用户名: 密码: 验证码:
以秸秆和谷氨酸废液制取生物絮凝剂及其净水效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物絮凝剂作为一种高效、无毒、安全、可生物降解的绿色净水剂,代表了絮凝剂的重要研发方向之一。然而制备成本偏高和作用范围相对较窄等劣势是制约其规模化应用的主要瓶颈问题。针对上述问题,本文立足于廉价生物质废料的资源化利用,开展了以秸秆和谷氨酸废液制取生物絮凝剂及其净水效能的研究。
     在优化了产絮菌F2-F6发酵条件的基础上,考察分批补料发酵方式对产絮菌F2-F6的影响。确定初始葡萄糖浓度为10g/L时,碳源补料的最佳参数为:碳源最佳补料种类为葡萄糖,最佳补料时间为发酵15h时,补料浓度为0.1%,补料方式为一次性投加;氮源补料不会增加生物絮凝剂产量,无需补加氮源。产絮菌F2-F6经分批补料发酵24h后,其生物量增加了37.04%,絮凝剂产量增加了40.9%,糖利用率提高了5.51%,絮凝剂得率提高了28.15%,结果显示分批补料发酵效果明显好于分批发酵。
     根据产絮菌F2-F6发酵过程的特点,在Logistic方程和Luedeking-Piret方程的基础上,建立了其发酵过程中菌体生长、基质消耗和产物形成的动力学方程。采用Origin7.5软件对试验数据进行处理,得到了产絮菌F2-F6的分批发酵动力学模型参数;模型预测值和试验值吻合较好,说明所建立的方程能较好地预测其实际发酵过程,具有很好的适用性。
     采用正交试验等方法对秸秆预处理工艺进行了优化,优化后的预处理条件为:粒度40目的秸秆,在温度80℃、质量分数1%的NaOH溶液中反应90min。预处理后的秸秆经过微生物降解,转化率可以达到70.3%,还原糖产率为10.6%。产絮菌F2-F6利用秸秆糖化液产絮,絮凝率可达94%;秸秆经过纤维素复合酶水解,在秸秆浓度50g/L,酶用量0.2g酶/g秸秆条件下,酶解得率为49.65%,以酶解液培养产絮菌F2-F6产絮,絮凝率达到96.5%。说明秸秆经过预处理后,可以作为碳源替代葡萄糖制取生物絮凝剂,每吨秸秆制取生物絮凝剂产量最大值为87kg。
     基于谷氨酸废液的浓度梯度策略构建谷氨酸废液培养基:浓度为20%的谷氨酸废液中补加8g/L的葡萄糖,无需添加额外的氮源即可作为替代培养基培养产絮菌F2-F6,絮凝率可达95.4%。废水培养基培养产絮菌F2-F6的最佳发酵条件为:温度30℃、初始pH7.0、摇床转速140rpm、种子液接种量8%、发酵时间20h。每升谷氨酸废液可以制备生物絮凝剂8.5g。发酵过程中,产絮菌细胞生长和絮凝产物合成对发酵体系中溶解氧的要求存在差异,结合分阶段供氧控制策略,在谷氨酸废液和絮凝剂培养基制备生物絮凝剂的发酵过程中,需要集中大量供氧的时间分别为8h和21h。
     结合谷氨酸生产工艺特点,提出了以秸秆和谷氨酸废液为底物生产生物絮凝剂的工艺流程,确定了生产过程主要操作条件及控制策略;并制定了生物絮凝剂生产的产品质量标准;对经济效益、环境效益和社会效益进行了简要分析。针对饮用水原水进行了生物絮凝剂与助剂的复配絮凝试验,并探讨最佳投剂方式及投剂量。结果显示,将生物絮凝剂与助剂复配使用可以得到最佳处理效果,在满足出水水质需求的同时,总投剂量显著降低。
The bioflocculant (BF) is one of most potential research and development direction of flocculants because of its many advantages such as high efficiency, nontoxicity, easy biodegradability and healthy security. However, the high cost and narrow application fields of BF fermentation are the bottleneck problems limiting the industrial production and application of bioflocculant. Consequently, concentrating on on the resource utilization of multivariate biomass wastes, research on the preparation of compound bioflocculant (CBF) using glutamate wastewater and its production process were conducted.
     Based on the optimization of fermentation conditions, effects of fed-batch fermentation on the bacterium F2-F6 were investigated. The optimal parameters of the carbon source fed were as follows:lOg/L of the initial glucose concentration, glucose fed-types,15h of the best fed-batch fermentation time,0.1% of the concentration of fed-batch, one time fed-batch mode. There were no need for nitrogen addition as the nitrogen addition did not ehance the production of (CBF). The two types of fermentation methods, the batch fermentation and fed-batch fermentation, had been compared. After feeding, the biomass, BF production, sugar utilization and the output rata of BF had increased 37.04%,40.90%,5.51%,28.15%, respectively compared that of the fermentation without feeding. The production of (CBF) by feeding mode was greater than that of batch mode fermentation.
     The fermentation process of bioflocculant producing bacteria was studied in batch system. Based on the equations of "Logistic equation" and "Luedeking-Piret equation", the kinetic models reflecting its fermentation features of strain growth, substrate consumption and product generation were constructed respectively. The experimental data were processed with the Origin 7.5 software and the batch fermentation kinetics model parameter was obtained. The good agreement of predicted values with the experimental results showed that the kinetic models were applicable for predicting the actual fermentation process.
     Rice straw pretreatment process was optimized by orthogonal experiment. The optimal condition of NaOH- pretreated rice straw was temperature 80℃concentration of NaOH solution 1.0%, reaction time 90min, suitable smashed rice straw 40 mesh. Pretreated rice straws were degraded by cellulose degradation bacterium. The degradation rate and reduced sugar yield are 70.3% and 10.6%. Flocculation producing bacteria could utilize the saccharifyed liquid of rice straw and produce bioflocculant. The flocculation rate of bioflocculant can reach 94%. Pretreated rice straws were hydrolyzed by cellulase. The hydrolysis yield rate was 49.65% when the rice straw concentration was 50g/L, the cellulase dosage was 0.2g/g substrate. Flocculation rate of enzymatic hydrolysate was 96.5%. It illuminated that the pretreated rice straw could completely substitute glucose as substrate for (CBF) production. The maximum production was 87kg (CBF) per ton rice straws.
     Monosodium glutamate wastewater was applied as substitutive medium with gradient concentration. The optimum medium compositions was feeding 8 g/L of glucose into 20% glutamate fermentation wastewater without adding additional nitrogen source. This mudium could replace bioflocculant medium for producing bioflocculant and the flocculation rate can reach 95.4%. The optimal (CBF) fermentation conditions for flocculant-producing bacteria F2-F6 by wastewater medium were as follows:fermentation temperature 30℃, initial pH 7.0, rotation speed 140 r/min, seed inoculation concentration 8%, fermentation time 20h. Per litre glutamate wastewater produce 8.5g compound bioflocculant. During fermentation process, there were differences of DO requirement between the growth of flocculent-production bacteria and production of flocculation. Therefore, combined with the step wise oxygen supply strategy, the time of supply high concentrations of oxygen during the glutamate wastewater fermentation process was only 8h, while in the bioflocculant medium process was 21h. Obviously, using glutamate fermentation wastewater for (CBF) production was more energy saving.
     Production process of (CBF) was constructed and the main operating conditions and control strategies during the production process were confirmed. And product quality standard of (CBF) production was established. Technical and economic index, social and environmental benefit were briefly analyzed.
     Based on drinking source water and oily sewage, complex formulation flocculation tests and the effects of additives were carried out for (CBF) to find out the optimal addition method and dosage of flocculant. The results showed that the simultaneous application of (CBF) and its additives could reach the best results, which met the requirements of effluent quality and greatly reduced the total dosage.
引文
1 马放,冯玉杰,任南琪.环境生物技术.化学工业出版社,2003:150-162
    2 李和平等.微生物絮凝剂.重庆环境科学.2000,22(2):18-21
    3 朱艳彬,马放,李大鹏.水处理生物絮凝剂菌种资源研究进展.中国环境科学学会学术年会论文集.2009:173-178
    4 Richard F. Exopolymer Production and Flocculation by Zoogloea MP6. Applied and Environmental Microbiology,1976,31 (4):623-626
    5 Salehizadeh H, Shojaosadate SA. Extra cellular Biopolymer Flocculants; Recent Trends and Biotechnological Importance. Biotechnology Advances,2001,19 (5):371-385
    6 Swamy J, Ramsay JA. Evaluation of White Rot fungi in the Decoloration of Textile Dyes. Enzyme and Microbial Technology,1999,24 (3):130-137
    7 Teixeira J A, Oliveira R, Azeredo J, et al. Cell Wall Surface Properties and Flocculence of a Kluyveromyces Marxian's Strain. Colloids and Surfaces B: Biointerfaces,1995,5:3-4,197-203
    8 马放,李淑更,金文标,等.微生物絮凝剂的研究现状及发展趋势.工业用水与废水,2002,33(1):7-9
    9 J Takeda M, Kurane R, Korzumi J I.. A Protein Bioflocculant Produced by Rhodococcus erythropolis. Agric. Br-ol. Chem,1991,55(10):2263-2264
    10 Kurance R, Todea K, Takeda. Agric. Biol. Chem.,1986,50 (9):2039-2313
    11吴波.纤维素降解菌的筛选及其发酵效果试验研究.哈尔滨工业大学硕士论文.2005:30-55
    12王琴.生物絮凝剂的絮凝机理与生产工艺研究.哈尔滨工业大学博士论文.2005:19-26
    13孟路.生物絮凝剂发酵条件的优化及絮凝效果研究.哈尔滨工业大学硕士论文.2005:30-41
    14王博.生物絮凝剂的絮凝效能研究及安全性评价.哈尔滨工业大硕士论文.2005:19-26
    15迟熠.生物絮凝剂(生物絮凝剂(CBF))絮凝特性研究.哈尔滨工业大学硕士论文.2006:24-48
    16朱艳彬.生物絮凝剂产絮菌特性、理化性质及絮凝过程解析.哈尔滨工业大学博士论文.2007:9-15
    17何宁,李寅,陈坚等.生物絮凝剂的最新研究进展及其应用.微生物学通报,2005, 32 (2):104-108
    18 Kobayashi, Suda H, Ohtani T, Sone H. Molecular Cloning and Analysis of the Dominant Flocculation Gene FL08 from Saccharomyces cerevisiae. Mol. Gen Genet,1996,251 (6):707-715
    19 Teunissen A W, Van Den Berg J, Steensma H Y. Localization of the Dominant Flocculation Genes FLOS and FL08 of Saccharomyces cerevisiae. Yeast.1995,11 (8):735-745
    20 Teunissen A W, Steensma H Y Review. The Dom inapt Flocculation Genes of Saccharomyces cerevisiae Con-stitute a New Subtelomeric Gene Family. Yeast 1995, 11(11):1001-1013
    21 Kumar C G, Joo H S, Choi W, et al. Purification and Characterization of an Extracellular Polysaccharide from Haloalkalophilic Bacillus sp.Ⅰ-450. World Journal of Microbiology and Biotechnology,2004,34,673-681
    22 Taked A M, Kruane R, Koizumi J I. A Protein Bioflocculant Produced by Rhodococcus erythropolis. Agric. Biol. Chem.1991,55(10):2263-2264
    23马放,刘俊良.复合型微生物絮凝剂的开发.中国给水排水.2003,19(4):1-4
    24尹华,余莉萍.固氮菌J 25利用谷氨酸废液产生絮凝剂的研究.环境化学.2003,22(6):582-587
    25周旭,王竟.利用废弃物生产生物絮凝剂研究.化工装备技术.2003,24(4):48-51
    26 H. Salehizadeh, S.A. Shojaosadati. Extracellular Biopolymeric Flocculants Recent Trends and Biotechnological Importance. Biotechnology Advances,2001,9: 371-385
    27 H. Shimofuruya, A. Koide, K. Shirota, et al. The Production of Flocculating Substance(s) by Streptomyces griseus. Biosci, Biotechnol, Biochem.,1996,60: 498-500
    28 Kurane R, Nohata Y Microbial flocculation of waste liquids and oil emulsion by a bioflocculant from Alcaligenes latus. Agric Biol Chem,1991,55:1127-1129
    29 Tago Y, Aida KO. Exocellular mucopolysaccharide closely related to bacterial floc formation. Appl Environ Microbiol,1977,34:308-314
    30 Nakamura J., Miyashiro S., Hirose Y. Conditions of production of microbial cell flocculant by Aspergillus sojae AJ-7002. Agric Biol Chem.1976b,40:1341-1347
    31 Kurane R, Toeda K, Takeda K, Suzuki T. Culture condition for production of microbial flocculant by Rhodococcus erythropolis. Agric Biol Chem,1986a,50: 2309-2313
    32 Tezuka Y. A Zooglodea bacterium with gelatinous mucopolysaccharide matrix. Water Pollut Control Fed,1973,45:531-536
    33 Stahl U, Kues U, Esser K. Flocculation in yeast, an assay on the inhibition of cell aggregation. Appl Microbiol Biotechnol,1983,17:199-202
    34 Kakii K, Hasumi M, Shirakashi T, Kmiyama M. Involvement of Ca2+in the flocculation of Kluyvera cryocrescens KA-103. Ferment Bioeng,1990,69:224-227
    35 Endo T, Nakamura K, Takahashi H. Pronase susceptible floc forming bacteria relationship between flocculation and calcium ion. Agric Biol Chem,1976,40: 2289-2295
    36黄晓武,胡勇有,蒲跃武.生物絮凝剂产生菌的筛选和特性研究.工业用水与废水,2002,33(3):5-7
    37 Hantula J, Bamford DH. The efficiency of the protein dependent flocculation of Flavobacterium sp. Appl Microbiol Biotechnol,1991a,36:100-104
    38 Esser K, Kues U. Flocculation and its implication for biotechnology. Process Biochem,1983,18:21-23
    39陈坚,任洪强,堵国成,华兆哲.环境生物技术应用与发展.中国轻工业出版社,2001:43-48
    40 Kurane R, Mastuyama H. Production of a bioflocculant by mixed culture. Biosci Biotechnol Biochem,1994,58:1589-1594
    41 Yoko H, Natsuda O, Hirose J, et al. Characteristics of biopolyme flocculant produced by Bacillus sp. PY-90. Ferment Bioeng,1995,79:378-380
    42余龙江.发酵工程原理与技术应用.北京:化学工业出版社.2006:42-46
    43陈坚,堵国成,李寅等.发酵工程实验技术.北京:化学工业出版社.2003:110-140
    44 Kovarova K,Egli T.Growth kinetics of sus-pended microbial cells:from single substra-te-controlled growth to mixed-substratekinetics.Microbiol Mol Bio R.1997, 62(3):646-666
    45 Urs L,Mario S,Thomas E.Growth kine-ticsof escherichia coli with galactose and several other sugars in carbon-limited chemostat culture.Can J Microbiol.2000, 46(1):72-80
    46姚汝华.微生物工程工艺原理.华南理工大学出版社.1996:45-56
    47俞俊棠,唐孝宣等.生物工艺学.华东理工出版社.1991:78-87
    48李友荣,马辉文.发酵生理学.湖南科学技术出版社.1988:23-26
    49潘多涛,刘桂萍,刘长风.生物絮凝剂产生菌的筛选及培养条件优化.山东大学学报.2008,38(3):99-103
    50李培睿,张东辉,李宗伟,等.生物絮凝剂产生菌的筛选及絮凝处理靛蓝印染废水的研究.精细化工.2008,25(2):177-185
    51 Xu Bin, Tian Yang, Wang Jing. Studies on Production Conditions of Flocculant from Pseudomones sp.GX4-1 using Fish Meal Waste Water. Microbiology.2001, 28(3):68-73.
    52陈井影,宋宪臣,刘亚洁,等.生物絮凝剂的絮凝活性与絮凝条件研究.吉林农业大学学报.2008,30(2):180-183
    53 Lu Maolin, Shi Dalin, Wang Lei.etc. Preparation of Microbial Flocculants and Their Flocculating Conditions. Food and Fermentation Industries.2007,23(3):26-28
    54 You Yingjiu. Recent Development in Preparation of Microbial Flocculants Environmental Science and Technology.2002,25(1):43-48
    55 Peng Hui, Yinhua, Liang Yuqaing.etc. A Flocculants Producing Microorganism Its Screening Culturing and Chemical Property. Environmental Science and Technology.2002,25(1):6-10
    56 Chai Xiaoli, Chen Jie, Wang Meng.etc, Purification and Application of Bioflocculant. Industrial Water Treatment.2000,20(6):23-25
    57周长胜,杨朝辉,曾光明,等.絮凝剂产生菌GA1的营养优化及发酵动力学.中国环境科学.2008,28(4):324-328
    58张雪松,朱建良.秸秆的利用与深加工.化工时刊.2004,1(5):1-5
    59任仲杰,顾孟迪.我国农作物秸秆综合利用与循环经济.安徽农业科学.2005,33(11):2105-2106
    60陈洪章.秸秆综合利用技术与生态工业.精细与专用化妆品.2000.10
    61杜谋涛,袁晓东,郭和军.我国生物质秸秆资源利用现状及展望.能源与环境.2008,(2):76-79
    62韩鲁佳,刘向阳.中国农作物秸秆资源及其利用现状.农业工程报.2002,18(3):87-9
    63周雷.直燃发电秸秆派上大用场.循环经济.2006.1-4
    64张百良.生物质成型燃料技术及产业化前景分析.河南农业大学学报.2005,39(1):111-115
    65冯柏燕,郑艳.利用生物能源发展秸秆发电.河南科技.2006.30-31
    66石振清,王静荣,李书申.谷氨酸废液处理技术综述.环境污染治理技术与设备.2001,2(2):81-85
    67王倩,邓桂春,张炯等.谷氨酸废液处理技术进展.辽宁大学学报自然科学版.2001,28(4):295-299
    68张志红,薛飞燕,谭天伟.粘红酵母处理味精废水的研究.北京化工大学学报.2007,34(1):95-97
    69敬一兵.固定化微生物治理味精废液.环境工程.1996,14(3):52-53
    70郑舒文,段辉等.谷氨酸废液综合处理的研究.微生物学杂志.2001,21(2):31-33
    71杨建州,张松鹏.利用谷氨酸废液发酵生产苏云金芽孢杆菌的发酵条件研究.食品与发酵工业.2002,28(4):28-32
    72杨建州,张松鹏,张洪勋.利用谷氨酸废液生产饲料蛋白的研究.环境污染治理技术与设备.2002,3(6):21-24
    73沈根清.利用谷氨酸废液浓缩提取硫酸铵母液生产有机无机肥.发酵科技通讯.2006,35:30-31
    74郭勇,李纪顺.利用谷氨酸废液生产饲料添加剂.发酵科技通讯.2002,31(4):3-6
    75马放,朱艳彬,任南琪,等.利用谷氨酸发酵废水制取生物絮凝剂的方法:中国,200610010368.1
    76林文銮,黄惠莉,李天仁,等.微生物絮凝剂的制备及其对净化水的研究.福建化工,2001,32(2):50-53
    77董军芳,林金清,曾颖,等.微生物/硫酸铝复合絮凝剂在自来水原水中的应用.应用化工,2002,31(2):35-38
    78邓述波,余刚,蒋展鹏.微生物絮凝剂在给水处理中的应用研究.中国给水排水,2001,17(2):5-7
    79康建雄,唐赢中.普鲁兰的研究与开发进展.武汉城市建设学院学报,1996,13(3):60-66
    80尹华,彭辉,贾宗剑,等.微生物絮凝剂产生菌的筛选及其絮凝除浊性能.城市环境与城市生态,2000,13(1):8-10
    81杨开,康健雄,张永波,等.生物絮凝剂用于污水强化一级处理.中国给水排水,2002,18(2):43-45
    82宋秀兰,张保平.微生物絮凝剂对膨润土悬液的絮凝效果试验.上海环境科学,2001,20(7):352-254
    83宋秀兰,王红.微生物絮凝剂培养条件的研究.太原理工大学学报,2001,32(3):312-314
    84黄晓武,胡勇有,浦跃武.微生物絮凝剂产生菌的筛选和特性研究.工业用水与废水, 2002,33(3):5-7
    85曹建平,张平,戴友芝,等.生物絮凝强化一级处理城市污水的试验研究.湘潭大学自然科学学报,2004,26(3):83-86
    86余莉萍,尹华,彭辉,等.一株产微生物絮凝剂菌株的筛选及特性
    87胡筱敏,邓述波,牛力东.一株芽孢杆菌所产絮凝剂的研究.环境科学研究,2001,14(1):36-40
    88杨桂生,尹华,彭辉,等.微生物絮凝剂的研制及其对浊度去除的研究.环境科学与技术,2004,27(2):10-12
    89宫小燕,栾兆坤,王曙光.微生物絮凝剂絮凝特性的研究.环境化学,2001,20(6):550-556
    90宫小燕,王竞,周集体.絮凝剂产生菌的筛选及其培养条件优化.环境科学研究,1999,12(4):9-11
    91宫小燕,王曙光,栾兆坤.微生物絮凝剂产生菌的筛选和优化以及在水处理中的应用.应用与环境生物学报,2003,9(2):196-199
    92黄民生,史宇凯.微生物絮凝剂净化废水试验研究.上海环境科学,2000,19(3):222-225
    93黄晓武,成文,胡勇有.微生物絮凝剂处理建材废水研究.工业用水于废水,2004,35(3):25-27
    94张晓辉,龚文琪.微生物絮凝剂的制备及在建材加工废水处理中的应用研究.安全与环境工程,2002,10(3):27-30
    95李智良,张本兰,裴健.微生物絮凝剂产生菌的筛选及相应废水絮凝效果试验.应用与环境生物学报,1997,3(1):67-70
    96肖子敬,黄惠莉,戴劲草,等.膨润土基固定化细胞颗粒材料的研制.华侨大学学报:自然科学版,2001,22(1):35-39
    97庄源益,戴树桂,李彤.生物絮凝剂对水中染料絮凝效果探讨.水处理技术,1997,23(6):349-353
    98辛宝平,邹其猛,庄源益,等.吸附菌GX2对活性艳蓝KN-R的脱色作用研究.环境科学学报,2000,20(9):97-102
    99肖继波胡勇有田静活性艳蓝KN-R的生物吸附脱色研究.中国环境科学,2004,24(1):63-67
    100林晓华,董新姣.固定化青霉菌对活性艳蓝KNR脱色的影响.浙江农业学报,2004,16(3):119-122
    101宋文华,颜慧,胡国臣,等.蒽醌染料及中间体脱色优势菌的特性研究和基因定位.环境化学,1999,18(3):263-269
    102金朝晖,柴英涛,庄源益.3株真菌对活性艳蓝KN-R的脱色条件.环境科学,2004,25(2):81-84
    103辛宝平,庄源益,胡国臣,等.菌株NKS-3对溴氨酸脱色特性探讨.城市环境与城市生态,1999,12(5):1-3
    104辛宝平,庄源益,戴树桂,等.黄杆菌对溴氨酸脱色的研究.中国环境科学,2000,20(4):332-336
    105辛宝平,庄源益,戴树桂,等.青霉菌GX2对蒽醌染料的吸附作用.环境科学,2001,22(1):14-18
    106肖继波,胡勇有.真菌菌丝球HX对活性艳红X-3B的脱色作用.工业用水与废水,2004,35(1):5-7
    107彭晓文,邱廷省,陈明.微生物絮凝剂的絮凝特性及废水处理研究.皮革科学与工程,2004,14(1):43-46.
    108李风琴,张志强,林波,等.微生物絮凝剂MHXGS2处理靛蓝印染废水脱色的研究.江西化工,2004,(4):121-124.
    109黄民生,沈荣辉,夏觉.生物絮凝剂研制和废水净化研究.上海大学学报:自然科学版,2001,7(3):244-248
    110满悦之,庄源益,辛宝平,等.染料生物吸附影响因素与解吸条件研究.化工环保,2003,23(4):187-190
    111黄惠莉,林文銮.印染废水脱色菌的选育基脱色研究.华侨大学学报:自然科学版,1997,18(3):293-296
    112田小光,张介驰,傅俐.硫酸盐还原菌净化工业废水的研究.生物技术,1997,7(1):29-31
    113金漫彤,沈学优.微生物絮凝剂处理印染废水的技术研究.丝绸,2004(12):19-21
    114夏元东,周立綮,武鹏山昆.制药废水絮凝过滤预处理试验研究.青岛建筑工程学院学报,2002,23(4):47-51
    115尹萍,白逢彦,周培瑾.降解三硝基甲苯的酵母和类酵母菌的研究.重庆环境科学,1997,19(5):48-51
    116李桂娇,尹华,彭辉.微生物絮凝剂在污水处理中的应用研究.中国给水排水,2003,19(13):60-63
    117林俊岳,庞金钊,杨宗政.高浓度洗毛废水的生物絮凝处理工艺研究.环境污染治理技术与设备,2004,5(2):60-63
    118林俊岳,吴晓飙,庞金钊.生物絮凝处理高浓度洗毛废水试验研究林.环境科学与技术,2004,27(6):14-16
    119林俊岳,庞金钊,曹式芳.生物絮凝剂处理高浓度洗毛废水试验研究林.工业水处 理,2002,22(12):37-39
    120陈烨,陈勤怡,连宾.啤酒厂废水的生物处理.食品科学,2004,25(10):148-150.
    121崔建升,郭玉凤,耿艳楼.微生物絮凝剂处理含油废水.城市环境与城市生态,2004,17(3):33-34
    122尹华,余莉萍,彭辉.微生物絮凝剂JMBF-25的结构和性质.中国给水排水,2003,19(1):1-4
    123邹启贤,夏元东,陆正禹.生物絮凝处理油田外排废水试验研究.工业水处理,2002,22(12):19-20
    124况金蓉,龚文琪.生物絮凝剂在石化废水处理中的应用.武汉理工大学学报,2002,24(8):38-40
    125曹建平,戴友芝,唐受印.微生物絮凝剂M-25在酱油废水处理芝的应用.水处理技术,2005,31(2):7-9
    126程树培,崔益斌,夏伏虎.光合细菌与酵母跨界融合子降解谷氨酸废液性能测定.环境科学,1996,17(3):5-8
    127郭晨,刘春朝,刘德华.假丝酵母处理谷氨酸废液.化工冶金,1998,19(2):150-153
    128陶涛,詹德昊,芦秀青,等.普鲁兰预处理高浓度谷氨酸废液试验研究.给水排水,2001,27(1):39-44
    129郭雅妮,李海红,念宁.酵母菌处理谷氨酸废液的研究.陕西师范大学学报:自然科学版,2004,32(2):68-70
    130李为,余龙江,吴元喜.双菌法处理谷氨酸废液的工艺研究.水处理技术,2003,29(5):279-281
    131刘晖,周康群,刘洁萍,等.微生物絮凝剂处理淀粉废水.仲凯农业技术学院学报,2004,17(2):47-50.
    132邓述波,胡莜敏,罗茜.微生物絮凝剂处理淀粉废水的研究.工业水处理,1999,19(5):8-11
    133邓述波等.微生物絮凝剂MBFA9的絮凝机理研究.水处理技术.2001,27(1):22-25
    134王竞,陶颖,周集体.细菌胞外高聚物对水中六价铬的生物吸附特性.水处理技术,2001,27(3):145-147
    135王竞,周集体,宫小燕.菌胞外高聚物对水溶性染料和Cr(V)生物吸附研究.大连理工大学学报,2000,40(6):688-691
    136陈欢,张建法,蒋鹏举.微生物絮凝剂SC06的化学组成和特性.环境化学,2002,21(4):360-364
    137张介驰,田小光,于德水,等.硫酸盐还原菌净化含铬电镀废水的中试研究.生物技 术,1997,7(1):32-34
    138董新姣.一株高耐铜菌株的分离及特性的研究.环境保护科学,2003,29(1):16-19
    139陶颖,王竞,周集体.新型生物吸附剂去除水中六价铬.上海环境科学,2000,19(12):572-574
    140侯宁.生物破乳剂产生菌的特性及破乳效能分析.哈尔滨工业大学博士论文.2009:57-58
    141吴波.纤维素降解菌的筛选及其发酵效果试验研究.哈尔滨工业大学硕士论文.2005:30-55
    142 Takagi H, Kadowaki K. Poly-galactosamine produced by a microorganism. Nat Technol.1985a,49(3):121-128
    143 Takagi H, Kadowaki K. Flocculant production by Paecflomyces sp. Taxonomic studies and culture conditions for production. Agric biol Chem,1985b,49(11): 3151-3157
    144 Takagi H, Kadowaki K. Purification and chemical properties of a flocculant produced by Paecilomyces. Agric Biol Chem.1985c,49(11):3159-3164
    145汪保江.深海Halomonas sp.V3a合成的新型多糖类生物絮凝剂HBF-1的研究.厦门大学硕士论文.2006:13-14
    146 H.Salehizadeh, M.Vossouhi, L Alemzadeh. Some investigations on bioflocculant production bacteria. Biochemical Engineering Journal,2000,5(1):39-44
    147IL Salehizadeh, S.A.Shojaosadati. Extracellular biopolymeric flocculants recent trends and biotechnological importance. Biotechnology Advances,2001,19(5): 371-385
    148 Ryuichiro K, Yasuhiro N. Microbial flocculation of waste liquids and oil emulsion by a bioflocculant from alcaligenes latus. Agric.Boil.Chem.,1991,55(4):1127-1129
    149 Nakamura J, Hirose Y. Purification and chemical analysis of microbial cell flocculant produced by Aspergillus sojae AJ-7002. Agric.Biol.Chem.,1976,40(3):619-624
    150 Sakka K. DNA as a flocculation factor in Pseudomonas sp. Agri.Biol.Chem.,1981, 45(2):2869-2876
    151 Jarkko H, Jarkkoh. The effciency of the protein dependent flocculation of Flavo bacterium is sensitive to the composition of growth medium. Microbiol Biotechnol, 1991,36:100-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700