用户名: 密码: 验证码:
大豆亲脂性蛋白的界面吸附、乳化及输送特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
商业大豆分离蛋白中除7S和11S储藏蛋白外,还含有一种含量较高(31%)的富含磷脂的蛋白―大豆亲脂性蛋白(lipophilic protein, LP)。LP蛋白是包含大豆油体蛋白的蛋白质―磷脂复合体。目前的研究表明,LP蛋白具有良好的生理保健功能。但由于在水中的溶解性很差,其作为功能性蛋白的研究还未见报道。本文系统研究了大豆亲脂性蛋白的功能特性,包括界面吸附、乳化特性及输送特性,并在此基础上提出了疏水蛋白/小分子表面活性剂复合界面的概念。结果如下:
     1.本文发现利用简单超声处理LP蛋白,可制备具有良好分散能力的纳米颗粒,大大改善其溶解性,使其工业化应用成为可能。超声处理LP蛋白能够形成粒径为136±0.8nm,表面电荷为-20.0±0.3mV的纳米颗粒。通过表面疏水性分析以及磷脂酶处理,发现该纳米颗粒为磷脂覆盖的疏水蛋白聚集体。这种复合颗粒能够扩散至界面并在界面上形成由蛋白颗粒聚集物与磷脂组成的复合界面,该复合界面能够耐受小分子表面活性剂(Tween20)的竞争性取代。采用界面流变技术分析了磷脂酶和蛋白酶对颗粒的界面流变行为的影响,发现磷脂和疏水蛋白颗粒之间存在着协同作用。该协同作用使得大豆亲脂性蛋白纳米颗粒制备的乳液在长期存储(8weeks)、高温―高盐(90℃/200mM NaCl)处理以及添加小分子表面活性剂(4wt.%Tween20)等情况下具有良好的物理稳定性。
     2.研究了油体界面组成对其稳定性的影响。通过不同有机溶剂(丙酮、正己烷、氯仿/甲醇)对大豆油体脱脂以控制重组油体界面的油体蛋白和磷脂比例。结果证实较高的磷脂含量有利于油体蛋白在油水界面的吸附并能获得较高的界面压和界面粘弹模量。油体蛋白和磷脂复合物形成的重组油体的物理稳定性和氧化稳定性随磷脂含量的提高而提高。
     3.在上述研究的基础上,本文提出了疏水蛋白与小分子表面活性剂形成的复合界面的概念,并对此机制进行了验证。用疏水蛋白zein与小分子表面活性剂硬脂酸钠模拟天然复合界面制备乳液,并采用凝胶捕获技术观察了zein颗粒在油-水界面的形貌及三相接触角。发现小分子表面活性剂控制疏水蛋白颗粒在界面上的吸附。在硬脂酸钠浓度较低时(2.5mM),zein在界面上的吸附量较少,呈规则的球状,并且三相接触角远低于90°。当硬脂酸钠浓度较高时(10mM),zein颗粒部分展开且在界面上形成了致密的吸附层,三相接触角接近或略大于90°。利用zein和硬脂酸钠复合物成功制备了稳定的食品级Pickering乳液,并且该乳液能够在不使用饱和脂肪酸或反式脂肪酸的情况下经过冻干形成结构化油脂。
     4.本文探索了LP蛋白纳米颗粒作为新类型高荷载的输送载体的可能性。以大豆亲脂性蛋白纳米颗粒作为疏水性活性物质的输送载体,通过超声诱导共组装技术成功荷载了共轭亚油酸,且荷载能力高达26.3±0.4wt.%,荷载共轭亚油酸的纳米颗粒粒径为170±0.63nm。采用红外光谱和X-光衍射证实了共轭亚油酸在颗粒内部的荷载。采用顶空氧气消耗量和过氧化物含量分析了共轭亚油酸的氧化稳定性,结果表明采用大豆亲脂性蛋白纳米颗粒荷载的共轭亚油酸相比酪元酸钠荷载的共轭亚油酸和共轭亚油酸的乙醇溶液具有更好的氧化稳定性。此外,大豆亲脂性蛋白纳米颗粒荷载的共轭亚油酸在模拟胃肠液消化过程中具有缓释特征。
     5.本文提出了一种双功能胶体颗粒的概念,该颗粒既能作为界面稳定剂,又具有抗氧化性。通过将维生素E荷载至大豆亲脂性蛋白纳米颗粒中,制备了同时具有界面稳定性和抗氧化性的双功能纳米颗粒。将该颗粒制备的藻油乳液冻干处理后成功制备出结构化的藻油。采用激光共聚焦显微镜表征了该结构化油脂的内部结构,观察到大豆亲脂性蛋白纳米颗粒形成了立体网络结构,而油滴在该网络内部呈独立分散状态。剪切流变分析显示该结构化油脂具有明显的固体特征,其流变学特性可通过乳液中大豆亲脂性蛋白纳米颗粒的浓度调节。由于抗氧化剂在界面富集,采用该双功能纳米颗粒制备的结构化藻油比油相中添加维生素E的结构化藻油和未结构化处理的藻油具有更好的氧化稳定性。
Other than the storage protein glycinin and β-conglycinin, soy lipophilic protein (LP) isthe third principle fraction (content of31%) in commercial soy protein isolate, which is richin OBBP and soy phospholipids and presents as an amorphous aggregates in aqueous phase.Studies have shown that LP has a good physiological function. Due to their poor solubilityand diffusivity, few researches take notes on their functionality such as interfacial andemulsifying properties. This thesis has evaluated the functionality of LP systematically,including its interfacial adsorption, emulsifying properties and as a delivery device.Furthermore, a concept of “complex interface” composited with hydrophobic protein andsmall molecular weight surfactant was proposed based on the above studies. The main resultsinclude following.
     1. This thesis find that a nanoparticle can be formed by simple ultrasonic treatment, whichhad an excellent diffusion capacity, improved functionality and be potential to be used in foodindustry. LP can be transformed into a sphere particle with a size of136±0.8nm and surfacecharge of-20.0±0.3mV by ultrasonic treatment. Though the surface hydrophobicity analysisand treated with phospholipase, the structure of the particle was confirmed which wasaggregates of the hydrophobic protein with phospholipids covered on the surface. LP particlewas able to diffuse to the interface and form a complex layer composited with thehydrophobic protein aggregates and phospholipids. The rigid interface was so stable that itwas resistant to be displaced by the small molecular surfactant Tween20. Interfacial rheologytechnology was used to investigate the effects of phospholipase and protease on the interfacialrheology behavior of LP particle, which found that there existed synergic effects between thephospholipids and the hydrophobic protein particles. The synergic effects also be beneficialfor the stability of emulsions which had an excellent physical stability even at long-termstorage (8weeks), heating-salting treatment (90℃/200mM NaCl) and the competitivedisplacement of SMW surfactant (4wt.%Tween20).
     2. To evaluate the effects of composition of the complex on its stability, soy oil body wasdegreased by organic solvent and then used to form a recombiant oil body. Three differentorganic solvent (acetone, n-hexane, chloroform/methanol) was used to degrease the soy oilbody to control the ratio between OBBP and phospholipids on the surface of recombiant oilbody. Results showed that high content of phospholipids could improve the adsorption of theOBBP on oil-water interface and obtained a high surface pressure and dilatational module. The physical and oxidant stability of recombinant soy oil body formed by the complex ofOBBP and phospholipids was improved by the increasing of phospholipids content.
     3. Based on the above studies, a concept of “complex interface” composited withhydrophobic protein and small molecular weight surfactant was proposed and comfirmed.Zein and sodium stearate (SS) were used to simulate the natural complex interface. The geltrapping technology (GTT) was applied to observe the morphology and interfacial contactangle of zein particles on oil-water interface. Results showed that SS controlled the adsorptionof zein on oil-water interface. At a low content of SS (2.5mM), the amount of zein adsorptedon interface was low and they presented as regular spherical particles, their contact angle wasfar less than90°. When at a higher content of SS, the particially unfolded zein particleaccumulated on the interface formed a condensed packed layer, their contact angle wasassumed to be closed to or slightly higher than90°according to the SEM. The complex ofzein and SS could be used to form a stable food grade Pickering emulsion, and such stableemulsion could be further freeze-dried to form a structured fat without the usage of trans-orsaturated fatty acids.
     4. The possibility of LP nanoparticle act as a novel delivery vehicle with hight loadingcapacity for the hydrophobic bioactives was explored. LP nanoparticles as a delivery devicefor the hydrophobic bioactives can load conjugated linoleic acids (CLA) successfully byultrasonic induced assembly, and the loading capacity of this system are as high as26.3±0.4wt.%. The CLA-loaded particle has a size of170±0.63nm. Infrared spectrum and X-raydiffraction were used to confirm the entrapment of CLA in the particles. The oxidationstability of CLA was evaluated by the headspace oxygen consumption and peroxide value.Results showed that CLA loaded in soy lipophilic protein nanoparticles have improvedoxidation stability than it loaded in sodium caseinate micelle or in ethanol. Moreover, theCLA loaded in soy lipophilic protein particles had resistant release characteristics whensubjected to the simulated gastrointestinal digestion.
     5. The thesis had developed a concept of “double-functional colloidal particle” which couldact as interfacial stabilizer and antioxidants simultaneously. A double-functional nanoparticlecould be formed by entrapping the VEin LP nanoparticles via ultrasonic induced co-assembly.Algae oil emulsions stabilized by this double-functional nanoparticles could form an oil gel(structured fat) when subjected to freeze-drying. Laser scan confocal microscope was appliedto characterize the internal structure of this oil gels. It could be observed that a3-D networkwas formed by soy lipophilic protein nanoparticles and the oil droplets entrapped in thisnetwork separately. Oscillating rheology analysis showed that the formed oil gel in this research had an apparent solid characteristic, and its rheology properties were tunableaccording the concentration of nanoparticles in emulsions. Due to the enrichment ofanti-oxidants on the interface, the algae oil in the double functional particles formed oil gelwas performed to have improved oxidation stability as compared to the case that VEin oilphase or fluid algae oil.
引文
1. Kitamura, K.(Ed.). All about soybeans. Tokyo: Science Forum.2010.
    2. Preeti Singh, R. Kumar, S. N. Sabapathy, A. S. Bawa. Functional and edible uses of soyprotein products [J]. Comprehensive reviews in food science and food safety,2008,7:14–28.
    3. Sarwar G., Peace R. W., Botting H. G. Effect of amino acid supplementation on proteinquality of soy based infant formulas [J]. Plant Foods Hum Nutr.1993,43:259–66.
    4. Riaz M. N. Uses and benefits of soy fiber [J]. Cereal Foods World,2001,46:98–100.
    5. Campbell M. F., Kraut C. W., Yackel W. C., Yang H. S. Soy protein concentrates. In:Altschul AA, Wilcke HL, editors. New protein foods: seed storage proteins.1985, Vol.5.Orlando, Fla.: Academic Press.
    6. Wolf W. J. Soybean proteins: their functional, chemical, and physical properties [J]. J.Agric. Food Chem.,1970,18:969–76.
    7. Onayemi O., Lorenz K. Concentrates and isolate in bread making [J]. Bakers Dig1978,52:18–24.
    8. Kinsella, J. E. Functional properties of proteins in foods: A survey [J]. Crit. Rev. Food Sci.&Nutr.,1976,7:219–280.
    9. Rakosky J Jr. Soy grits, flours, concentrates, and isolates in meat products [J]. JAOCS,1974,51:123–127.
    10. Anderson J. W., Johnstone B. M., Cook N. Meta-analysis of the effects of soy proteinintake on serum lipids [J]. N. Engl. J. Med.1995,333:276–82.
    11. Lin Y., Meijer G. W., Vermeer M. A., Trautwein E. A. Soy protein enhances thecholesterol-lowering effect of plant sterol esters in cholesterol-fed hamsters [J]. J. Nutr.2004,134:143–148.
    12. Moriyama T., Kishimoto K., Nagai K., Urade R., Ogawa T., Utsumi S., Maruyama N.,Maebuchi M.. Soybean beta-conglycinin diet suppresses serum triglyceride levels in normaland genetically obese mice by induction of beta-oxidation, downregulation of fatty acidsynthase, and inhibition of triglyceride absorption [J]. Biosci. Biotechnol. Biochem.2004,68:352–359.
    13. Anthony M. S, Clarkson T. B., Williams J. K. Effects of soy isoflavones onatherosclerosis: potential mechanisms [J]. Am. J. Clin. Nutr.1998,68:1390S–1393S.
    14. U.S. Food and Drug Administration. Food labeling health claims: soy protein andcoronary heart disease. Food and Drug Administration, HHS. Final rule. Fed Regist.1999,64:57700–57733.
    15. Smith, A. K., Rackis, J. J., Isnardi, P., Cartter, J. L., Krober, O. A. Nitrogen solubilityindex isolated protein yield and whey nitrogen content of several soybean strains [J]. CerealChemistry,1996,43:261–270.
    16. Badley, R. A., Atkinson, D., Hauser, H., Oldani, D., Green, J. P.,&Stubb, J. M. Thestructure, physical and chemical properties of the soy bean protein glycinin [J]. Biochimica etBiophysica Acta,1975,412:214–228.
    17. Nagano T, Hirotsuka M, Mori H, Kohyama K, Nishinari K. Dynamic viscoelastic studyon the gelation of7S globulins from soybeans[J]. J. Agric. Food. Chem.,1992,40:941–944
    18. Wu S., Murphy P. A., Johnson L. A., Reuber M. A., Fratzke A. R.. Simplified process forsoybean glycinin and β-conglycinin fractionation[J]. J. Agric. Food Chem.,2000,48:2702-2708.
    19. Deak N A, Murphy P A, Johnson L A. Fractionating soybean storage proteins using Ca2+and NaHSO3[J]. Journal of food science.2006,71: C413-C423.
    20. Mashahiko Samoto, Motohiro Maebuchi, Chiaki Miyazaki, Hirofumi Kugitani, MitsutakaKohno, Motohiko Hirotsuka, Makoto Kito. Abundant proteins associated with lecithin in soyprotein isolate [J]. Food Chemistry,2007,102:317–322.
    21. Kelley, J.J., R. Pressey. Studies on the extraction and composition of rice proteins [J].Cereal Chem.,1966,43:145–155.
    22. Ishino, K., and S. Ikamato. Molecular interaction in alkali denatured soybean proteins [J].Cereal chemistry,1975,52:9.Ishino K, Okamoto S. Molecular interaction in alkali denatured soybean proteins[J]. Cerealchemistry,1975.
    23. Tornberg E. The application of the drop volume technique to measurements of theadsorption of proteins at interfaces [J]. Journal of Colloid and Interface Science,1978,64:391-402.
    24. Eriberg, S. Food emulsions [M]. CRC Press,2003.
    25. Phillips M C. The conformation and properties of proteins (casein) at liquid interfaces [J].Chemistry and Industry,1977,170-176.
    26. Catsimpoolas N., E. W. Meyer. Gelation phenomena of soybean globulins. I.Protein-protein interactions [J]. Unknown,1970,47:559-570.
    27. Ehninger, J., D. Pratt. Some factors influencing gelation and stability of soy proteindispersions [J]. Journal of food science,1974,39:892-896.
    28. Hermansson, A. M. Functional properties of proteins for foods―flow properties [J].Journal of texture studies,1975,5:425―439.
    29. Yasumatsu K., J. Toda, T. Wada, M. Misaki, K. Ishii. Studies on the functional propertiesof food-grade soybean products. III. Properties of heat-coagulated gels from soybean products[J]. Agricultural and biological chemistry,1972,36:537.
    30. Nana Wu, Lijuan Wang, Xiaoquan Yang, Shouwei Yin, Zi Teng, Erli Zheng. Comparisonof flavor volatiles and some functional properties of different soy protein products [J]. J AmOil Chem Soc.,2011,88:1621–1631.
    31. Masahico Samoto, Chiaki Miyazaki, Jiroh Kanamori, Takeshi Akasaka, Yukio Kawamura.Improvement of the off-flavor of soy protein isolate by removing oil-body associated proteinsand polar lipids [J]. Biosci. Biotechnol. Biochem.1998,62:935-940.
    32. Ryuhei Kanamoto, Shinya Kimura, Gaku Okamura. Cholesterol lowering effect ofsoybean lipophilic proteins associated with phospholipids in rat [J]. Soy Protein Research,Japan,2007,10:83-87.
    33. Ryuhei Kanamoto, Marie Inai, Wakako Miyaki. Physiological function and its mechanismof soybean lipophilic protein as a functional food for prevention of metabolic syndrome [J].Soy Protein Research, Japan,2008,11:75-81.
    34. Ryuichiro Sato, Makoto Shimizu, Hiroyasu Inoue, Rieko Nakata. Study o f the moleculartargets of metabolic improvement caused by soy protein intake (PartⅠ)[J]. Soy ProteinResearch, Japan,2012,15:13-16.
    35. Tzen J T C, Cao Y Z, Laurent P, et al. Lipids, proteins and structure of seed oil bodiesfrom diverse species[J]. Plant Physiology,1993,101:267-276.
    36. Tzen, J. T. C.; Cao, Y. Z.; Laurent, P.; Ratnayake, C.; Huang, A. H. C. Lipids, proteins,and structure of seed oil bodies from diverse species [J]. Plant Physiol.1993,101:267–276.
    37. Tzen, J. T. C.; Huang, A. H. C. Surface-structure and properties of plant seed oil bodies[J]. J. Cell Biol.1992,117:327–335.
    38. Huang A. H. C. Oil bodies and oleosins in seeds [J]. Annu. Rev. Plant Physiol. Plant Mol.Biol.,1992,43:177-200
    39. Huang A. H. C. Oleosins and oil bodies in seeds and other organs [J]. Plant Physiol.,1996,110:1055-1061.
    40. Murphy D. J. Structure function and biogenesis of storage lipid bodies and oleosins inplants [J]. Prog Lipid Res.1993,32:247-280.
    41. Luping Zhao, Yeming Chen, Yanyun Cao, Xiangzhen Kong, Yufei Hua. The integral andextrinsic bioactive proteins in the aqueous extracted soybean oil bodies [J]. J. Agric. FoodChem.2013,61,97279733.
    42. Yann Gohon, Jean-David Vindigni, Agnès Pallier, Frank Wien, HervéCelia, AlexandreGiuliani, Christophe Tribet, Thierry Chardot, Pierre Briozzo. High water solubility and fold inamphipols of proteins with large hydrophobic regions: Oleosins and caleosin from seed lipidbodies [J]. Biochimica et Biophysica Acta,2011,1808:706–716.
    43. Constantinos V. Nikiforidis, Christos Ampatzidis, Sofia Lalou, Elke Scholten, Thodoris D.Karapantsiosc, Vassilios Kiosseogloub. Purified oleosins at air–water interfaces [J]. SoftMatter,2013,9:1354–1363.
    44. Magali Deleua, Guadalupe Vaca-Medina, Jean-Franc ois Fabre, Julie Ro z, RomainValentin, Zéphirin Mouloungui. Interfacial properties of oleosins and phospholipids fromrapeseed for the stability of oil bodies in aqueous medium [J]. Colloids and Surfaces B:Biointerfaces,2010,80:125–132.
    45. Frandsen, G. I.; Mundy, J.; Tzen, J. T. C. Oil bodies and their associated proteins, oleosinand caleosin. Physiol. Plant.2001,112:301–307.
    46. Huang, A. H. C. Oil bodies and oleosins in seeds [J]. Annu. Rev. Plant Physiol.1992,43:177–200.
    47. Constantions V. Nikiforidis, Vassilios KiosseoglouAqueous Extraction of oil bodies frommaize germ (Zea mays) and characterization of the resulting natural oil-in-water emulsion [J].J. Agric. Food Chem.2009,57,5591–5596.
    48. Anna C.N. Chua, Pei-Luen Jiang, Li-Shian Shi, Wing-Ming Chou, Jason T.C. Tzen.Characterization of oil bodies in jelly fig achenes [J]. Plant Physiology and Biochemistry,2008,46:525-532.
    49. J.T.C. Tzen, C.C. Peng, D.J. Cheng, E.C.F. Chen, J.M.H. Chiu, A new method for seed oilbody purification and examination of oil body integrity following germination[J]. J. Biochem,(Tokyo)1997,121:762-768.
    50. Daigo Iwanaga, David A. Gray, Ian D. Fisk, Eric Andrew Decker, Jochen Weiss, DavidJulian McClements. Extraction and characterization of oil bodies from soy beans: a naturalsource of pre-emulsified soybean oil [J]. J. Agric. Food Chem.2007,55:8711–8716.
    51. Kim, D. A.; Cornec, M.; Narsimhan, G. Effect of thermal treatment on interfacialproperties of beta-lactoglobulin [J]. J. Colloid Interface Sci.2005,285:100–109.
    52. Demetriades, K.; Coupland, J. N.; McClements, D. J. Physicochemical properties of wheyprotein-stabilized emulsions as affected by heating and ionic strength [J]. J. Food Sci.1997,62:462–467.
    53. Tzen, J. T. C.; Lie, G. C.; Huang, A. H. C. Characterization of the charged componentsand their topology on the surface of plant seed oil bodies [J]. J. Biol. Chem.1992,267:15626–15634.
    54. Constantinos V. Nikiforidis, Vassilios Kiosseoglou. Competitive displacement of oil bodysurface proteins by Tween80―Effect on physical stability [J]. Food Hydrocolloids,2011,25:1063-1068
    55. Na-na Wu, Xiao-quan Yang, Zi Teng, Shou-wei Yin, Jian-hua Zhu, Jun-ru Qi.Stabilization of soybean oil body emulsions using κ, ι, λ-carrageenan at different pH values[J]. Food Research International,2011,44:1059–1068.
    56. Na-Na Wu, Xu Huang, Xiao-Quan Yang, Jian Guo, Er-Li Zheng, Shou-Wei Yin,Jian-Hua Zhu, Jun-Ru Qi, Xiu-Ting He, Jin-Bo Zhang. Stabilization of soybean oil bodyemulsions using ι-carrageenan: Effects of salt, thermal treatment and freeze-thaw cycling [J].Food Hydrocolloids,2012,12:110―120.
    57. Bingcan Chen, David Julian McClements, David A. Gray, Eric Andrew Decker.Stabilization of soybean oil bodies by enzyme (Laccase) cross-Linking of adsorbed beetpectin coatings [J]. J. Agric. Food Chem.2010,58,9259–9265.
    58. Constantinos V. Nikiforidis, Vassilios Kiosseoglou. Physicochemical stability of maizegerm oil body emulsions as influenced by oil body surface-xanthan gum interactions [J]. J.Agric. Food Chem.2010,58,527–532.
    59. Fisk, D., White, D. A., Lad, M., Gray, D. A. Oxidative stability of sunflower oil bodies [J].European Journal of Lipid Science and Technology,2008,110:962–968.
    60. Gray, D. A., Payne, G., McClements, D. J., Decker, E. A., Lad, M. Oxidative stability ofEchium plantagineum seed oil bodies [J]. European Journal of Lipid Science and Technology,2010,112:741–749.
    61. Virginie N. Kapchie, Linxing Yao, Catherine C. Hauck, Tong Wang, Patricia A. Murphy.Oxidative stability of soybean oil in oleosomes as affected by pH and iron [J]. FoodChemistry,2013,141:2286–2293.
    62. Gustav Waschatko, Birgitta Schiedt, Thomas A. Vilgis, Ann Junghans. Soybeanoleosomes behavior at the air–water interface [J]. J. Phys. Chem. B2012,116:1083210841.
    63. Gustav Waschatko, Ann Junghansa, Thomas A. Vilgis. Soy milk oleosome behaviour atthe air–water interface [J]. Faraday Discuss.,2012,158:157–169.
    64. Deckers HM, van Rooijen G, Boothe J, et al. Sembiosys Genetics Inc. Products for topicalapplications comprising oil bodies. United States patent US6582710.
    65. Hou R. C. W, Lin M. Y., Wang M. M. C, Tzen J. T. C. Increase of viability of entrappedcells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions [J]. J.Dairy Sci.,2003,86:424-428.
    66. Harada T, Kashihara K, Nio N. Food Research&Development Laboratories, AjinomotoCo., Inc. Oleosin/phospholipid complex and process for producing the same [P]. World PatentWO/2002/026788.2002Feb.
    67. Chi-Chung Peng, I-Ping Lin, Ching-Kuan Lin, Jason T. C. Tzen. Size and Stability ofReconstituted Sesame Oil Bodies [J]. Biotechnol. Prog.,2003,19:1623-1626.
    68. Miles C. M. Chen, Chia-Lin Chyan, Tiger T. T. Lee, Shin-Hung Huang, Jason T. C. Tzen.Constitution of stable artificial oil bodies with triacylglycerol, phospholipid, and caleosin [J].J. Agric. Food Chem.2004,52:3982-3987.
    69. Simona Bettini, Daniele Vergara, Stefania Bonsegna, Livia Giotta, Claudia Toto, MarcelloChieppa, Michele Maffia, Giovanna Giovinazzo, Ludovico Valli, Angelo Santino. Efficientstabilization of natural curcuminoids mediated by oil body encapsulation [J]. RSC Adv.,2013,3:5422–5429.
    70. Miles C. M. Chen, Jui-Ling Wang, Jason T. C. Tzen. Elevating bioavailability ofcyclosporine A via encapsulation in artificial oil bodies stabilized by caleosin [J]. Biotechnol.Prog.2005,21,1297-1301.
    71. Ting-Hang Liu, Chia-Lin Chyan, Feng-Yin Li, Jason T. C. Tzen. Stability of artificial oilbodies constituted with recombinant caleosins [J]. J. Agric. Food Chem.2009,57,2308–2313.
    72. Temminga, K.; Schiffelersc, R. M.; Molemad, G.; Kok, R. J. RGD―based strategies forselective delivery of therapeutics and imaging agents to the tumour vasculature [J]. DrugResist. Updates,2005,8:381-402.
    73. Chung-Jen Chiang, Li-Jen Lin, Che-Chin Lin, Chih-Hsiang Chang, Yun-Peng Chao.Selective internalization of self-assembled artificial oil bodies by HER2/neu-positive cells [J].Nanotechnology,2011,22,015102.
    74. Chung-Jen Chiang, Chih-Jung Chen, Li-Jen Lin, Chih-Hsiang Chang, Yun-Peng Chao. J.Agric. Food Chem.2010,58,11695–11702.
    75. Dickinson E, Stainsby G. Colloids in foods. London, U.K.: Applied Science.1982.
    76. Dickinson E. Introduction to food colloids. Oxford, U.K.: Oxford Univ. Press.1992
    77. Friberg S, Larsson K, Sjoblom J. Food emulsions.4ed. New York:Marcel Dekker.2004
    78. Garti N, Bisperink C. Double emulsions: progress and applications [J]. Curr. Opin.Colloid In.1998,3(6):657–67.
    79. Benichou A, Aserin A, Garti N. Double emulsions stabilized with hybrids of naturalpolymers for entrapment and slow release of active matters [J]. Adv Colloid Interface,2004,108:29–41.
    80. van der Graaf S., Schroen C. G. P. H., Boom R. M. Preparation of double emulsions bymembrane emulsification—a review [J]. J. Membrane Sci.,2005,251:7–15.
    81. Dickinson, E. Emulsions and droplet size control. In D. J. Wedlock (Ed.), Controlledparticle, droplet and bubble formation (pp.191–216). Oxford: Butterworth–Heinemann.1994.
    82. Walstra, P. Formation of emulsions. In P. Becher (Ed.), Encyclopedia of emulsiontechnology,1983, Vo1.1:57–127. New York: Marcel Dekker.
    83. Dickinson, E., Galazka, V. B. Bridging flocculation induced by competitive adsorption:implications for emulsion stability [J]. Journal of the Chemical Society, Faraday Transactions,1991,87:963–969.
    84. D. J. McClements, E. A. Decker, J. Weiss. Emulsion-based delivery systems for lipophilicbioactive components [J]. Journal of food science,2007,72: R109-R124.
    85. Tcholakova, S., Denkov, N. D., Lips, A. Comparison of solid particles, globular proteinsand surfactants as emulsifiers [J]. Physical Chemistry Chemical Physics,2008,10:1608–1627.
    86. Dickinson, E. Interfacial particles in food emulsions and foams. In B. P. Binks,&T. S.Horozov (Eds.), Colloidal particles at liquid interfaces. Cambridge, UK: CambridgeUniversity Press.2006,298–327.
    87. Dickinson, E., Ettelaie, R., Murray, B. S., Du, Z. Kinetics of disproportionation of airbubbles beneath a planar air–water interface stabilized by food proteins [J]. Journal of Colloidand Interface Science,2002,252:202–213.
    88. Binks, B. P. Particles as surfactants–similarities and differences [J]. Current Opinion inColloid and Interface Science,2003,7:21–41.
    89. Cervantes Martinez, A., Rio, E., Delon, G., Saint-Jalmes, A., Langevin, D., Binks, B. P.On the origin of the remarkable stability of aqueous foams stabilized by nanoparticles: linkwith microscopic surface properties [J]. Soft Matter,2008,4:1531–1535.
    90. Sawyer, L., S. Brownlow, I. Polikarpov, S. Y. Wu. β-Lactoglobulin Structural Studies,Biological Clues [J]. Int. Dairy J.1998,8:65–72.
    91. Clark, D. C., P. J. Wilde, D. R. Wilson, S. R. Wu. The interaction of sucrose esters withβ-lactoglobulin and β-casein from bovine milk [J]. Food Hydrocolloids,1992,6:173–186
    92. Waninge, R., M. Paulsson, T. Nylander, B. Ninham, P. Sellers. Binding of SodiumDodecyl Sulphate and Dodecyl Trimethyl Ammonium Chloride to β-Lactoglobulin: ACalorimetric Study [J]. Int. Dairy J.1998,8:141-148.
    93. Dickinson, E. Adsorbed protein layers at fluid interfaces: interactions, structure andsurface rheology [J]. Colloids Surf. B,1999,15:161-176.
    94. Dickinson, E.; C. Woskett. Competitive adsorption between proteins and small-moleculesurfactants in food emulsions [J]. Food Colloids,1989,75:74-96.
    95. Mackie, A. R.; J. Mingins, A. N. North. Characterisation of adsorbed layers of adisordered coil protein on polystyrene latex [J]. J. Chem. Soc., Faraday Trans.,1991,87:3043-3049.
    96. Dickinson E, A. Mauffret, S. E. Rolfe, C. M. Woskett. Adsorption at interfaces in dairysystems [J]. International Journal of Dairy Technology,1989,42:18-22.
    97. Jianshe Chen, Eric Dickinson. Protein/surfactant interracial interactions Part3.Competitive adsorption of protein+surfactant in emulsions [J]. Colloids Surfaces A.Physieochem. Eng. Aspects,1995,101:77-85.
    98. Eric Dickinsona, Stewart J. Radforda, Matt Golding. Stability and rheology of emulsionscontaining sodium caseinate: combined effects of ionic calcium and non-ionic surfactant [J].Food Hydrocolloids,2003,17:211–220.
    99. E. Dickinson, S. R. Euston, C. M. Woskett. Competitive adsorption of foodmacromolecules and surfactants at the oil-water interface [J]. Progr. Colloid Polym. Sci.1990,82:65-75.
    100. Alan R. Mackie, A. Patrick Gunning, Peter J. Wilde. Orogenic displacement of proteinfrom the oil/water interface [J]. Langmuir,2000,16:2242-2247.
    101. Alan R. Mackie, A. Patrick Gunning, Peter J. Wilde, Competitive displacement ofα-Lactoglobulin from the air/water interface by sodium dodecyl sulfate [J]. Langmuir,2000,16:8176-8181.
    102. Jin, H.; Zhou, W. Z.; Cao, J.; Stoyanov, S. D.; Blijdenstein, T. B. J.; de Groot, P. W. N.;Arnaudov, L. N.; Pelan, E. G. Super stable foams stabilized by colloidal ethyl celluloseparticles. Soft Matter2012,8:21942205.
    103. Adelmann, H.; Binks, B. P.; Mezzenga, R. Oil powders and gels from particle-stabilizedemulsions. Langmuir,2012,28:16941697.
    104. Tommy S. Horozov, Bernard P. Binks, Robert Aveyard, John H. Clint. Effect of particlehydrophobicity on the formation and collapse of fumed silica particle monolayers at theoil–water interface [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2006,282–283:377–386.
    105. Bernard P. Binks, Jhonny A. Rodrigues. Enhanced Stabilization of Emulsions Due toSurfactant-Induced Nanoparticle Flocculation [J]. Langmuir,2007,23:7436–7439.
    106. B. P. Binks, S. O. Lumsdon. Influence of Particle Wettability on the Type and Stabilityof Surfactant-Free Emulsions [J]. Langmuir,2000,16:8622-8631.
    107. Marilyn Rayner, Malin Sj, Anna Timgren, Petr Dejmek. Quinoa starch granules asstabilizing particles for production of Pickering emulsions [J]. Faraday Discuss.,2012,158:139–155.
    108. Anna Timgrena, Marilyn Raynera, Malin Sj a, Petr Dejmeka. Starch particles for foodbased Pickering emulsions [J]. Procedia Food Science,2011,1:95–103.
    109. Maria V. Tzoumaki, Thomas Moschakis, Vassilios Kiosseoglou, Costas G. Biliaderis.Oil-in-water emulsions stabilized by chitin nanocrystal particles [J]. Food Hydrocolloids,2011,25:1521-1529.
    110. Renuka Gupta, Derick Rousseau. Surface-active solid lipid nanoparticles as Pickeringstabilizers for oil-in-water emulsions [J]. Food Funct.,2012,3:302–311.
    111. Bernard P. Binks, Catherine P. Whitby. Nanoparticle silica-stabilised oil-in-wateremulsions: improving emulsion stability [J]. Colloids and Surfaces A: Physicochem. Eng.Aspects,2005,253:105–115.
    112. Martin F. Haase, Dmitry Grigoriev, Helmuth Moehwald, Brigitte Tiersch, Dmitry G.Shchukin. Nanoparticle Modification by Weak Polyelectrolytes for pH-Sensitive PickeringEmulsions [J]. Langmuir,2011,27:74–82.
    113. Job H. J. Thijssen, Andrew B. Schofield and Paul S. Clegg. How do (fluorescent)surfactants affect particle-stabilized emulsions [J]. Soft Matter,2011,7:7965–7968.
    1. Utsumi, S.; Matsumura, Y.; Mori, T. Structure-function relationships of soy proteins. InFood Proteins and Their Applications; Damodaran, S., Park, A., Eds.; Dekker, New York,1997; pp.257–288.
    2. Bernard, E. C.; Grandson, A. S.; Lewis, M. J. Emulsifying properties of soy protein isolatefractions obtained by isoelectric precipitation. J. Sci. Food Agric.2001,81,759–763.
    3. Keerati-U-Rai, M.; Corredig, M. Heat-Induced changes occurring in oil/water emulsionsstabilized by soy glycinin and β-conglycinin. J. Agric. Food Chem.2010,58,9171–9180.
    4. Maruyama, N.; Katsube, T.; Wada, Y.; Oh, M. H.; Barba De LaRosa, A. P.; Okuda, E.;Nakagawa, S.; Utsumi, S. The roles of the N-linkedglycans and extension regions of soybeanβ-conglycinin in folding, assembly and structural features. Eur. J. Biochem.1998,258,854862.
    5. Guo, J.; Yang, X. Q.; He, X. T.; Wu, N. N.; Wang, J. M.; Gu, W.; Zhang, Y. Y. Limitedaggregation behavior of beta-Conglycinin and Its terminating effect on glycinin aggregationduring heating at pH7.0. J. Agric. Food Chem.2012,60,3782–3791.
    6. Nagano, T.; Hirotsuka, M.; Mori, H.; Kohyama, K.; Nishinari, K. Dynamic viscoelasticstudy on the gelation of7S globulin from soybeans. J. Agric. Food Chem.1992,40,941944.
    7. Teng, Z.; Liu, C.; Yang, X. Q.; Li, L. Fractionation of soybean globulins using Ca2+andMg2+: A comparative analysis. J. Am. Oil Chem. Soc.2009,86,409–417.
    8. Samoto, M.; Maebuchi, M.; Miyazaki, C.; Kugitani, H.; Kohno, M.; Hirotsuka, M.; Kito, M.Abundant proteins associated with lecithin in soy protein isolate. Food Chem.2007,102,317–322.
    9. Wu, N. N.; Wang, L. J.; Yang, X. Q.; Yin, S. W.; Teng, Z.; Zheng, E. L. Comparison offlavor volatiles and some functional properties of different soy protein products. J. Am. OilChem. Soc.2011,88,1621–1631.
    10. Kanamoto, R.; Inai, M.; Miyaki, W. Physiological function and its mechanism of soybeanlipophilic protein as a functional food for prevention of metabolic syndrome. Soy ProteinResearch, Japan.2008,11,75–81.
    11. Asanoma, M. Soybean protein material for patients with renal disease and food made fromthe same. World Patent, WO2009/110504A1,2009.
    12. Tzen, J. T. C.; Huang, A. H. C. Surface structure and properties of plant seed oil bodies. J.Cell Biol.1992,117,327335.
    13. Chen, Y.; Ono, T. Simple extraction method of non-allergenic intact soybean oil bodiesthat are thermally stable in an aqueous medium. J. Agric. Food Chem.2010,58,74027407.
    14. Chen, M. C. M.; Chyan, C. L.; Lee, T. T. T.; Huang, S. H.; Tzen, J. T. C. Constitution ofstable artificial oil bodies with triacylglycerol, phospholipid, and caleosin. J. Agric. FoodChem.2004,52,3982–3987.
    15. Liu, T. H.; Chyan, C. L.; Li, F. Y.; Tzen, J. T. C. Stability of artificial oil bodiesconstituted with recombinant caleosins. J. Agric. Food Chem.2009,57,2308–2313.
    16. Bhatla, S. C.; Kaushik, V.; Yadav, M. K. Use of oil bodies and oleosins in recombinantprotein production and other biotechnological applications. Biotechnol. Adv.2010,28,293–300.
    17. Wu, N. N.; Huang, X.; Yang, X. Q.; Guo, J.; Yin, S. W.; He, X. T.; Wang, L. J.; Zhu, J.H.; Qi, J. R.; Zheng, E. L. In vitro assessment of the bioaccessibility of fatty acids andtocopherol from soybean oil body emulsions stabilized with ι-carrageenan. J. Agric. FoodChem.2012,60,1567–1575.
    18. McClements, D. J. Food emulsions: Principles, practice, and techniques (2nd Ed.) CRCPress, Boca Raton (2005).
    19. Tcholakova, S.; Denkov, N. D.; Lips, A. Comparison of solid particles, globular proteinsand surfactants as emulsifiers. Phys. Chem. Chem. Phys.2008,10,1608–1627.
    20. Julia, M. V.; Juan, R. P. M. Interfacial rheology of protein–surfactant mixtures. Curr.Opin. Colloid In.2010,15,271–282.
    21. Alan, R. M.; Michael, J. R.; Graham, M.; Fiona, A. H.; Peter, J. W. Effect of theinterfacial layer composition on the properties of emulsion creams. J. Agric. Food Chem.2007,55,5611–5619.
    22. Alan, R. M.; Patrick Gunning, A.; Peter, J. W.; Victor, J. M. Orogenic displacement ofprotein from the air/water interface by competitive adsorption. J. Colloid Interface Sci.1999,210,157–166.
    23. Dickinson, E. Mixed biopolymers at interfaces: Competitive adsorption and multilayerstructures. Food Hydrocolloid.2011,25,1966–1983.
    24. Yuan, Y.; Wan, Z. L.; Yin, S. W.; Teng, Z.; Yang, X. Q.; Qi, J. R. Formation and dynamicinterfacial adsorption of glycinin/chitosan soluble complex at acidic pH: Relationship tomixed emulsion stability. Food Hydrocolloid.2013,31,85–93.
    25. Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloid.2009,23,1473–1482.
    26. Dickinson, E. Food emulsions and foams: Stabilization by particles. Curr. Opin. ColloidIn.2010,15,40–49.
    27. Martin, R.; Tomoko, S.; Tohru, O.; Kei, W.; Heinz, H. Pickering emulsions stabilized bynovel clay–hydrophobin synergism. Soft Matter.2011,7,11021.
    28. Liu, X. M.; Powers, J. R.; Swanson, B. G.; Hill, H. H.; Clark, S. Modification of wheyprotein concentrate hydrophobicity by high hydrostatic pressure. Innov. Food Sci. Emerg.2005,6,310317.
    29. Moschakis, T.; Murray, B. S.; Dickinson, E. Microstructural evolution of viscoelasticemulsions stabilized by sodium caseinate and xanthan gum. J. Colloid Interface Sci.2005,284,714–728.
    30. Ward, A. F. H.; Tordai, L. Time dependence of boundary tensions of solutions. I. The roleof diffusion in time effects. J. Chem. Phys.1946,14,453461.
    31. Lucassen, J.; Van Den Tempel, M. Dynamic measurements of dilatational properties of aliquid interface. Chem. Eng. Sci.1972,27,12831291.
    32. Arora, A.; Damodaran, S. Removal of soy protein-bound phospholipids by a combinationof sonication, b-cyclodextrin, and phospholipase A2treatments. Food Chem.2011,127,1007–1013.
    33. Nikiforidis, C. V.; Kiosseoglou, V. Competitive displacement of oil body surface proteinsby Tween80: effect on physical stability. Food Hydrocolloid.2011,25,1063–1068.
    34. Waschatko, G.; Junghansa, A.; Vilgisa, T. A. Soy milk oleosome behavior at the air–waterInterface. Faraday Discuss.2012,158,157–169.
    35. Casimir, C. A.; Min, D. B.(Eds.), Food Lipids: Chemistry, Nutrition and Biotechnology,vol.105, Decker, New York,2003.
    36. Deleua, M.; Vaca-Medinab, G.; Fabreb, J.; Julie, R. F.; Valentinb, R.; Moulounguib, Z.Interfacial properties of oleosins and phospholipids from rapeseed for the stability of oilbodies in aqueous medium. Colloid Surface B.2010,80,125–132.
    1. Gitte I. Frandsen, John Mundy, Jason T. C. Tzen. Oil bodies and their associated proteins,oleosin and caleosin [J]. Physiologia plantarum,2001,112:301-307.
    2. Sorgan S. K. Tai, Miles C. M. Chen, Chi-Chung Peng, Jason T. C. Tzen. Gene family ofOleosin isoforms and their structural stabilization in sesame seed oil bodies [J]. Biosci.Biotechnol. Biochem.,2002,66(10):2146-2153.
    3. Sophie Gallier, Keith C. Gordon, Harjinder Singh. Chemical and structural characterisationof almond oil bodies and bovine milk fat globules [J]. Food chemistry,2012,132:1996-2006.
    4. Bertram Y. Fong, Carmen S. Norris, Alastair K. H. Mac Gibbon. Protein and lipidcomposition of bovine milk-fat-globule membrane [J]. International dairy journal,2007,17:275-288.
    5. Harjinder Singh. The milk fat globule membrane-A biophysical system for foodapplications [J]. Current opinion in colloid&interface science,2006,11:154-163.
    6. Christelle Lopez, Valerie Briard-Bion, Olivia Menard, Florence Rousseau, Philippe Pradel,Jean-Michel Besle. Phospholipid, sphingolipid, and fatty acid compositions of the milk fatglobule membrane are modified by diet [J]. J. Agric. Food Chem.2008,56,5226–5236.
    7. Milena Corredig, Douglas G. Dalgleish. Isolates from industrial buttermilk: emulsifyingproperties of materials derived from the milk fat globule membrane [J]. J. Agric. Food Chem.1997,45:4595-4600.
    8. Constantinos V. Nikiforidis, Vassilios Kiosseoglou. Physicochemical stability of maizegerm oil body emulsions as influenced by oil body surface-xanthan gum interactions [J]. J.Agric. Food Chem.2010,58:527-532.
    9. Pei-Luen Jiang, Jeff C. F. Chen, Shau-Ting Chiu, Jason T. C. Tzen. Stable oil bodiessheltered by a unique caleosin in cycad megagametophytesq [J]. Plant physiology andbiochemistry,2009,47:1009-1016.
    10. Vincent Pradines, Valentin B. Fainerman, Eugene V. Aksenenko, Jurgen Kragel, RainerWustneck, Reinhard Miller. Adsorption of protein-surfactant complexes at the water/oilinterface [J]. Langmuir,2011,27(3):965-971.
    11. Paul A. Gunning, Alan R. Mackie, A. Patrick Gunning, Nicola C. Woodward, Peter J.Wilde, Victor J. Morris. Effect of surfactant type on surfactant-protein interactions at theair-water interface [J]. Biomacromolecules,2004,5:984-991.
    12. Alan R. Mackie, A. Patrick Gunning, Luis A. Pugnaloni, Eric Dickinson, Peter J. Wilde,Victor J. Morris. Growth of Surfactant Domains in Protein Films [J]. Langmuir2003,19:6032-6038.
    13. Abhijit Dan, Csaba Kotsmar, James K. Ferri, Aliyar Javadi, Mohsen Karbaschi, JurgenKragel, Rainer Wustneck, Reinhard Miller. Mixed protein-surfactant adsorption layers formedin a sequential and simultaneous way at water-air and water-oil interfaces [J]. Soft Matter,2012,8:6057-6065.
    14. E. Dickinson, S. R. Euston, C. M. Woskett. Competitive adsorption of foodmacromolecules and surfactants at the oil-water interface [J]. Progress in colloid&polymerscience,1990,82:65-75.
    15. Alan R. Mackie, A. Patrick Gunning, Peter J. Wilde, Victor J. Morris. Orogenicdisplacement of protein from the Air/Water interface by competitive adsorption [J]. Journal ofcolloid and interface science,1999,210:157-166.
    16. Jose M. Alvarez Gomez, Juan M. Rodriguez Patino. Interfacial properties of diglycerolesters and caseinate mixed films at the air-water interface [J]. Journal of physical chemistry C,2007,111:4790-4799.
    17. Julia Maldonado-Valderrama, Juan M. Rodríguez Patino. Interfacial rheology ofprotein-surfactant mixtures [J]. Current opinion in colloid&interface science,2010,15:271-282.
    18. Juan M. Rodríguez Patino, Ma. Rosario Rodríguez Ni o, Cecilio Carrera Sánchez.Physico-chemical properties of surfactant and protein films [J]. Current opinion in colloid&interface science,2007,12:187-195.
    19. Maria Rosario Rodríguez Nino, Ana Lucero Caro, Juan M. Rodríguez Patino. Structural,topographical, and rheological characteristics of β-casein-dioleoyl phosphatidylcholine(DOPC) mixed monolayers [J]. Colloids and surfaces B: Biointerfaces,2009,69:15-25.
    20. Lucia Seta, Noemi Baldino, Domenico Gabriele, Francesca R. Lupi, Bruno de Cindio. Theeffect of surfactant type on the rheology of ovalbumin layers at the air/water and oil/waterinterfaces [J]. Food hydrocolloids,2009,29:247-257.
    21. A. Garcia-Gonzalez, A. L. Flores-Vazquez, E. Maldonado, A. P. Barba de la Rosa, J.Ruiz-Garcia. Globulin11S and its mixture with L-Dipalmitoylphosphatidylcholine at theair/liquid interface [J]. Journal of physical chemistry B,2009,113:16547-16556.
    22. Julia Maldonado-Valderrama, Nicola C. Woodward, A. Patrick Gunning, Mike J. Ridout,Fiona A. Husband, Alan R. Mackie, Victor J. Morris, Peter J. Wilde. Interfacialcharacterization ofβ-Lactoglobulin networks: displacement by bile salts [J]. Langmuir,2008,24:6759-6767.
    23. Ana Lucero Caro, M. Rosario Rodríguez Nino, Juan M. Rodríguez Patino. The effect ofpH on structural, topographical, and rheological characteristics of β-casein–DPPC mixedmonolayers spread at the air-water interface [J]. Colloids and surfaces A: physicochemicaland engineering aspects,2009,332:180-191.
    24. Z. M. Gao, J. M. Wang, N. N. Wu, Z. L. Wan, J. Guo, X. Q. Yang, S. W. Yin. Formationof complex interface and stability of oil-in-water (O/W) emulsion prepared by soy lipophilicprotein nanoparticles [J]. Journal of agricultural and food chemistry,2013,61:7838-7847.
    25. C. D. Nuchi, P. Hernandez, D. J. McClements, E. A. Decker. Ability of lipidhydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions[J]. J. Agric. Food Chem.2002,50:5445-5449.
    26. Fisk, D., White, D. A., Lad, M., Gray, D. A. Oxidative stability of sunflower oil bodies [J].European Journal of Lipid Science and Technology,2008,110:962–968.
    27. Gray, D. A., Payne, G., McClements, D. J., Decker, E. A., Lad, M. Oxidative stability ofEchium plantagineum seed oil bodies [J]. European Journal of Lipid Science and Technology,2010,112:741–749.
    28. Leprince, O., VanAelst, A. C., Protchard, H. W., Murphy, D. J., Oleosins prevent oil-bodycoalescence during seed imbibition as suggested by a low-temperature scanning electronmicroscope study of desiccationtolerant and-sensitive oilseeds [J]. Planta1998,204:109–119.
    29. Ratnayake, C., Huang, A. H. C., Oleosins and oil bodies in plant seeds have postulatedstructures [J]. Biochem. J.1996,317:956–958.
    30. Alan R. Mackie, A. Patrick Gunning, Peter J. Wilde. Orogenic displacement of proteinfrom the oil/water interface [J]. Langmuir,2000,16:2242-2247.
    1. Dickinson, E. Use of nanoparticles and microparticles in the formation and stabilization offood emulsions [J]. Trends Food Sci. Tech.2012,24:4-12.
    2. Jin, H.; Zhou, W. Z.; Cao, J.; Stoyanov, S. D.; Blijdenstein, T. B. J.; de Groot, P. W. N.;Arnaudov, L. N.; Pelan, E. G. Super stable foams stabilized by colloidal ethyl celluloseparticles [J]. Soft Matter,2012,8:2194-2205.
    3. Adelmann, H.; Binks, B. P.; Mezzenga, R. Oil Powders and gels from particle-stabilizedemulsions [J]. Langmuir,2012,28:1694-1697.
    4. Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilized solely by colloidal particles [J].Adv. Colloid In. Sci.2003,102:503-546.
    5. Binks, B. P. Particles as surfactants similarities and differences [J]. Curr. Opin. Colloid In.2002,7:21-41.
    6. Binks, B. P.; Rodrigues, J. A.; Frith, W. J. Synergistic interaction in emulsions stabilizedby a mixture of silica nanoparticles and cationic surfactant [J]. Langmuir,2007,23:3626-36.
    7. Binks, B. P.; Rodrigues, J. A. Enhanced stabilization of emulsions due to surfactantinduced nanoparticle flocculation [J]. Langmuir,2007,23:7436-9.
    8. Eskandar, N. G.; Simovic, S.; Prestidge, C. A. Synergistic effect of silica nanoparticles andcharged surfactants in the formation and stability of submicron oil-in-water emulsions [J].Phys. Chem. Chem. Phys.2007,9:6426-6434.
    9. Reger, M.; Sekine, T.; Okamoto, T.; Watanabe, K.; Hoffmanna, H. Pickering emulsionsstabilized by novel clay-hydrophobin synergism [J]. Soft Matter,2011,7:11021-11030.
    10. Sadeghpour, A.; Pirolt, F.; Glatter, O. Submicrometer-sized Pickering emulsionsstabilized by silica nanoparticles with adsorbed oleic acid [J]. Langmuir,2013,29:6004-6012.
    11. Yusoff, A.; Murray, B. S. Modified starch granules as particle stabilizers of oil-in-wateremulsions [J]. Food Hydrocolloids,2011,25:42-55.
    12. Tzoumaki, M. V.; Moschakis, T.; Kiosseoglou, V.; Biliaderis, C. G. Oil-in-wateremulsions stabilized by chitin nanocrystal particles [J]. Food Hydrocolloids,2011,25:1521-1529.
    13. Luo, Z.; Murray, B. S.; Ross, A. L.; Povey, M. J. W.; Morgan, M. R. A.; Day, A. J.Effects of pH on the ability of flavonoids to act as Pickering emulsion stabilizers [J]. ColloidsSurf. B Biointerfaces,2012,92:84-90.
    14. Rousseau, D. Trends in structuring edible emulsions with Pickering fat crystals [J]. Curr.Opin. Colloid In.2013,18:283-291.
    15. de Folter, J. W. J.; Van Ruijvena, M. W. M.; Velikov, K. P. Oil-in-water Pickeringemulsions stabilized by colloidal particles from the water-insoluble protein zein [J]. SoftMatter,2012,8:6807-6815.
    16. Dickinson, E. Food emulsions and foams: Stabilization by particles [J]. Curr. Opin.Colloid In.2010,15:40-49.
    17. Gao, Z. M.; Wang, J. M.; Wu, N. N.; Wan, Z. L.; Guo, J.; Yang, X. Q.; Yin, S. W.Formation of complex interface and stability of oil-in-water (O/W) emulsion prepared by soylipophilic protein nanoparticles [J]. J. Agric. Food Chem.2013,61:7838-7847.
    18. Shukl, R.; Cheryan, M. Zein: the industrial protein from corn [J]. Ind. Crops Prod,2001,13:171-192.
    19. Deo, N.; Jockusch, S.; Turro, N. J.; Somasundaran, P. Surfactant interactions with zeinprotein [J]. Langmuir,2003,19:5083-5088.
    20. Ruso, J. M.; Deo, N.; Somasundaran, P. Complexation between dodecyl sulfate surfactantand zein protein in solution [J]. Langmuir,2004,20:8988-8991.
    21. Paunov, V. N. Novel method for determining the three-phase contact angle of colloidparticles adsorbed at air-water and oil-water interfaces [J]. Langmuir,2003,19:7970-7976.
    22. Sparnaay, M. J. The electrical double layer. The International Encyclopedia of PhysicalChemistry and Chemical Physics, Topic14: Properties of Interfaces; Pergamon Press: Oxford,UK,1972.
    23. Wang, L. J.; Yin, Y. C.; Yin, S. W.; Yang, X. Q.; Shi, W. J.; Tang, C. H.; Wa ng, J. M.Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films forimproved water barrier properties via emulsion/solvent evaporation [J]. J. Agric. Food Chem.2013,61:11089-11097.
    24. Li, K. K.; Yin, S. W.; Yang, X. Q.; Tang, C. H.; Wei, Z. H. Fabrication andcharacterization of novel antimicrobial films derived from thymol-loaded zein-sodiumcaseinate (SC) nanoparticles. J. Agric. Food Chem.2012,60,1159211600.
    25. Rogers, M. A.; Wright, A. J.; Marangoni, A. G. Oil organogels: the fat of the future?[J].Soft Matter,2009,5:1594-1596.
    26. Aro, A.; Jaughiainen, M.; Partanen, R.; Salminen, I.; Mutanen, M. Stearic acid, trans fattyacids, and dairy fat: effects on serum and lipoprotein lipids, apolipoproteins, lipoprotein (a),and lipid transfer proteins in healthy subjects [J]. Am. J. Clin. Nut.1997,65:1419-1426.
    27. Dickinson, E. Stabilising emulsion-based colloidal structures with mixed food ingredients[J]. J. Sci. Food Agric.2013,93:710-721.
    1. L. N. Bell. Stability testing of nutraceuticals and functional foods. In R. E. C. Wildman(Ed.), Handbook of nutraceuticals and functional foods. CRC Press, New York,2001, pp,501―516
    2. D. J. McClements. Design of nano-laminated coatings to control bioavailability oflipophilic food components [J]. J. Food Sci.2010,75: R30―R42.
    3. Y. Kawashim. Nanoparticulate systems for improved drug delivery [J]. Adv. Drug Deliv r.Rev.2001,47:1―2.
    4. P. Zimet, Y. D. Livney. Beta-lactoglobulin and its nanocomplexes with pectin as vehiclesfor ω-3polyunsaturated fatty acids [J]. Food Hydrocolloids,2009,23:1120―1126.
    5. R. J. Wallace, N. McKain, K. J. Shingfield, E. Devillard. Isomers of conjugated linoleicacids are synthesized via different mechanisms in ruminal digesta and bacteria [J]. J. LipidRes.2007,48:2247―54.
    6. P. L. Mitchell, R. S. McLeod. Conjugated linoleic acid and atherosclerosis: studies inanimal models [J]. Biochem. Cell Biol.2008,86:293―301.
    7. L. D. Whigham, A. C. Watras, D. A. Schoeller. Efficacy of conjugated linoleic acid forreducing fat mass: a meta-analysis in humans [J]. Am. J. Clin. Nutr.2007,85:1203―11.
    8. Y. W. Wang, P. J. Jones. Conjugated linoleic acid and obesity control: efficacy andmechanisms [J]. Int. J. Obes. Relat. Metab. Disord.2004,28:941―55.
    9. A. Zhang, Z. Y. Chen. Oxidative stability of conjugated linoleic acids relative to otherpolyunsaturated fatty acids [J]. J. Am. Oil Chem. Soc.1997,74:1611―1613.
    10. L. Yang, L. K. Leung, Y. Huang, Z. Y. Chen. Oxidative stability of conjugated linoleicacid isomers [J]. J. Agri. Food Chem.2000,48:3072―3076.
    11. S. J. Kim, G. B. Park, C. B. Kang, S. D. Park, M. Y. Jung, J. O. Kim, Y. L. Ha.Improvement of oxidative stability of conjugated linoleic acid by microencapsulation incyclodextrins [J]. J. Agric. Food Chem.2000,48:3922―3929.
    12. M. Jimenez, H. S. Garcia, C. I. Beristain. Spray-dried encapsulation of conjugated linoleicacid with polymeric matrices [J]. J. Sci. Food Agric.2006,86:2431―2437.
    13. P. Y. Martin, K. H. Jennifer, M. M. Magdi, A. G. R. John, K. Yuoh. Furan fatty acidsdetermined as oxidation products of conjugated octadecadienoic acid [J]. Lipids,1995,30:595―598.
    14. D. J. McClements, E. A. Decker, J. Weiss. Emulsion-based delivery systems for lipophilicbioactive components [J]. J. Food Sci.2007,72: R109―R124.
    15. X. L. Yao, Q. Xu, D. Z. Tian, N. N. Wang, Y. P Fang, Z. Y. Deng, G. O. Phillips, J. Lu.Physical and chemical stability of gum arabic-stabilized conjugated linoleic acid oil-in-wateremulsions [J]. J. Agri. Food Chem.2013,61:4639―4645.
    16. G. Markman, Y. D. Livney. Maillard-conjugate based core-shell co-assemblies fornanoencapsulation of hydrophobic nutraceuticals in clear beverages [J]. Food Funct.2012,3:262―270.
    17. Y. D. Livney. Protein-polysaccharide conjugates and use for encapsulating nutraceuticalsfor clear beverage applications [J]. United States Patent Application20120288533.
    18. Y. D. Livney. Milk proteins as vehicles for bioactives [J]. Curr. Opin. Colloid In.2010,15:73―83.
    19. P. Zimet, D. Rosenberg, Y. D. Livney. Re-assembled casein micelles and caseinnanoparticles as nano-vehicles for ω-3polyunsaturated fatty acids [J]. Food Hydrocolloids,2011,25:1270―1276.
    20. M. Haham, S. Ish-Shalom, M. Nodelman, I. Duek, E. Segal, M. Kustanovich, Y. D.Livney. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles [J].Food Funct.2012,3:737―744.
    21. A. H. Sneharani, A. H. Sneharani, J. V. Karakkat, S. A. Singh, A. G. A. Rao. Interactionof curcumin with β-Lactoglobulin-stability, spectroscopic analysis, and molecular modelingof the complex [J]. J. Agri. Food Chem.2010,58:11130―11139.
    22. E. L. Van Boxtel, L. A. M. Van Den Broek, S. J. Koppelman, J. P. Vincken, H. Gruppen.Peanut allergen ara h1interacts with proanthocyanidins into higher molecular weightcomplexes [J]. J. Agri. Food Chem.2007,55:8772―8778.
    23. Z. L. Wan, J. M. Wang, L. Y. Wang, X. Q. Yang, Y. Yuan. Enhanced physical andoxidative stabilities of soy protein-based emulsions by incorporation of a water-solublestevioside-resveratrol complex [J]. J. Agri. Food Chem.2013,61:4433―4440.
    24. Z. M. Gao, J. M. Wang, N. N. Wu, Z. L. Wan, J. Guo, X. Q. Yang, S. W. Yin. Formationof complex interface and stability of oil-in-water (O/W) emulsion prepared by soy lipophilicprotein nanoparticles [J]. J. Agric. Food Chem.2013,61:7838―7847.
    25. M. Samoto, M. Maebuchi, C. Miyazaki, H. Kugitani, M. Kohno, M. Hirotsuka, M. Kito.Abundant proteins associated with lecithin in soy protein isolate [J]. Food Chem.2007,102,317―322.
    26. B. McNamee, E. O’Riordan, M. O’Sullivan. Emulsification and microencapsulationproperties of gum Arabic [J]. J. Agri. Food Chem.1998,46:4551―4556.
    27. S. J. Kim, G. B.Park, C. B. Kang, S. D. Park, M. Y. Jung, J. O. Kim, Y. L. Ha.Improvement of oxidative stability of conjugated linoleic acid by microencapsulation incyclodextrins [J]. J. Agric. Food Chem.2000,48:3922―3929.
    28. N. C. Shantha, E. A. Decker. Rapid, sensitive, iron-based spectrophotometric methods fordetermination of peroxide values of food lipids [J]. J. AOAC Int.1994,77:421―424.
    29. C. W. Park, S. J. Kim, S. J. Park, J. H. Kim, J. K. Kim, G. B. Park, J. O. Kim, Y. L. Ha.Inclusion complex of conjugated linoleic acid with cyclodextrins [J]. J. Agric. Food Chem.2002,50:2977―2983.
    30. K. O. Choi, J. Ryu, H. S. Kwak, S. Ko. Spray-dried conjugated linoleic acid encapsulatedwith maillard reaction products of whey proteins and maltodextrin [J]. Food Sci. Biotechnol.2010,19:957―965.
    31. M. Jimenez, H. S. Gar, C. I. Beristain. Spray-drying microencapsulation and oxidativestability of conjugated linoleic acid [J]. Eur. Food Res. Technol.2004,219:588―592.
    32. A. H. C. Huang. Oleosins and oil bodies in seeds and other o rgans [J]. Plant Physiol.1996,110:1055―1061.
    33. H. Uehara, T. Suganuma, S. Negishi, Y. Uda, Y. Furukawa, S. Ueno, K. Sato. Physicalproperties of two isomers of conjugated linoleic acid [J]. J. Am. Oil Chem. Soc.2008,85:29―36.
    34. H. Ma, P. Forssell, R. Partanen, R. Seppanen, J. Buchert, H. Boer. Sodium caseinates withan altered isoelectric point as emulsifiers in oil/water systems [J]. J. Agric. Food Chem.2009,57,3800―3807.
    35. E. Dickinson. Properties of emulsions stabilized with milk proteins: overview of somerecent developments [J]. J. Dairy Sci.1997,80,2607―2619.
    36. Y. Ju-Nam, J. R. Lead. Manufactured nanoparticles: An overview of their chemistry,interactions and potential environmental implications [J]. Sci. Total Environ.2008,400:396―414.
    37. D. Ries, A. Ye, D. Haisman, H. Singh. Antioxidant properties of caseins and wheyproteins in model oil-in-water emulsions [J]. Int. Dairy J.2010,20:72―78.
    38. N. S. Nielsen, C. Jacobsen. Methods for reducing lipid oxidation in fish-oil-enrichedenergy bars [J]. Int. J. Food Sci. Technol.2009,44:1536―1546.
    39. J. Won, M. H. Oh, J. M. Oh, M. S. Kang, J. H. Choy, S. Oh. Stability analysis of zincoxide-nanoencapsulated conjugated linoleic acid and gamma-linolenic acid [J]. J. Food Sci.2008,73:39―43.
    40. K. Pan, Q. X. Zhong, S. J. Baek. Enhanced dispersibility and bioactivity of curcumin byencapsulation in casein nanocapsules [J]. J. Agri. Food Chem.,2013,61:6036―6043.
    1. Suresh S. Narine, Alejandro G. Marangoni. Fractal nature of fat crystal networks [J].Physical review E,1999,59:1908.
    2. Suresh S. Narine, Alejandro G. Marangoni. Mechanical and structural model of fractalnetworks of fat crystals at low deformations [J]. Physical review E,1999,60:6991.
    3. Alejandro G. Marangoni. Elasticity of high-volume-fraction fractal aggregate networks: Athermodynamic approach [J]. Physical review B,2000,62:13951.
    4. Alejandro G. Marangoni1, Michael A. Rogers. Structural basis for the yield stress in plasticdisperse systems [J]. Appllied physics letters,2003,82:3239.
    5. Fl ter E, Bot A. Developing products with modified fats. In: Williams CM, Buttriss J,editors. Improving the fat content of foods. Cambridge: Woodhead Publishing;2006,411–427.
    6. Fl ter E, van Duijn G. Trans-free fat for use in foods. In: Gunstone FD, editor. Modifyinglipids for use in food. Cambridge: Woodhead Publishing;2006,429–443.
    7. Keys A., Anderson J. T., Grande F. Serum cholesterol response to changes in the diet, IV.Particular saturated fatty acids in the diet. Metabolism,1965,14:776–787.
    8. Mensink R. P., Zock P. L., Kester A. D. M., Katan M. B. Effects of dietary fatty acids andcarbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids andapoproteins: a meta analysis of60controlled trials. Am J Clin Nutr.2003,77:1146–1155.
    9. Michael A. Rogers, Amanda J. Wright, Alejandro G. Marangoni. Oil organogels: the fat ofthe future?[J]. Soft Matter,2009,5:1594–1596.
    10. M. Pernetti, K. F. van Malssen, E. Floter and A. Bot. Structuring of edible oils byalternatives to crystalline fat [J]. Curr. Opin. Coll. Inter. Sci.,2007,12,221-231;
    11. A. Bot and W. G. M. Agterof. Structuring of edible oils by mixtures of γ-oryzanol withβ-sitosterol or related phytosterols [J]. J. Am. Oil Chem. Soc.,2006,83,513-521;
    12. F. G. Gandolfo, A. Bot and E. Floter. Structuring of edible oils by long-chain FA, fattyalcohols, and their mixtures [J]. J. of Am. Oil Chem. Soc.,2004,81,1-6;
    13. P. Terech, I. Furman and R. G. Weiss. Structures of organogels based upon cholesteryl4-(2-Anthryloxy)butanoate, a highly efficient luminescing gelator: neutron and X-raysmall-angle scattering investigations [J]. J. of Phys. Chem.,1995,99:9558-9566;
    14. P. Terech, V. Rodrigues, J. D. Barns and G. B. McKenna. Organogels and aerogels ofracemic and chiral12-hydroxyoctadecanoic acid [J]. Langmuir,1994,10:3406-3418;
    15. P. Terech, R. G. Weiss. Low molecular mass gelators of organic liquids and the propertiesof their gels [J]. Chem. Rev.,1997,97,3133-3159;
    16. J. F. Toro-Vazquez, J. A. Morales-Rueda, E. Dibildox-Alvarado, M. Charo-Alonso, M.Alonzo-Macias, M. M. Gonzalez-Chavez. Thermal and textural properties of organogelsdeveloped by candelilla wax in safflower oil [J]. J. Am. Oil Chem. Soc.,2007,84:989-1000.
    17. Gabriela Savin, Veronique Clement, Jin-Mi Jung, Raffaele Mezzenga, Martin Leser. Oilgel [P]. U. S. patent. No. US2012/0289610A1
    18. Fereidoon Shahidi, Ying Zhong. Lipid oxidation and improving the oxidative stability [J].Chemical Society Reviews,2010,39:4067–4079.
    19. Ali R. Taherian, Michel Britten, Hassan Sabik, Patrick Fustier. Ability of whey proteinisolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-waterbeverage emulsion [J]. Food Hydrocolloids,2011,25:868-878.
    20. Maryam Kargar, Fotios Spyropoulos, Ian. T. Norton. The effect of interfacialmicrostructure on the lipid oxidation stability of oil-in-water emulsions [J]. Journal of Colloidand Interface Science,2011,357:527–533.
    21. Saehun Muna, Younghee Cho, Eric Andrew Decker, David Julian Mc Clements.Utilization of polysaccharide coatings to improve freeze–thaw and freeze–dry stability ofprotein-coated lipid droplets [J]. Journal of Food Engineering,2008,86:508–518.
    22. Z. M. Gao, J. M. Wang, N. N. Wu, Z. L. Wan, J. Guo, X. Q. Yang, S. W. Yin. Formationof complex interface and stability of oil-in-water (O/W) emulsion prepared by soy lipophilicprotein nanoparticles. J. Agric. Food Chem.2013,61:7838-7847.
    23. Horst Adelmann, Bernard P. Binks, Raffaele Mezzenga. Oil powders and gels fromparticle-stabilized emulsions [J]. Langmuir,2012,28:16941697.
    24. Murakami R., Moriyama H., Yamamoto M., et al. Particle stabilization ofoil-in-Water-in-Air Materials: Powdered emulsions [J]. Advanced Materials,2012,24:767-771.
    25. Alexandre I. Romoscanu, Raffaele Mezzenga. Emulsion-Templated Fully ReversibleProtein-in-Oil Gels [J]. Langmuir2006,22:7812-7818.
    26. N. C. Shantha, E. A. Decker. Rapid, sensitive, iron-based spectrophotometric methods fordetermination of peroxide values of food lipids [J]. J. AOAC Int.1994,77:421-424.
    27. J. N. Roehm, J. G. Hadley, D. B. Menzel. Oxidation of unsaturated fatty acids by ozoneand nitrogen dioxide [J]. Archives of Environmental Health: An International Journal,1971,23:142-148.
    28. K. R. Applegate, J. A. Glomset. Computer-based modeling of the conformation andpacking properties of docosahexaenoic acid [J]. Journal of lipid research,1986,27:658-680.
    29. K. Miyashita, E. Nara, T. Ota. Oxidative stability of polyunsaturated fatty acids in anaqueous solution [J]. Biosciences Biotechnology and Biochemistry,1993,57:1638-1640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700