用户名: 密码: 验证码:
变性偏心圆—非圆行星系分插机构分析、设计与参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是中国的主要粮食作物,水稻的播种面积超过了29962千公顷,占粮食播种面积的27.6%,稻谷产量18791万吨,占粮食产量的40.7%,并且中国是世界上种植水稻最古老的国家,稻作历史约有七千年,是世界栽培稻起源地之一。但是我国水稻生产机械化总体水平不高,基本采用人工育秧,插秧,收获,劳动强度大,生产效率底下,而且伴随着人力资源价格的提升,这种人工方式显示出的弊病越来越明显。水稻插秧机械化对扩大水稻种植面积,提高水稻产量,减轻水稻种植强度,降低生产成本,增加农业效益起着非常重要的作用。
     水稻插秧机的核心部件为分插机构,其性能的优劣直接决定了插秧机的整机水平。目前在市场上销售的高速插秧机的旋转式分插机构一般都是采用了日本研制的偏心齿轮分插机构或椭圆齿轮分插机构。上述的分插机构一般只是考虑秧针轨迹是否能达到插秧的要求,而对秧针相对速度(秧针相对速度的大小决定了分插机构的“伤秧率”的大小)并没有进行考虑。为了降低分插机构的“伤秧率”,提高水稻的产量,我们就必须设计出一种新的分插机构来达到满足秧针轨迹的前提下降低秧针相对速度的目的。
     本文成功的设计了具有自主知识产权的新型分插机构——变性偏心圆-非圆齿轮行星系分插机构,研究内容主要有:
     1)通过对日本的高速插秧机旋转式分插机构以及目前常用的曲柄摇杆分插机构的工作机理和运动特性分析,指出旋转式分插机构的核心技术是非匀速传动机构。
     2)本论文首次提出了将变性应用到偏心-非圆齿轮中,形成了一种新的变性偏心圆-非圆齿轮,对齿轮节曲线的封闭性和凸凹性进行了验证,并将这种新的齿轮应用到了分插机构上。建立了变性偏心圆-非圆齿轮行星系分插机构运动学模型,论述了变性偏心圆-非圆齿轮分插机构的工作原理和结构特点。
     3)以建立的齿轮和分插机构的数学模型,分别自主开发了齿轮齿廓生成软件和变性偏心圆-非圆齿轮行星系分插机构的辅助分析与优化软件。介绍了非圆齿轮齿廓生成的包络法原理和两种软件的基本功能模块、特点。
     4)根据我国农艺要求,提出分插机构参数优化的目标和方法,分析参数变化对分插机构运动特性的影响,利用自主开发的软件采用人机交互的优化方法,优化出分插机构的结构参数,来满足高速插秧机的插秧工作要求。将变性偏心圆-非圆齿轮分插机构与原来的分插机构在秧针相对速度和轨迹上进行了对比,突出了这种新的变性偏心圆-非圆齿轮行星系分插机构的优势。
     5)按照优化得到的结构参数,进行变性偏心齿轮-非圆齿轮行星系分插机构的整体设计,讨论了设计中应该注意的问题,最后在AutoCAD2004下完成各零件的设计和装配图。
     6)在三维软件UG中建立分插机构各部件的实体模型,并对其进行了虚拟装配。利用机械系统仿真分析软件ADAMS对机构进行动态仿真。得出动态仿真结果,三维动态仿真所得到的秧针轨迹与VB软件理论分析所得到的秧针的运动轨迹高度一致,验证了可以通过变性偏心齿轮与非圆齿轮外啮合传动可以满足插秧要求,同时互相印证了理论模型与仿真模型的正确性。
Rice is the major food crops, sowning area 29962 thousands hectares, accounting for 27.6% of the sown area of grain, grainning yield 187.91 million tons, accounting for 40.7% of food production. China which is one of the the world origin of cultivated rice is the world's oldest nationa to sown the rice, about seven thousand years. However, the level of mechanization of rice production is not high, the basic use of artificial seedlings, planting, harvesting is not efficiency, and the price along with the upgrading of human resources, this manual method shows more and more obvious shortcomings. The expansion of mechanized rice planting is good for improving area of rice cultivation, reducing the intensity of rice cultivation, reducing production costs and increasing efficiency of agriculture .
     The core components of the rice transplanter is transplanting mechanism, which will directly determine the transplanter machine level. Currently on the market of high-speed transplanting mechanism are generally developed by a Japanese eccentric gear transplanting mechanism or elliptical gears transplanting mechanism. These institutions generally only consider whether the seedling needle track achieving the requirements of planting, and the relative speed of the seeding needle (the relative speed of the needle seeding determines transplanting mechanism "injury seedling rate" in size) not be considered. To reduce the transplanting mechanism "injury seedling rate" for increasing rice production, we must design a new type transplanting mechanism to reduce the relative speed of needle seeding.
     This paper successfully design of the new proprietary transplanting mechanism which is deformation of eccentric non-circular Gears transplanting mechanism.the research contents are:
     (1) Researching on the Japanese high-speed rice transplanter rotary transplanting institutions and currently used crank-rocker mechanism transplanting mechanism, point out that the non-uniform transmission is the core technology of rotary transplanting institutions.
     (2) First proposed the deformation applied to the eccentric - non-circular gears, formate a new deformation of eccentric non-circular Gears and the gear section of the closed and convex and concave curve was validated. The new gears is applied to transplanting institutions and establish a deformation of eccentric non-circular Gears transplanting mechanism kinematics model, discusses the deformation of deformation of eccentric non-circular Gears transplanting mechanism working principle and structure characteristics.
     (3) To establish the mathematical model institutions of gear and deformation of eccentric non-circular Gears transplanting mechanism, developed the gear tooth profile generation software and deformation of eccentric non-circular Gears transplanting mechanism aided analysis and optimization software. And introduced the non-circular gear tooth profile generated by DEA principle and the basic functions of the two software modules, features.
     (4) According to Chinese agricultural requirements, proposing transplanting mechanism optimization goals and methods, analysising parameter’s effect on the kinematic characteristics, using self-developed software interactive optimization method to optimize the transplanting mechanism structural parameters, to meet job requirements of high-speed transplanter transplanting. Comparing deformation of eccentric non-circular Gears transplanting mechanism with the original transplanting mechanism to extrude the advantage of deformation of eccentric non-circular Gears transplanting mechanism.
     (5) In accordance with the optimized structure parameters, complete deformation of eccentric non-circular Gears transplanting mechanism overall design, discuss design issues that should be noted that, in the end accmplish assembly and each part of the design by AutoCAD2004 .
     (6) Create parts of the solid model by three-dimensional software UG, and complete its virtual assembly. Using ADAMS mechanical system simulation software for dynamic simulation of the structure. Dynamic simulation results obtained that the resulting three-dimensional dynamic simulation of seeding needle track highly consistent theory with VB software seedlings trajectory of the needle and proving deformation of eccentric non-circular Gears transplanting mechanism meeting the planting requirements, while another confirmed the theoretical model and simulation model is correct.
     Deformation of eccentric non-circular Gears transplanting mechanism patents pending, 2 computer software copyrights is accepted.
引文
[1]李治邦.论“三农”问题[N].安徽农学通报,2009-12-30(2)
    [2]陈学法,曹招根.正确认识“两个趋向”理论与社会主义新农村建设[J].福建论坛·人文社会科学版,2009,(1):7~12.
    [3]白继强.机械设计的过程[N].重庆科技学院学报(社会科学版),2006增刊
    [4]熊元芳,张洪,彭彬.广东省水稻机械化种植技术的现状与发展分析[J].现代农业装备,2004,(2):11~14
    [5]秦龙杰,白玉成.浅析我国水稻插秧机的现状及发展前景[J].农机化研究,2005,(2);42~43.
    [6]陈纪南.我国水稻种植机械的三大类别[J].农业装备,2008,(11)55~56
    [7]俞高红,赵匀,赵凤芹,武传宇,杨文珍.高速水稻插秧机分插机构研究现状和最新进展[J].农机化研究,2003-4,(2):41~43
    [8]陈建能,赵匀.水稻插秧机分插机构的研究进展[N].农业工程学报,2003,(2):10~13
    [9]陈建能,赵匀.旋转式分插机构的研究进展及其动力学分析方法[N].福建农林大学学报(自然科学版),2003-9,32(3):391~393
    [10]赵匀,蒋焕煜,武传宇,尹建军.双季稻高速插秧机偏心链轮分插机构结构设计和参数优化[N].机械工程学报,2000, 03
    [11]应义斌,赵匀.偏心齿轮行星系水稻分插机构的分析研究[N].农业工程学报1997,02
    [12]俞高红,赵凤芹,武传宇,赵匀.正齿行星轮分插机构的运动特性分析.农业机械学报, 2004,35(6) :51,55~57.
    [13]李革,赵匀,俞高红.椭圆齿轮行星系分插机构的机理分析和计算机优化[N].农业工程学报,2000,4
    [14]陈建能,赵匀.高速插秧机椭圆齿轮行星系分插机构的参数优化.农业机械学报,2003, 05
    [15] [日]清水一史,水稻插秧机的最新产品开发动向,机械化农业, 1996(3):5~7.
    [16] [日]日本水稻插秧机的发展动向,农机新闻,1994.1,(1):52.
    [17]濮良贵,纪名刚.机械设计[M],北京:高等教育出版社,2005.184~186
    [18]武丽梅,鲁墨武.非圆齿轮技术的发展及应用[J].沈阳航空工业学院学报.2000.17(1):23-26.
    [19]吴序堂,王贵海.非圆齿轮及非匀速比传动[M].北京:机械工业出版社,199.12~35
    [20] [日]太田浩.非圆齿轮的设计,机械工程师,1996(5):54~55
    [21]贺敬良,吴序堂,李建刚.变性椭圆齿轮连杆机构的运动特性及齿轮副设计[J].机械工程学报.2004,40(1):62~65
    [22]高洪,吕新生.变性椭圆齿轮节曲线设计及图形仿真[J].中国机械工程,14(19):1645~1648
    [23] [日]北村谦一.非圆形齿轮的设计一偏心齿轮和椭圆齿轮[C].东京国际齿轮与动力传动学术讨论会,1983
    [24]刘永平,吴序堂,李鹤岐.常见的凸封闭节曲线非圆齿轮副设计[J].农业机械学报,2007,38(6): 143~146
    [25]《现代机械传动手册》编辑委员会.现代机械传动手册[M],北京:机械工业出版社,2002,325~330
    [26]吴培芳,冯振成.欧拉—萨伐里定理的几何图解法[J].机械设计,1993,10(5):26~29
    [27] L.S Guo, W.J. Zhang.Kinematic analysis of a rice transplanting mechanism with eccentric planetary gear trains[J].Mechanism and Machine Theory,2001,36(11) :1175~1188.
    [28]蒋焕煜,应义斌,赵匀.水稻插秧机分插机构的运动学特性分析[J].浙江农业大学学报.1998,24(3):321~324.
    [39]赵匀.农业机械计算机辅助分析与设计[M].北京:清华大学出版社,1998.
    [30] Jalon J G, etc. Computer Method for Kinematic Analysis of Lower-Pair Mechanisms. MMT, 1981,16(5) .
    [31]刘彬彬,高春艳,王西.Visual Basic程序设计自学手册[M].北京:人民邮电出版社,2008
    [32]赵匀.农业机械分析与综合[M].北京:机械工业出版社,2009,317~326
    [33]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009
    [34]李福生.非圆齿轮[M].北京:机械工业出版,1975
    [35]魏东,李冬梅,黄有群.三维图形绕坐标轴连续旋转的算法与实现[J].沈阳工业大学学报,2007,29(6):696~698
    [36]程雪锋,丁国富.非圆齿轮CAD / CAM及加工模拟[J].机械设计与制造,2010,(3)61~63
    [37]陈建能,赵匀.高速插秧机椭圆齿轮行星系分插机构的参数优化.农业机械学报,2003,34(5):48~51.
    [38] Popovics S .Graphical Method of Optimization A short cut .1982.6 A.S.C.E
    [39]何建勇.最优化方法[M].北京:清华大学出版社.2007
    [40]陈志平,徐成贤,李乃成.近代优化方法[M].北京:科学出版社,2002
    [41]赵匀,俞高红,李革等.旋转式水稻分插机构的结构创新、参数优化和试验验证[J].机械设计与研究,2002(增刊):198~200.
    [42]龚永坚,刘丽敏,俞高红,陈霓,熊永森.水稻插秧机后插式分插机构运动分析与试验[J].农业机械学报,2005,36(9):41~43
    [43]何琰.分插机构复优化方法的研究及软件集成[D].杭州:浙江理工大学,2009
    [44]石永刚,吴央芳.凸轮机构设计与应用创新/机构设计与应用创新丛书[M].北京:机械工业出版社,2007
    [45]赵匀.插秧机推秧装置凸轮和拨叉的理论分析和优化设计[J].农机化研究.1990,(2):22~28
    [46]贾东永,郭光立. UG模具设计基础教程[M].北京:清华大学出版社,2010.06
    [47]查韬,刘大慧. UG NX 6模具设计[M].北京:清华大学出版社,2009
    [48]韩思明,周铭杰. UG NX6中文版模具设计经典实例解析.北京:清华大学出版社,2009
    [49]李志国,邵立新,孙江宏. UG NX 6中文版机械设计与装配案例教程.北京:清华大学出版社,2009.09
    [50]陈德虎,陈大治. UG NX系统应用技巧.北京:清华大学出版社,2007
    [51]郑建荣,Adams–虚拟样机技术入门与提高。机械工业出版社,2004.5.
    [52]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [53] Mechanical Dynamics Ins. ADAMS/View Users Reference Manual Mechanical Dynamics Ins USA, 1994.
    [54]陈新刚,张士新,李永伟. UG与ADAMS之间的图形数据传输实验[J].农业装备与车辆工程,2007,(10):43~46
    [55]毕世英,杨晓京,李哲昆. UG与ADAMS/View之间的图形数据交换研究[J].机械设计与研究,2004,31(6):8~10
    [56]李增刚. ADAMS入门详解与实例[M].北京:国防工业出版社,2006
    [57]赵雷,梅顺齐,付方波.基于ADAMS的剑杆织机打纬共轭凸轮轮廓计算的新方法[J].现代机械,2008,(4):40~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700