用户名: 密码: 验证码:
Klebsiella pneumoniae ECU-15菌株暗发酵产氢过程分析及其利用木质纤维素水解液的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染等问题迫使人们寻找可以替代传统化石能源的新型清洁可再生能源。氢能因其自身的高转化效率及清洁、无污染等优点而被公认为最有发展前景的能源形式之一。常规的制氢方法有热化学法、电化学法及生物转化法,相比而言,生物制氢技术具有可在常温常压下操作,并能利用可再生生物废弃物等优点而备受关注。生物制氢主要包括光发酵制氢、暗发酵制氢及两者联合制氢等,其中暗发酵制氢具有产氢速度快,设备简单、易实施,以及可利用可再生资源和废弃物等特点而最具产业化前景。但是该技术存在微生物产氢得率低、发酵底物成本高等缺陷,成为限制暗发酵制氢工业化的主要技术瓶颈。针对上述问题,本文分别从产氢菌种、培养条件及发酵底物等方面进行了相关研究。首先,开展了高效产氢菌株的筛选、鉴定,及发酵产氢条件的优化等研究工作,了解了所筛菌株的基本产氢特性,并在此基础上考察了不同发酵条件对其产氢代谢途径的影响,以期为该菌株的分子生物学改造提供理论依据。其次,在上述优化条件下进行了木质纤维素水解液发酵产氢实验研究,考察了所筛菌株在木质纤维素水解液中的发酵产氢特性,并进一步分析了木质纤维素水解液中影响产氢得率的主要原因,为后续利用木质纤维素水解液进行暗发酵制氢过程的开发提供了必要的基础数据。
     本文以污水处理厂厌氧污泥为基质进行产氢菌种的筛选,通过初筛与复筛得到54株产氢菌株,最终选定氢气产量与产氢得率相对较高的三株细菌进行了鉴定。经形态学观察、生理生化特性实验及16S rRNA序列分析后,发现三株被鉴菌株均为克雷伯氏肺炎杆菌(Klebsiella pneumoniae),将产氢效率最高的一株菌株命名为Klebsiella pneumoniae ECU-15,并进一步开展了后续实验研究。
     为了优化培养条件和培养基组分,首先对K.pneumoniae ECU-15菌株的产氢特性进行了考察。实验发现严格厌氧环境有利于提高产氢效率,其氢气产量比微好氧条件提高了17.97%。细胞生长与氢气合成的最佳温度均为37℃,细胞生长的最佳pH值为7.0,但产氢的最佳pH值为6.0。ECU-15菌株能够利用单糖、双糖等碳源为底物,而不能利用纤维素及淀粉等多糖,且葡萄糖最适于氢气的合成。产氢得率随初始葡萄糖浓度的提高而降低,当初始葡萄糖浓度为5g/L时产氢得率达到最大值(2.07mol/mol glucose)。单位体积的产氢速率则随初始葡萄糖浓度的增加而提高,当初始葡萄糖浓度为30g/L时产氢速率达到最大值482ml/(L·h)。然而,40g/L的初始葡萄糖浓度则会对细胞生长与氢气合成产生抑制作用。另外,实验结果表明磷酸盐缓冲液的最佳浓度为200mM,而金属离子的加入也能显著提高该微生物的产氢得率,添加300mg/L Fe2+可使产氢得率提高31.03%,120mg/L Mg2+可使产氢得率提高18.89%,35mg/L Ni2+可使产氢得率提高24.83%。通过数据拟合,发现Logistic方程能较好地描述菌体生长,修正的Gompertz方程也能较好地描述氢气合成与葡萄糖消耗过程。与其它产氢菌株相比,该菌株具有相对较高的体积产氢速率。为了进一步了解培养条件对微生物代谢产氢及吸氢途径的具体影响,本文利用各操作条件下获得的厌氧发酵代谢数据,并结合代谢通量分析(MFA)方法,对K. pneumoniaeECU-15菌株的厌氧产氢代谢通量进行了计算与分析,得到了温度、pH及初始葡萄糖浓度对胞内代谢途径整体通量分布的影响,特别是针对氢气合成与消耗途径流量的影响。研究结果表明,温度、pH和初始葡萄糖浓度均对该过程中的吸氢通量有较大影响,在26~37℃的温度范围内吸氢通量会随温度的升高而降低,而相对于中性或弱碱性发酵环境,弱酸性的pH环境也会降低吸氢通量,同时,限制葡萄糖底物浓度亦能降低吸氢通量,而有利于产氢发酵。上述各因素对产氢途径及相关节点流量分配的影响也不尽相同,温度升高,乙醇通量降低,说明乙醇脱氢酶活性降低,此时NADH出现大量残余,从而有利于通过NADH/NAD+平衡调节途径的产氢。而在pH≥7.0时,丙酮酸甲酸裂解酶系呈现较高通量,有利于甲酸裂解产氢。另外,初始葡萄糖浓度在底物限制的情况下也会提高甲酸裂解酶途径的产氢通量,有利于氢气的合成。
     就发酵制氢过程而言,发酵底物类型及其成本将是制约生物制氢实用化和工业化的主要因素,为此本文选择了来源丰富且廉价的木质纤维素水解液为底物进行了发酵制氢的实验研究。为了降低木质纤维素的生物学抗性,提高纤维素酶对木质纤维素的水解效率,本文首次采用纳米光催化辅助NaOH溶液的方法对水稻秸秆进行了预处理,结果表明在1.5% NaOH溶液中添加2g/L纳米Ti02,并经紫外光照射1h后,木质素的脱除率达到67.84%,半纤维素的脱除率达到53.03%,对预处理后的秸秆进行纤维素酶水解实验发现其酶解率达到73.96%,均高于高浓度碱液单独处理的效果。利用上述水解液发酵后得到0.78V/V的氢气产量,高于蒸汽爆破法预处理玉米秸秆酶解液的发酵产氢量(0.65V/V),但两者均显著低于以葡萄糖为底物的发酵产氢结果。为了探明木质纤维素水解液中降低产氢量的主要因素,本文通过实验对木质纤维素水解液的组成及其对微生物代谢产氢的影响进行了研究,发现木质纤维素水解液中影响微生物代谢产氢的关键组分为葡萄糖、木糖及纤维二糖,而降低水解液产氢效率的主要成分为木糖。然后,以一定比例的木糖和葡萄糖混合物为底物进行产氢发酵实验,结果说明K. pneumoniae ECU-15菌株对木糖的利用效率较低,虽然木糖的存在不会显著影响微生物对葡萄糖的利用率,但葡萄糖的代谢产氢途径则明显受到干扰,最终导致发酵产氢效率的降低。
Serious global environment pollution and energy crisis have been caused by excessive use of fossil fuels. Thus, there is a pressing need to develop nonpolluting and renewable energy resource. Hydrogen is widely thought to be an ideal and efficient energy carrier in the future due to its high conversion efficiency, recyclability and nonpolluting nature. It could be produced by thermochemical process, electrochemical process and bioconversion process. Among them, bioconversion process has attracted more and more attentions for two reasons: utilization of renewable resource, and usually operated at ambient temperature and atmospheric pressure. It can be conducted by photosynthetic fermentation, dark fermentation and two-stage fermentation. Dark fermentation is a promising method for its high hydrogen-producing rate, simple fermentative equipment, and bioconversion feasibility from the recycle resources. However, the low yield of hydrogen production and high cost of the substrate are the main constraints for industrialization of biohydrogen production. Based on these problems, the researches of the effect of hydrogen producing strains, culture conditions arid the fermentative substrates on biohydrogen process were carried out in this paper. Firstly, high-producing strains were isolated and identified with the optimal culture conditions obtained. The effect of culture conditions on metabolic pathway was investigated to provide the theoretical foundation for the microorganism recombination. Secondly, the characteristics of biohydrogen production from hydrolysate were investigated, and the key factors and its action rules that influenced the hydrogen production in hydrolysate were analyzed. These results offered the fundamental data for the development of hydrogen production from lignocellulosic hydrolysate.
     In this paper,54 hydrogen producing strains were isolated from the anaerobic sewage sludge. Among them, only three strains with the highest hydrogen producing efficiency were identified by morphological observation, physiological and biochemical experiments and 16S rRNA analysis. The results indicated that the all the three strains were belonging to the Klebsiella pneumoniae. A strain named Klebsiella pneumoniae ECU-15 with the highest hydrogen-producing capability was chosen as the target strain for the following investigations.
     In order to optimize the culture conditions and medium compositions of the biohydrogen fermentation, the hydrogen production characteristics of K. pneumoniae ECU-15 were firstly investigated. It was found that the anaerobic condition was in favor of hydrogen production, and the hydrogen production was improved by 17.97% at the anaerobic condition than that under the micro-aerobic condition. The optimum culture temperature and pH were 37℃and 6.0 for the hydrogen fermentation, but the optimal pH for cell growth was observed at pH7.0. The strain of ECU-15 could grow in several kinds of monosaccharide and disaccharide but starch and cellulose. Fermentation process through glucose exhibited the maximum hydrogen productivity and production among these carbon sources. The hydrogen yield was decreased with the increasing of initial glucose concentration. The maximum yield of 2.07mol/mol glucose was obtained at the initial glucose concentration of 5g/L. The hydrogen production rate was increased with the increasing of initial glucose concentration, and the maximum production rate of 482ml/l/h was obtained at the initial glucose concentration of 30g/L. However, the cell growth and hydrogen production would be inhibited at the initial glucose concentration of 40g/L. In addition, the concentration of phosphate buffer was optimized to be 200mM. The hydrogen yield was improved by 31.03%,18.89% and 24.83% by adding concentration of 300mg/L Fe2+,120mg/L Mg2+ and 35mg/L Ni2+, respectively. The processes of cell growth, hydrogen production and glucose consumption in batch fermentation were simulated by Logistic model and Gompertz model. It was indicated that the experimental data of these three processes could fit well with these models. From the above results, it could be seen that K. pneumoniae ECU-15 exhibited the highest hydrogen production rate compared with the other strains.
     In order to find out the influence of culture conditions on the metabolic pathway of K. pneumoniae ECU-15, the network of glucose metabolism under anaerobic conditions was calculated and analyzed by metabolic flux analysis (MFA). The effects of temperature, pH and initial glucose concentration on the intracellular fluxes, as well as the fluxes of hydrogen producing and uptake were caculated and analyzed. The results indicated that the uptake flux of hydrogen was affected by temperature, pH and initial glucose concentration significantly. It was decreased with the increasing temperature from 26℃to 37℃. Compared with the weak acidity pH, the neutral or weak basicity pH was in favor of the uptake of hydrogen. Under the limited glucose concentration conditions, the uptake flux of hydrogen would also decrease. The hydrogen producing flux and the flux distribution of some key nodes in the whole metabolic networks could also be affected by these factors. The flux of the ethanol producing pathway was decreased with the temperature. Thus NADH would be remained for hydrogen production. And the fluxes of pyruvate dehydrogenase pathway and the pyruvate formate lyase metabolic pathway were higher at pH>7.0 than that of other pH values. Moreover, the flux of pyruvate formate lyase metabolic pathway was increased under the limited glucose concentration condition, which would in favor of the hydrogen production.
     As for the biohydrogen fermentation, both the types and the cost of fermentative substrates were important factors that restricted the practicality and industrialization of the process. Therefore, the lignocellulosic hydrolysate which had rich resource and lower cost was used for biohydrogen fermentation in this paper. In order to decrease the biological resistance and increase the enzymatic hydrolysis of lignocellulose, the pretreatment technology of rice straw through NaOH solution assisted with photocatalysis was investigated through experiments. The results showed that the degradation rates of the lignin and hemicellulose were 67.84% and 53.03%, respectively under the condition of 2g/L nano-TiO2 and 1h of photocatalysis time in 1.5% NaOH solution. The enzymatic hydrolysis rate of the pretreated straw was 73.96%, which was higher than that with the alkali procedure. The biohydrogen production with this hydrolysate was 0.78 V/V, which was higher than that of the corn stalk hydrolysate pretreated by steam-explosion process (0.65V/V). These results indicated that the hydrogen production of the hydrolysate was lower than that of glucose. In order to determine the main compositions in hydrolysate that influenced the biohydrogen production, the fermentation with various substrates of this bacterium was investigated. It was found that glucose, xylose and cellobiose were the main compositions in hydrolysate. The lower hydrogen production of the hydrolysate might be due to the existence of xylose. In addition, the fermentation results of K. pneumoniae ECU-15 with various proportions of glucose and xylose indicated that the consumption rate of xylose was lower than that of glucose. The biohydrogen metabolic pathway of glucose was seriouslly influenced by xylose, which resulted in the decrease the hydrogen efficiency of ECU-15 from hydrolysate.
引文
[1]刘元岐,王崇理,陈利君.新世纪的云南能源.昆明:云南人民出版社.2002.
    [2]闫有旺.21世纪绿色可再生资源—生物质.贵州化工.2003,28(5):1-3.
    [3]Kaplan S, Moore MD. Process for the production of hydrogen using photosynthetic proteobacteria. US Patent,5804424.1998.
    [4]Vatsala TM. Microbial process for photohydrogen production from cellulose in high saline water medium. US Patent,4921800.1990.
    [5]Weaver PF. Photoenhanced anaerobic digestion of organic acids. US Patent,4919813. 1990.
    [6]Melis AL, Zhang M, Foredtier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in green alga Clamydomonas reinhardtii. Plant Physiology.2000,122:127-136.
    [7]Schnackenberg J, Schulz T, and Senger H. Characterization and purification of a hydrogenase from eukaryotic green alga Scendesmus obliguus. TTB Letter.1993,327: 21-24.
    [8]Tsygankov AS, et al. Hydrogen photoproduction by three different nitrogenases in whole cells of Anabaena variabills and dependence on pH. International Journal of Hydrogen Energy.1997,22:859-867.
    [9]Sasikala CH, Tamana CV, Rao PR. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Thodobacter sphaeroides O. U.001. International Journal of Hydrogen Energy.1995,20:123-126.
    [10]李永峰,任南琪,胡立杰,史英.生物制氢系统及其产氢机制.能源环境保护.2005,19(2):5-7.
    [11]Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp M-19. Biotechnology Letters.1998, 20:890-895.
    [12]Lee CM, Chen PC, Wang CC, Tung YC. Photo-hydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy.2002,27:1309-1313.
    [13]Mark DR, Lynne EM. A two-stage, two-organism process for biohydrogen from glucose. International Journal of Hydrogen Energy.2006,31:1514-1521.
    [14]Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS. Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy.2008,33:4755-4762.
    [15]Ren NQ, Cao GL, Wang AJ, Lee DJ, Guo WQ, Zhu YH. Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolytic-um W16. International Journal of Hydrogen Energy.2008,33:6124-6132.
    [16]Chin HL, Chen ZS, Chou CP. Fed batch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnology Progress.2003,19:383-388.
    [17]Lo YC, Chen WM, Hung CH, Chen SD, Chang JS. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria:feasibility and kinetic studies. Water Research.2008,42:827-842.
    [18]Chen SD, Sheu DS, Chen WM, Lo YC, Huang TI, Lin CY. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnology Progress.2007,23:1312-1320.
    [19]Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K. Identification and characterization of Clostridium paraputrifium M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. Journal of Bioscience and Bioengineering. 2000,89:596-601.
    [20]Levin DB, Islam R, Cicek N, Sparling R. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. International Journal of Hydrogen Energy.2006,31:1496-1503.
    [21]Collet C, Adler N, Schwitzguebel JP, Peringer P. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. International Journal of Hydrogen Energy.2004,29:1479-1485.
    [22]Taguchi F, Yamada K, Hasegawa K, Tatsuo TS, Hara K. Continuous hydrogen production by Clostridium sp. strain no.2 from cellulose hydrolysate in an aqueous two-phase system. Journal of Fermentation and Bioengineering.1996,82:80-83.
    [23]Pan CM, Fan YT, Xing Y, Hou HW, Zhang ML. Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresource Technology.2008,99:3146-3154.
    [24]Yokoi H, Maeda Y, Hirose J, Hayashi S, Takasaki Y. H2 production by immobilized cells of Clostridium butyricum on porous glass beads. Biotechnology Techniques.1997,11: 431-433.
    [25]Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y. Characteristics of hydrogen production by aciduric Enterbacter aerogenes strain HO-39. Journal of Fermentation and Bioengineering.1995,80:571-574.
    [26]Nakashimada Y, Rachman MA, Kakizono T, Nishio N. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states.
    International Journal of Hydrogen Energy.2002,27:1399-1405.
    [27]Fabiano B, Perego P. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy.2002,27:149-156.
    [28]Tanisho S and Ishiwata Y. Continuous hydrogen-production from molasses by the bacterium Enterobacter aerogenes. International Journal of Hydrogen Energy.1994,19: 807-812.
    [29]Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry.2000,35:589-593.
    [30]Ishikawa M, Yamamura S, Takamura Y, Sode K, Tamiya E, Tomiyama M. Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. International Journal of Hydrogen Energy.2006,31:1484-1489.
    [31]Bisaillon A, Turcot J, Hallenbeck PC. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy.2006,31:1504-1508.
    [32]Kotay SM, Das D. Microbial hydrogen production with Bacillus coagulans IIT-BT S1. Bioresource Technology.2007,98:1183-1190.
    [33]Oh YK, Kim HJ, Park SH. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. International Journal of Hydrogen Energy.2003,28:1353-1359.
    [34]Long MN, Huang JL, Wu XB, Xu HQ. Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring. Research in Microbiology. 2005,156:76-81.
    [35]Wang XJ, Ren NQ, Xiang WS, Guo WQ. Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49. International Journal of Hydrogen Energy.2007,32:748-754.
    [36]Xing DF, Ren NQ, Wang AJ, Li QB, Feng YJ, Ma F. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. International Journal of Hydrogen Energy.2008,33:1489-1495.
    [37]van Niel EWJ, Claassen PAM, Stams AJM. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnology and Bioengineering.2003,81:255-262.
    [38]van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claasen PAM, Stams AJM. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. International Journal of Hydrogen Energy.2002,27:1391-1398.
    [39]De Vrije T, De Haas GG, Tan GB, Keijsers ERP, Claassen PAM. Pretreatment of
    miscanthus for hydrogen production by Thermotoga elfii. International Journal of Hydrogen Energy.2002,27:1381-1390.
    [40]Kadar Z, De Vrije T, van Noorden GE, Budde MAW, Szengyel Z, Reczey K, Claassen PAM. Yield from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccarolyticus. Applied Biochemistry and Biotechnology.2004,114:497-508.
    [41]Kadar Z, De Vrije T, Budde MAW, Szengyel Z, Reczey K, Claassen PAM. Hydrogen production from paper sludge hydrolysate. Applied Biochemistry and Biotechnology. 2003,105:557-566.
    [42]Zhang YF, Shen JQ. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. International Journal of Hydrogen Energy.2006, 31:441-446.
    [43]Lay JJ. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnology and Bioengineering.2001,74:280-287.
    [44]Lin CY, Wu CC, Hung CH. Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures. International Journal of Hydrogen Energy. 2008,33:43-50.
    [45]Mu Y, Zheng XJ, Yu HQ, Zhu RF. Biological hydrogen production by anaerobic sludge at various temperatures. International Journal of Hydrogen Energy.2006,31:780-785.
    [46]I.W.道斯,I.W.萨瑟兰.中国科学院上海植物生理研究所微生物室译,微生物生理学.科学出版社.1980.
    [47]Fan KS, Kan NR, Lay JJ. Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresource Technology.2006,97:84-89.
    [48]Khanal SK, Chen WH, Li L, Sung S. Biological hydrogen production:effects of pH and intermediate products. International Journal of Hydrogen Energy.2004,29:1123-1131.
    [49]Gustavo DV, Felipe AM, Antonio de LR uez, Elias RF. Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose:Influence of initial substrate concentration and pH. International Journal of Hydrogen Energy.2008, 33:4989-4997.
    [50]陈天寿.微生物培养基的制造与使用.中国农业出版社.1995,18-19.
    [51]Wang JL, Wan W. Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy.2008,33:1215-1220.
    [52]Yang HJ, Shen JQ. Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. International Journal of Hydrogen Energy.2006,31: 2137-2146.
    [53]Liu GZ, Shen JQ. Effects of culture and medium conditions on hydrogen production
    from starch using anaerobic bacteria. Journal of Bioscience and Bioengineering.2004,98: 251-256.
    [54]Zhang YF, Liu GZ, Shen JQ. Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. International Journal of Hydrogen Energy.2005,30:855-860.
    [55]Albracht SPJ, Bagley KA, Duin EC, Happe RP, Munck E, Ravi N, Roseboom W, van der Spek T, Woodruff WH. The hydrogen binding site(s) in nickel hydrogenases. Journal of Inorganic Biochemistry.1995,59:635.
    [56]Wang JL, Wan W. Influence of Ni2+ concentration on biohydrogen production. Bioresource Technology.2008,99:8864-8868.
    [57]Roychowdhury S, Cox D, Levandowsky M. Production of hydrogen by microbial fermentation. International Journal of Hydrogen Energy.1988,13 (7):407-410.
    [58]Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research.1999,33:2579-2586.
    [59]Ueno Y, Otauka S, Morimoto M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering. 1996,82:194-207.
    [60]Thangaraj A, Kulandaivelu G. Biological hydrogen photoproduction using dairy and sugar cane wastewater. Bioresource Technology.1994,48:9-12.
    [61]Lay JJ. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering.2000,68:269-278.
    [62]Lin CY, Cheng CH. Fermentative hydrogen production from xylose using anaerobic mixed microflora. International Journal of Hydrogen Energy.2006,31:832-840.
    [63]Wang JL, Wan W. The effect of substrate concentration on biohydrogen production by using kinetic models. Science in China-Series B:Chemistry.2008,51:1110-1117.
    [64]Wang CH, Lin PJ, Chang JS. Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochemistry.2006,41:1353-1358.
    [65]Chen WM, Tseng ZJ, Lee KS, Chang JS. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy.2005,30:1063-1070.
    [66]Zhang T, Liu H, Fang HHP. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management.2003,69:149-156.
    [67]Lee KS, Hsu YF, Lo YC, Lin PJ, Lin CY, Chang JS. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy.2008,33:1565-1572.
    [68]Fang HHP, Li CL, Zhang T. Acidophilic biohydrogen production from rice slurry. International Journal of Hydrogen Energy.2006,31:683-692.
    [69]Fan YT, Zhang GS, Guo XY, Xing Y, Fan MH. Biohydrogen production from beer lees biomass by cow dung compost. Biomass and Bioenergy.2006,30:493-496.
    [70]Chen WH, Chen SY, Khanal SK, Sung S. Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy.2006, 31:2170-2178.
    [71]Shin HS, Youn JH, Kim SH. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy. 2004,29:1355-1363.
    [72]Argun H, Kargi F, Kapdan IK, Oztekin R. Batch dark fermentation of powdered wheat starch to hydrogen gas:Effects of the initial substrate and biomass concentrations. International Journal of Hydrogen Energy.2008,33:6109-6115.
    [73]Danko AS, Abreu AA, Alves MM. Effect of arabinose concentration on dark fermentation hydrogen production using different mixed cultures. International Journal of Hydrogen Energy.2008,33:4527-4532.
    [74]Wang XY, Jin B. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. Journal of Bioscience and Bioengineering.2009,107:138-144.
    [75]Skonieczny MK, Yargeau V. Biohydrogen production from wastewater by Clostridium beijerinckii:Effect of pH and substrate concentration. International Journal of Hydrogen Energy.2009,34:3288-3294.
    [76]Fang HHP, Liu H, Zhang T. Characterization of a hydrogen-producing granular sludge. Biotechnology and Bioengineering.2002,78:44-52.
    [77]李建政,任南琪,林明,王勇.有机废水发酵法生物制氢中试研究.太阳能学报.2002,23:252-256.
    [78]Chang FY, Lin CY. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy.2004,29:33-39.
    [79]Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnology and Bioengineering.2004,87:648-657.
    [80]Wu SY, Lin CN, Chang JS. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechnology Progress.2003,19:828-832.
    [81]Chang JS, Lee KS, Lin PJ, Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy.2002,27:1167-1174.
    [82]Wu SY, Lin CN, Chang JS, Lee KS, Lin PJ. Microbial hydrogen production with
    immobilized sewage sludge. Biotechnology Progress.2002,18:921-926.
    [83]Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS. H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnology Letters.2003,25: 133-138.
    [84]任南琪,李建政,林明,王勇.产酸发酵细菌产氢机理探讨.太阳能学报.2002,23(1):124-128.
    [85]Vipin CK, Sadhana L, Rohit G, Manabendra M, Ashwini C. Mining genomic databases to identify novel hydrogen producers. Trends in Biotechnology.2003,21(4):152-156.
    [86]Foster JF, Moat AG. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiological Reviews.1980,44(1): 83-105.
    [87]Girbal L, Croux C, Vasconcelos I, Soucaille P. Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews.1995,17(3): 287-297.
    [88]Bailey JE. Towards a science of metabolic engineering. Science.1991,252:6682-6741.
    [89]Gombert AK, Nielsen J. Mathematical modeling of metabolism. Current Opinion in Biotechnology.2000, 11(2):180-186.
    [90]Varner J, Ramkrishna D. Mathematical models of metabolic pathways. Current Opinion in Biotechnology.1999,10(2):146-150.
    [91]Liao JC, Delgado J. Advances in metabolic control analysis. Biotechnology Progress. 1993,9(3):221-233.
    [92]Fell DA. Metabolic control analysis:a survey of its theoretical and experimental development. Biochemical Journal.1992,286(2):313-330.
    [93]Torres NV, Voit EO, Alcon CG. Optimization of nonlinear biotechnological processes with linear programming:application to citric acid production by A. niger. Biotechnology and Bioengineering.1996,49(3):247-258.
    [94]Nestor VT, Eberhard OV.代谢工程的途径分析与优化.修志龙,滕虎译.北京:化学工业出版社.2005.
    [95]Varma A, Palson BO, Metabolic flux balancing basic concepts, scientific and practical use. Nature Biotechnology.1994,12:994-998.
    [96]Stephanopoulos G. Metabolic fluxes and metabolic engineering. Metabolic Engineering. 1999,1(1):1-11.
    [97]Schilling CH, Edwards JS, Letscher D, Palsson BO. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnology and Bioengineering.2000/2001,71(4):286-306.
    [98]Schilling CH, Schuster S, Palsson BO, Heinrich R. Metabolic pathway analysis:concepts and scientific applications in the post-genomic era. Biotechnology Progress.1999,15: 296-303.
    [99]Manish S, Venkatesh KV, Banerjee R. Metabolic flux analysis of biological hydrogen production by Escherichia coli. International Journal of Hydrogen Energy.2007,32: 3820-3830.
    [100]Oh YK, Kim HJ, Park SH, Kim MS, Ryu DDY. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. International Journal of Hydrogen Energy.2008,33:1471-1482.
    [101]Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H. Enhanced hydrogen production from glucose using ldh-and frd-inactivated Escherichia coli strains. Applied Microbiology Biotechnology.2006,73:67-72.
    [102]Penfold DW, Forster CF, Macaskie LE. Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100. Enzyme and Microbial Technology.2003,33:185-189.
    [103]Morimoto K, Kimura T, Sakka K, Ohmiya K. Over-expression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiology Letters.2005,246:229-234.
    [104]Zhao HX, Ma K, Lu Y, Zhang C, Wang LY, Xing XH. Cloning and knockout of formate hydrogen lyase and H2-uptake hydrogenase genes in Enterobacter aerogenes for enhanced hydrogen production. International Journal of Hydrogen Energy.2009,34: 186-194.
    [105]Kars G, Gunduz U, Rakhely G, Yucel M, Eroglu I, Kovacs KL. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. International Journal of Hydrogen Energy.2008,33:3056-3060.
    [106]Vardar-Schara G, Maeda T, Wood TK. Metabolically engineered bacteria for producing hydrogen via fermentation. Microbiology Biotechnology.2007,1:107-125.
    [107]Penfold DW, Macaskie LE. Production of H2 from sucrose by Escherichia coli strains carrying the pUR400 plasmid, which encodes invertase activity. Biotechnology Letters. 2004,26:1879-1883.
    [108]Guedon E, Desvaux M, Petitdemange H. Improvement of Cellulolytic Properties of Clostridium cellulolyticum by Metabolic Engineering. Applied and Environmental Microbiology.2002,68:53-58.
    [109]Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology. 2005,96:1959-1966.
    [110]Mosier N, Wyman CE, Dale BE, Elander RT, Lee YY, Holtzapple M, Ladisch MR. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology.2005,96:673-686.
    [111]伊晓路,孙立,郭东彦,李铁,彭亮,张卫东.生物质秸秆预处理技术.可再生能源.2005,2:31-33.
    [112]杨雪霞,陈洪章,李佐虎.汽爆秸秆固态发酵生产饲料的研究.粮食与饲料工业.2001,2:27-29.
    [113]廖俊和,罗学刚.木质素、纤维素高效分离技术.纤维素科学与技术.2003,11(4):60-64.
    [114]张艳哲,李毅,刘吉平.秸秆综合利用技术进展.纤维素科学与技术.2003,11(2):57-61.
    [115]Tanaka K, Calanag RCR, Hisanaga T. Photocatalyzed degradation of lignin on TiO2. Journal of Molecular Catalysis A:Chemical.1999,138:287-294.
    [116]丁延伟.纳米二氧化钛光催化反应的研究.中国科学技术大学硕士学位论文.2002.
    [117]关荐伊,王金梅,马丽雅,刘云鹤.纳米TiO2的制备及其在环境保护中的应用.承德石油高等专科学校学报.2005,7(2):1-5.
    [118]尹晓敏,程永清.纳米二氧化钛光催化剂在废水处理中的应用.纳米科技.2005,2(3):10-14.
    [119]Kobayakawa K, Sato Y, Nakamura S, Fujishima A. Photodecomposition of kraft lignin catalized by titanium dioxide. Bulletin of the Chemical Society of Japan.1989,62: 3433-3436.
    [120]Ohnishi H, Matsumura M, Tsubomura H, Iwasaki M. Bleaching of lignin solution by a photocatalyzed reaction on semiconductor photocatalysts. Industrial & Engineering Chemistry Research.1989,28:719-724.
    [121]Mohamed K, Sarra BA, Semia C. Photodegradation of lignin from black liquor using a UV/TiO2 system. Journal of Photochemistry and Photobiology A:Chemistry.2003,154: 211-218.
    [122]Chen SD, Lee KS, Lo YC, Chen WM, Wu JF, Lin CY, Chang JS. Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. International Journal of Hydrogen Energy.2008,33:1803-1812.
    [123]Pattra S, Sangyoka S, Boonmee M, Reungsang A. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy.2008,33:5256-5265.
    [124]Chairattanamanokorn P, Penthamkeerati P, Reungsang A, Lo YC, Lu WB, Chang JS. Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge. International Journal of Hydrogen Energy.2009,34:7612-7617.
    [125]Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy.2007,31:250-254.
    [126]Ren NQ, Cao GL, Guo WQ, Wang AJ, Zhu YH, Liu BF, Xu JF. Biological hydrogen production from corn stover by moderately thermophile Thermoanaero-bacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy.2010,35: 2708-2712.
    [127]Lo YC, Huang CY, Fu TN, Chen CY, Chang JS. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate. International Journal of Hydrogen Energy.2009,34:6189-6200.
    [128]东秀珠,蔡妙英等.常见细菌系统鉴定手册.科学出版社.2001.
    [129]李霞.16S rRNA基因序列分析在临床微生物学中的应用.微生物与感染.2006,3(1):184-186.
    [130]Saitou N, Nei M. The neighbor-joining method:a new method for reconstruct-ing phylogenetic trees. Molecular Biology and Evolution.1987,4(4):406-425.
    [131]Menzel K, Zeng AP, Deckwer WD. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme and Microbial Technology.1997,20:82-86.
    [132]Liu F, Fang BS. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae:Biotechnology Journal.2007,2:374-380.
    [133]Wu KJ, Saratale GD, Lo YC, Chen WM. Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Bioresource Technology.2008,99:7966-7970.
    [134]Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry.1959,31:426-428.
    [135]戚以政,汪叔雄.生物反应动力学与反应器.北京:化学工业出版社.2007,41-85.
    [136]陈诵英,陈平,李永旺,王建国.催化反应动力学.北京:化学工业出版社.2007,45-67.
    [137]张元兴,许学书.生物反应器工程.上海:华东理工大学出版社.2001,3-42.
    [138]Lay JJ, Li YY, Noike T. Mathematical model for methane production from landfill bioreactor. Journal of Environmental Engineering.1998,124:730-736.
    [139]Mu Y, Yu HQ, Wang G. A kinetic approach to anaerobic hydrogen-producing process. Water Research.2007,41:1152-1160.
    [140]Fan YZ, Wang YY, Qian PY, Gu JD. Optimization of phthalic acid batch biodegradation and use of modified Richards model for modeling degradation. International Biodeterioration and Biodegradation.2004,53:57-63.
    [141]Chen Z, Liu HJ, Zhang JA, Liu DH. Cell physiology and metabolic flux response of Klebsiella pneumoniae to aerobic condition. Process Biochemistry.2009,44:862-868.
    [142]Snoep JL, Graef MR, Marros MJT, Neijssel OM. Effect of culture conditions on the NADH/NAD ratio and total amounts of NAD(H) in chemostat cultures of Enterococcus faeccalis NCTC 775. FEMS microbiology letters.1994,116:263-268.
    [143]Zhang C, Ma K, Xing XH. Regulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD+. International Journal of Hydrogen Energy. 2009,34:1226-1232.
    [144]Leonhartsberger S, Korsa I, Bock A. The molecular biology of formate metabolism in enterobacteria. Journal of Molecular Microbiology and Biotechnology.2002,4: 269-276.
    [145]Lee KS, Lin PJ, Chang JS. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. International Journal of Hydrogen Energy.2006,31:465-472.
    [146]Chong ML, Rahim RA, Shirai Y, Hassan MA. Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. International Journal of Hydrogen Energy. 2009,34:764-771.
    [147]Brosseau JD, Zajic JE. Continuous microbial production of hydrogen gas. International Journal of Hydrogen Energy.1982,7:623-628.
    [148]Pan CM, Fan YT, Zhao P, Hou HW. Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. International Journal of Hydrogen Energy. 2008,32:5383-5391.
    [149]Shin JH, Yoon JH, Ahn EK, Kim MS, Sim SJ, Park TH. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. International Journal of Hydrogen Energy.2007,32:192-199.
    [150]Afschar AS, Schaller K, Schurgerl K. Continuous production of acetone and butanol with shear-activated Clostridium acetobutylicum. Applied Microbiology Biotechnology. 1986,23:315-322.
    [151]Oh YK, Seol EH, Lee EY, Park SH. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy.2002,27:1373-1379.
    [152]Fan Y, Li C, Lay JJ, Hou H, Zhang G. Optimization of initial substrate and pH levels for germination of sporing hydrogen production anaerobes in cow dung compost. Bioresource Technology.2004,91:189-193.
    [153]Majizat A, Mitsunori Y, Mitsunori W, Michimasa N, Jun'ichiro M. Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Water Science and Technology.1997,36 (6-7):279-286.
    [154]Akutsu Y, Li YY, Harada H, Yu HQ. Effect of temperature and substrate concentration on biological hydrogen production from starch. International Journal of Hydrogen Energy.2009,34:2558-2566.
    [155]Biebl H, Zeng AP, Menzel K, Deckwer WD. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Applied microbiology and biotechnology.1998,50:24-29.
    [156]Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen Energy.1999,24:305-310.
    [157]Jo JH, Lee DS, Park D, Park JM. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technology.2008,99:6666-6672.
    [158]Sreenath HK, Jeffries TW. Batch and membrane-assisted cell recycling in ethanol production by Candida shehatae. Biotechnology Letters.1987,9:293-298.
    [159]张青瑞.甘油生物转化为1,3-丙二醇过程的代谢通量分析与动态模拟.大连理工大学博士学位论文.2008.
    [160]Puls J, Schuseil J. In Hemicellulose and Hemicellulases [M]. Coughlan M P, et al. Eds. London and Chapel Hill:Portland Press,1993.
    [161]王玉万,徐文万.木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序.微生物学通报.1987,14(2):81-86.
    [162]Soto ML, Dominguez MJ, Lema JM. Enzymatic saccharification of alkali treated sunflower hulls. Bioresource Technology.1994,49:53-59.
    [163]Xiao B, Sun XF, Sun RC. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability.2001,74:307-319.
    [164]Badal CS, Michael AC. Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol. Journal of Chemical Technology and Biotechnology.2007,82: 913-919.
    [165]Stafford U, Kimberly AG, Prashant VK. Photocatalytic degradation of 4-chlorophenol: the effects of varying TiO2 concentration and light wavelength. Journal of Catalysis. 1997,167:25-32.
    [166]Chen DW, Ajay KR. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Applied Catalysis B:Environmental.1999,23:143-157.
    [167]陈洪章,李佐虎.木质纤维原料组分分离的研究.纤维素科学与技术.2003,11(4):31-40.
    [168]Scalbert A, Monties B, Guittet E. Comparison of wheat straw lignin preparations. Holzforschung.1986,40:119-127.
    [169]Thring RW, Chorne E, Bouchard J, Vidal PF, Overend RP. Characterization of lignin residues derived from the alkaline hydrolysis of glycol lignin. Canadian Journal of Chemistry.1990,68:82-89.
    [170]Jin SY, Chen HZ. Structural properties and enzymatic hydrolysis of rice straw. Process Biochemistry.2006,41:1261-1264.
    [171]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW. Biomass recalcitrance:Engineering plants and enzymes for biofuels production. Science.2007, 315:804-807.
    [172]Zhu SD, Wu YX, Yu ZN, Zhang X, Li H, Gao M. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technology.2006,97:1964-1968.
    [173]Ledingham GA, Neish AC. Industrial Fermentation, In:Underkofler, L.A., Hickey, R.J. (Eds). New York:Chemical Publishing.1954,2:27-93.
    [174]Jeffries TW. Utilization of Xylose by Bacteria, Yeasts, and Fungi. Advances in Biochemical Engineering/Biotechnology.1983,27:1-32.
    [175]Strobel HJ. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium. Applied and Environmental Microbiology.1993,59:40-46.
    [176]Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. Journal of bacteriology.2004,186(22):7593-7600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700