in Shipborne HFSWR. IEE Proc. Radar, Sonar & Navigation. 2001, 148(2): 67~71
    15冀振元,孟宪德,周和秘.高频地波超视距雷达海杂波信号分析.系统工程与电子技术. 2000, 22(5): 12~14, 16
    16刘春波,陈伯孝,陈多芳,张守宏.岸-舰双基地高频地波雷达一阶海杂波特性分析.电波科学学报. 2007, 22(4): 599~603
    17王剑,戴征坚,陈伯孝.机动式双基地地波OTH雷达的若干关键技术研究.现代雷达. 2003, 25(12): 19~22
    18 S. J. Anderson. Optimisation of bistatic HF surface wave radar configurations. RADAR’07. Edinburgh, UK, 2007: 666~669
    19 E. Gill, W. Huang and J. Walsh. On the Development of a Second-Order Bistatic Radar Cross Section of the Ocean Surface: A High-Frequency Result for a Finite Scattering Patch. IEEE Journal of Oceanic Engineering. 2006, 31(4): 740~750
    20 E. Hanle. Survey of Bistatic and Multistatic Radar. IEE Proc. pt. F. 1986, 133(7): 587~595
    21 K. M. Siegel, et al. Bistatic Radar Cross Sections of Surfaces of Revolution. Journal of Applied Physics. 1955, 26(3): 297~305
    22何友等.多传感器信息融合及应用.电子工业出版社. 2000: 3~6
    23权太范.信息融合神经网络-模糊推理理论与应用.国防工业出版社. 2002: 33~49
    24 D. E. Barrick, P. M. Lilleboe, B. J. Lipa and J. Isaacson. Ocean Surface Current Mapping with Bistatic HF Radar. US Patent 6774837, 2004
    25 O. Schofield, et al. The Long-Term Ecosystem Observatory:An Integrated Coastal Observatory. IEEE Journal of Oceanic Engineering. 2002, 27(2): 146~154
    26 D. Trizna, J. Gordon, H. Graber and B. Haus. Results of a Bistatic HF Radar Surface Wave Sea Scatter Experiment. IGARSS’02. Toronto, Canada, 2002, 3: 1902~1904
    27 S. J. Anderson. Directional Wave Spectrum Measurement with Multistatic HF Surface Wave Radar. IGARSS’00. Honolulu, USA, 2000, 7: 2946~2948
    28 S. J. Anderson, P. J. Edwards, P. Marrone and Y. I. Abramovich. Investigations with SECAR - A Bistatic HF Surface Wave Radar. RADAR’03. Adelaide, Australia, 2003: 717~722
    29 C. C. Teague, G. L. Tyler and R. H. Stewart. Studies of the Sea Using HF Radio Scatter. IEEE Trans. Antennas and Propagation. 1977, 25(1): 12~19
    30 G. L. Tyler, C. C. Teague, R. H. Stewart, A. M. Peterson, W. H. Munk and J. W. Joy. Wave Directional Spectra from Synthetic Aperture Observations of Radio Scatter. Deep Sea Research and Oceanographic Abstracts. 1974, 21(12): 989~1016
    31 C. C. Teague. In-Situ Decametric Radar Observations of Ocean-Wave Directional Spectral during the 1974 Norpax‘Pole’Experiment. Stanford University, AD-A009434, 1975
    32 D. E. Barrick and B. J. Lipa. CODAR Wave Measurements from a North Sea Semi-Submersible. IEEE Journal of Oceanic Engineering. 1990, 15(2): 119~125
    33 R. Howell and J. Walsh. Measurement of Ocean Wave Spectra Using a Ship-Mounted HF Radar. IEEE Journal of Oceanic Engineering. 1993, 18(3): 306~310
    34 H. H. Essen, K. W. Gurgel, F. Schirmer and T. Schlick. Surface Currents during NORCSEX’88, as Measured by a Land- and a Ship-Based HF radar. IGARSS’89. Vancouver, Canada, 1989: 730~733
    35 K. W. Gurgel. Shipborne Measurement of Surface Current Fields by HF Radar. Proceedings of 1994 IEEE Oceans Conference. 1994, 3: 23~27
    36 K. W. Gurgel and H. H. Essen. On the Performance of a Shipborne Current Mapping HF Radar. IEEE Journal of Oceanic Engineering. 2000, 25(1):183~191
    37 HFSWR: the Way forward for Anti-Missile Defence. Maritime Defence. 1996, 21(3): 69~70
    38 US Navy to Test Shipborne Over-the-Horizon Radar. Jane’s NAVY International. 1996, 101(3): 4
    39徐产兴.舰载雷达的主要关键技术.雷达与对抗. 1997, (4): 5~12, 32
    40刘媛.双/多基地高频雷达目标回波及海杂波特性分析与模拟.哈尔滨工业大学硕士论文. 2007
    41鲁振兴.移动双(多)基地雷达回波特性分析.哈尔滨工业大学硕士论文. 2007
    42尚海燕.岸舰双/多基地地波超视距雷达机动目标的检测.西安电子科技大学博士论文. 2008
    43保铮,张庆文.一种新型的米波雷达—综合脉冲与孔径雷达.现代雷达. 1995, 17(1): 1~13
    44 R. H. Khan, D. K. Mitchell. Waveform Analysis for High Frequency FMICW Radar. IEE Proc. pt. F. 1991, 138(5): 411~419
    45 NRad Looks Over HFSWR Horizons. Jane’s NAVY International. 1996, 101(9): 23
    46 A. M. Ponsford, D. J. Bagwell, D. G. Money and M. H. Gledhill. Progress in Ship Tracking by HF Ground-Wave Radar. RADAR’87. London, UK, 1987: 89~96
    47高兴斌,宗成阁,袁业术.高频地波舰载超视距雷达的海杂波对消.电子学报. 2000, 28(3): 5~8
    48 X. Gao and C. Zong. Ship Target Detection for HF Groundwave Shipborne OTH Radar. IEE Proc. Radar, Sonar & Navigation. 1999, 146(6): 305~311
    49 J. Xie, Y. Yuan and Y. Liu. Suppression of Sea Clutter with Orthogonal Weighting for Target Detection in Shipborne HFSWR. IEE Proc. Radar, Sonar & Navigation. 2002, 149(1): 39~44
    50 M. Lesturgie. Use of STAP Techniques to Enhance the Detection of Low Targets in Shipborne HFSWR. RADAR’03. Adelaide, Australia, 2003: 504~509
    51 L. E. Brennan and R. S. Reed. Theory of Adaptive Radar. IEEE Trans. AES. 1973, 9(2): 237~252
    52 L. E. Brennan, J. D. Mallett and R. S. Reed. Adaptive Array in Airborne MTI Radar. IEEE Trans. AP. 1976, 24(5): 607~615
    53 R. Klemm. Adaptive Airborne MTI: An Auxiliary Channel Approach. IEE Proc. pt. F. 1987, 134(3): 269~276
    54 J. Xie, Y. Yuan and Y. Liu. Experimental Analysis of Sea Clutter in Shipborne HFSWR. IEE Proc. Radar, Sonar & Navigation. 2001, 148(2): 67~71
    55谢俊好,许荣庆,袁业术,刘永坦.高频地波舰载超视距雷达中的空时处理.系统工程与电子技术. 1998, 20(2): 30~36
    56谢俊好,袁业术,段凤增.基于时域插值的舰载高频地波雷达空时处理.哈尔滨工业大学学报. 1998, 30(6): 89~93
    57吴世才,杨子杰,文必洋,石振华,田建生.高频地波雷达信号波形分析.武汉大学学报(理学版). 2001, 47(5): 524~525
    58冀振元,孟宪德,王吉滨.高频雷达中信号的分析.系统工程与电子技术. 1999, 21(12): 14~16
    59 T. Thayaparan, S. Kennedy. Detection of a Manoeuvring Air Target in Sea-Clutter Using Joint Time-Frequency Analysis Techniques. IEE Proc. Radar, Sonar & Navigation. 2004, 151(1): 19~30
    60 T. Thayaparan, A. Yasotharan. Time-Frequency Method for Detecting an Accelerating Target in Sea Clutter. IEEE Trans. AES. 2006, 42(4): 1289~1310
    61 T. Thayaparan, L. J. Stankovic and M. Dakovic. Signal Decomposition by Using the S-Method with Application to the Analysis of HF Radar Signals in Sea-Clutter. IEEE Trans. Signal Processing. 2006, 54(11): 4332~4342
    62 S. Mann and S. Haykin. The Chirplet Transform: Physical Considerations. IEEE Trans. Signal Processing. 1995, 43(11): 2745~2761
    63 G. Wang, X. Xia, B. T. Root and V. C. Chen. Moving Target Detection in Over-the-Horizon Radar Using Adaptive Chirplet Transform. IEEE Radar Conference. Long Beach, USA, 2002: 77~84
    64 G. Wang, X.-G. Xia, B. T. Root, V. C. Chen, Y. Zhang and M. Amin. Manoeuvring Target Detection in Over-the-Horizon Radar Using Adaptive Clutter Rejection and Adaptive Chirplet Transform. IEE Proc. Radar, Sonar & Navigation. 2003, 150(4): 292~298
    65 G. Wang, X.-G. Xia, B. T. Root, V. C. Chen, Y. Zhang and M. G. Amin. Maneuvering Target Detection in Over-the-Horizon Radar by Using Adaptive Chirplet Transform and Subspace Clutter Rejection. IEEE ICASSP’03. Hong Kong, China, 2003: 49~52
    66 B. T. Root. HF-Over-the-Horizon Radar Ship Detection with Short Dwells Using Clutter Cancellation. Radio Science. 1998, 33(4): 1095~1111
    67王新,袁业术.高频地波舰载超视距雷达的双零点波束测角方法.电子学报. 2002, 30(3): 305~308
    68刘子文,王新,单娜.基于运动平台的高频地波超视距雷达的一种测角方法.中国电子学会第八届青年学术年会论文集. 2002: 905~910
    69谢俊好.舰载高频地波雷达目标检测与估值研究.哈尔滨工业大学博士论文. 2001: 90~94, 106~108
    70 T. J. Shan, M. Wax and T. Kailath. Adaptive Beamforming for Coherent Signals and Interference. IEEE Trans. ASSP. 1985, 33(3): 527~536
    71 S. U. Pillai and B. H. Kwon. Forward/Backward Spatial Smoothing Techniques for Coherent Signal Identification. IEEE Trans. ASSP. 1989, 37(1): 8~15
    72 A. Di and L. Tian. Matrix Decomposition and Multiple Source Location. IEEE ICASSP’84. San Diego, USA, 1984: 33.4.1~33.4.4
    73 A. Di. Multiple Source Location– A Matrix Decomposition Approach. IEEE Trans. ASSP. 1985, 33(5): 1086~1091
    74 J. A. Cadzow, Y. S. Kim and D. C. Shiue. General Direction-of-Arrival Estimation: A Signal Subspace Approach. IEEE Trans. AES. 1989, 25(1): 31~47
    75 J. A. Cadzow, Y. S. Kim, D. C. Shiue, Y. Sun and G. Xu. Resolution of Coherent Signals Using a Linear Array. IEEE ICASSP’87. Dallas, USA, 1987: 1597~1600
    76 J. F. Yang and M. Kaveh. Wideband Adaptive Arrays Based on the Coherent Signal-Subspace Transformation. IEEE ICASSP’87. Dallas, USA, 1987: 2011~2014
    77 A. K. Shaw and R. Kumaresan. Estimation of Angles of Arrivals of Broadband Signals. IEEE ICASSP’87. Dallas, USA, 1987: 2296~2299
    78 S. Y. Kung, C. K. Lo and R. Foka. A Toeplitz Approximation Approach to Coherent Source Direction Finding. IEEE ICASSP’86. Tokyo, Japan, 1986: 193~196
    79 Y. M. Chen, J. H. Lee, C. C. Yeh and J. Mar. Bearing Estimation without Calibration for Randomly Perturbed Arrays. IEEE Trans. Signal Processing. 1991, 39(1): 194~197
    80 D. A. Linebarger. Redundancy Averaging with Large Arrays. IEEE Trans. Signal Processing. 1993, 41(4): 1707~1710
    81张忠,袁业术,孟宪德.舰载超视距雷达背景杂波统计特性分析.系统工程与电子技术. 2002, 24(9): 19~22
    82石镇.自适应天线原理.国防工业出版社. 1991: 49~51
    83陈伯孝,张守宏.大型随机稀布阵列雷达的脉冲综合方法及其性能.系统工程与电子技术. 1998, 20(11): 46~49
    84陈建峰,张贤达,吴云韬.近场源距离、频率及到达角联合估计算法.电子学报. 2004, 32(5): 803~806
    85吴云韬,侯朝焕,王荣,孙小东.一种基于高阶累积量的近场源距离、频率和方位联合估计算法.电子学报. 2005, 33(10): 1893~1896
    86 E. D. R. Shearman. Radio Science and Oceanography. Radio Science. 1983, 18(3): 299~320
    87 J. R. Wait. Theory of HF Ground Wave Backscatter from Sea Waves. Journal of Geophysical Research. 1966, 71: 4839~4842
    88 K. Hasselmann. Determination of Ocean Wave Spectra from Doppler Radio Return from the Sea Surface. Nature Physical Science. 1971, 229: 16~17
    89 D. E. Barrick. First-Order Theory and Analysis of MF/HF/VHF Scatter from the Sea. IEEE Trans. Antennas and propagation. 1972, 20(1): 2~10
    90 D. E. Barrick. Remote Sensing of Sea State by Radar. OCEANS. Newport, USA, 1972: 186~192
    91 G. L. Tyler, W. E. Faulkerson, A. M. Peterson and C. C. Teague. Second-Order Scattering from the Sea: Ten-Meter Radar Observations of the Doppler Continuum. Science. 1972, 177(4046): 349~351
    92 A. M. Peterson, C. C. Teague and G. L. Tyler. Bistatic-Radar Observation of Long-Period, Directional Ocean-Wave Spectra with LORAN A. Science. 1970, 170: 158~161
    93 E. W. Gill. The Scattering of High Frequency Electromagnetic Radiation from the Ocean Surface: An Analysis Based on a Bistatic Ground Wave Radar Configuration. PhD thesis, Memorial University of Newfoundland, St. John’s, Newfoundland, 1999
    94 E. W. Gill and J. Walsh. Bistatic Form of the Electric Field Equations for the Scattering of Vertically Polarized High-Frequency Ground Wave Radiation from Slightly Rough, Good Conducting Surfaces. Radio Science. 2000, 35(6): 1323~1335
    95 J. Walsh and E. W. Gill. An Analysis of the Scattering of High-Frequency Electromagnetic Radiation from Rough Surfaces with Application to Pulse Radar Operating in Backscatter Mode. Radio Science. 2000, 35(6): 1337~1359
    96 E. W. Gill, J. Walsh. High-Frequency Bistatic Cross Sections of the Ocean Surface. Radio Science. 2001, 36(6): 1459~1475
    97叶安乐,李凤岐.物理海洋学.青岛海洋大学出版社. 1992: 334~451
    98 W. Pierson and L. Moskowitz. A Proposed Spectral form for Fully Developed Seas Based upon the Similarity Theory of S.A. Kitaigorodskii. Journal of Geophysical Research. 1964, 69(24): 5181~5190
    99 D. B. Trizna, J. C. Moore, J. M. Headrick and R. W. Bogle. Directional Sea Spectrum Determination Using HF Doppler Radar Techniques. IEEE Trans. Antennas and Propagation. 1977, 25(1): 4~11
    100 R. E. Robson. Simplified Theory of First- and Second-Order Scattering of HF Radio Waves from the Sea. Radio Science. 1984, 19(6): 1499~1504
    101 J. Zhang and E. W. Gill. Extraction of Ocean Wave Spectra from Simulated Noisy Bistatic High-Frequency Radar Data. IEEE journal of Oceanic Engineering. 2006, 31(4): 779~796
    102 P. Forget, P. Broche, J. C. De Maistre and A. Fontanel. Sea State Frequency Features Observed by Ground Wave HF Doppler Radar. Radio Science. 1981, 16(5): 917~925
    103 B. Li, B. Xu and Y. Yuan. Extraction of Mixed-Order Multicomponent Ship Target Signals from Broadened Sea Clutter in Bistatic Shipborne SWR. IET Radar, Sonar & Navigation. 2009, 3(3): 214~223
    104 M. L. Parkinson. Observations of the Broadening and Coherence of MF/Lower HF Surface Radar Ocean Echoes. IEEE Journal of Oceanic Engineering. 1997, 22(1): 347~363
    105 D. E. Barrick and J. B. Snider. The Statistics of HF Sea-Echo Doppler Spectra. IEEE Trans. Antennas and Propagation. 1977, 25(1): 19~28
    106沈燮昌.多项式最佳逼近的实现.上海科学技术出版社. 1984: 1~7
    107 K. Lu and X. Liu. Enhanced Visibility of Maneuvering Targets for High-Frequency Over-the-Horizon Radar. IEEE Trans. Antennas and Propagation. 2005, 53(1): 404~411
    108 A. Scaglione and S. Barbarossa. On the Spectral Properties of Polynomial-Phase Signals. IEEE Signal Processing Letters. 1998, 5(9): 237~240
    109 Z. Zhang, Y. Yuan and X. Meng. HF Shipborne Over-the-Horizon Surface Wave Radar Background Clutter Statistics. RADAR’01. Beijing, China, 2001: 100~104
    110冀振元.舰载超视距雷达目标与海杂波特性分析及模拟.哈尔滨工业大学博士论文. 2001: 48~51
    111 M. M. Weiner and P. D. Kaplan. Bistatic Surface Clutter Resolution Area at Small Grazing Angles. AD-A1236603, 1982
    112杨振起,张永顺,骆永军.双(多)基地雷达系统.国防工业出版社. 1998: 66~69
    113康春梅,袁业术.用MUSIC算法解决海杂波背景下相干源探测问题.电子学报. 2004, 32(3): 502~504
    114 P. Stoica, M. Viberg and B. Ottersten. Instrumental Variable Approach to Array Processing in Spatially Correlated Noise Fields. IEEE Trans. Signal Processing.1994, 42(1): 121~133
    115 S. Peleg and B. Porat. Estimation and Classification of Polynomial-Phase Signals. IEEE Trans. Information Theory. 1991, 37(2): 422~430
    116 S. Peleg and B. Friedlander. The Discrete Polynomial-Phase Transform. IEEE Trans. Signal Processing. 1995, 43(8): 1901~1914
    117 S. Barbarossa, A. Scaglione and G. B. Giannakis. Product High-Order Ambiguity Function for Multicomponent Polynomial-Phase Signal Modeling. IEEE Trans. Signal Processing. 1998, 46(3): 691~708
    118 S. Barbarossa and V. Petrone. Analysis of Polynomial-Phase Signals by the Integrated Generalized Ambiguity Function. IEEE Trans. Signal Processing. 1997, 45(2): 316~327
    119 S. Peleg and B. Porat. The Cramer-Rao Lower Bound for Signals with Constant Amplitude and Polynomial Phase. IEEE Trans. Signal Processing. 1991, 39(3): 749~752
    120 B. Ristic and B. Boashash. Comments on“The Cramer-Rao Lower Bound for Signals with Constant Amplitude and Polynomial Phase”. IEEE Trans. Signal Processing. 1998, 46(6): 1708~1709
    121 L. Cohen. What is a Multicomponent Signal? IEEE ICASSP’92. San Francisco, USA, 1992: 113~116
    122 M. Z. Ikram and G. T. Zhou. Estimation of Multicomponent Polynomial Phase Signals of Mixed Orders. Signal Processing. 2001, 81(11): 2293~2308
    123 R. Klemm. Comparison between Monostatic and Bistatic Antenna Configurations for STAP. IEEE Trans. AES. 2000, 36(2): 596~608
    124王永良,魏进武,陈建文.双基地机载预警雷达空时二维杂波建模及杂波特性分析.电子学报. 2001, 29(12A): 1940~1943
    125魏进武,王永良,陈建文.双基地机载预警雷达空时自适应处理方法.电子学报. 2001, 29(12A): 1936~1939
    126宁蔚,廖桂生.双基机载对地杂波的背面效应及其在GMTI中的应用.电子学报. 2005, 33(12): 2242~2245
    127 K. P. Ong and B. Mulgrew. Doppler Compensation for JDL for Airborne Bistatic Radar. IEEE Sensor Array and Multichannel Signal Processing Workshop. Rosslyn, USA, 2002: 82~86
    128 V. Varadarajan and J. Krolik. Joint Space-Time Interpolation for Bistatic STAP.
    37th Asilomar Conference on Signals, System and Computers. Pacific Grove, USA, 2003: 60~65
    129 V. Varadarajan, J. L. Krolik. Joint Space-Time Interpolation for Distorted Linear and Bistatic Array Geometries. IEEE Trans. Signal Processing. 2006, 54(3):848~860
    130 J. E. Hudson. Adaptive Array Principles. Peter Peregrinus Ltd. 1981: 39~48, 131~141
    131 R. A. Monzingo and T. W. Miller. Introduction to Adaptive Arrays. John Wiley & Sons. 1980: 134
    132 J. Xie, Y. Yuan and Y. Liu. Super-Resolution Processing for HF Surface Wave Radar Based on Pre-Whitened MUSIC. IEEE Journal of Oceanic Engineering. 1998, 23(4): 313~321
    133 B. Friedlander. The Root-MUSIC Algorithm for Direction Finding with Interpolated Arrays. Signal Processing. 1993, 30(1): 15~29
    134 A. B. Gershman and J. F. Bohme. A Note on Most Favorable Array Geometries for DOA Estimation and Array Interpolation. IEEE Signal Processing Letters. 1997, 4(8): 232~235
    135 J. Eriksson and M. Viberg. Data Reduction in Spatially Colored Noise Using a Virtual Uniform Linear Array. IEEE ICASSP’00. Istanbul, Turkey, 2000: 3073~3076
    136 D. V. Sidorovich and A. B. Gershman. Two-Dimensional Wideband Interpolated Root-MUSIC Applied to Measured Seismic Data. IEEE Trans. Signal Processing. 1998, 46(8): 2263~2267
    137 M. Pesavento, A. B. Gershman and Z. Luo. Robust Array Interpolation Using Second-Order Cone Programming. IEEE Signal Processing Letters. 2002, 9(1): 8~11
    138 B. K. Lau, G. J. Cook and Y. H. Leung. An Improved Array Interpolation Approach to DOA Estimation in Correlated Signal Environments. IEEE ICASSP’04. Montreal, Canada, 2004: 237~240
    139 B. K. Lau, M. Viberg and Y. H. Leung. Data-Adaptive Array Interpolation for DOA Estimation in Correlated Signal Environments. IEEE ICASSP’05. Philadelphia, USA, 2005: 945~948
    140 B. K. Lau, G. J. Cook and Y. H. Leung. An Alternative Approach to Interpolated Array Processing for Uniform Circular Arrays. Asia-Pacific Conference on Circuits and Systems. Bali, Indonesia, 2002: 411~414
    141 B. Friedlander and A. J. Weiss. Performance Analysis of Wideband Direction Finding Using Interpolated Arrays. IEEE ICASSP’92. San Francisco, USA, 1992: 457~460
    142 Y. H. Chen and R. H. Chen. Directions-of-Arrival Estimations of Multiple Coherent Broadband Signals. IEEE Trans. AES. 1993, 29(7): 1035~1043
    143 B. Friedlander and A. J. Weiss. Direction Finding for Wide-Band Signals Usingan Interpolated Array. IEEE Trans. Signal Processing. 1993, 41(4): 1618~1634
    144 B. Friedlander and A. J. Weiss. Direction Finding Using Spatial Smoothing with Interpolated Arrays. IEEE Trans. AES. 1992, 28(2): 574~587
    145 A. J. Weiss and B. Friedlander. Performance Analysis of Spatial Smoothing with Interpolated Arrays. IEEE Trans. Signal Processing. 1993, 41(5): 1881~1892
    146 A. J. Weiss, B. Friedlander and P. Stoica. Direction-of-Arrival Estimation Using MODE with Interpolated Arrays. IEEE Trans. Signal Processing. 1995, 43(1): 296~300
    147 A. J. Weiss and M. Gavish. Direction Finding Using ESPRIT with Interpolated Arrays. IEEE Trans. Signal Processing. 1991, 39(6): 1473~1478
    148 M. Gavish and A. J. Weiss. Performance Analysis of the VIA-ESPRIT Algorithm. IEE Proc. pt. F. 1993, 140(2): 123~128
    149 R. O. Schmidt. Multilinear Array Manifold Interpolation. IEEE Trans. Signal Processing. 1992, 40(4): 857~866
    150 A. Zeira and B. Friedlander. Interpolated Arrays Minimum Variance Beamforming for Correlated Interference Rejection. IEEE ICASSP’96. Atlanta, USA, 1996: 3165~3168
    151 Y. Wang, H. Chen and S. Wan. An Effective DOA Method via Virtual Array Transformation. Science in China (Series E). 2001, 44(1): 75~82
    152 B. Li, B. Xu and Y. Yuan. Preestimation-Based Array Interpolation Approach to Coherent Source Localization Using Multiple Sparse Subarrays. IEEE Signal Processing Letters. 2009, 16(2): 81~84
    153 X. Xu, Z. Ye, Y. Zhang and C. Chang. A Deflation Approach to Direction of Arrival Estimation for Symmetric Uniform Linear Array. IEEE Antennas and Wireless Propagation Letters. 2006, 5(1): 486~489
    154 A. J. Weiss and B. Friedlander. On the Cramer-Rao Bound for Direction Finding of Correlated Signals. IEEE Trans. Signal Processing. 1993, 41(1): 495~499
    155 B. Li, B. Xu and Y. Yuan. Enhanced DOA Visibility of Correlated Sources for Multistatic Shipborne Surface Wave Radar. IEEE Radar Conference. Pasadena, USA, 2009: 1087~1091

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700