用户名: 密码: 验证码:
(Zn-Ni)-Al_2O_3纳米复合镀层的制备及耐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将纳米级α-Al_2O_3颗粒与Zn、Ni共沉积,制备兼具纳米Al_2O_3颗粒与Zn-Ni合金优异性能的高耐蚀性纳米复合镀层,对进一步拓宽Zn-Ni合金基镀层的应用领域具有重要的现实意义。利用静态浸泡试验、电化学测试考察镀层的耐蚀性能,优化复合镀工艺。研究了超声对Zn-Ni合金电沉积的影响,并利用离子色谱分析纳米氧化铝颗粒在镀液中对Zn~(2+)、Ni~(2+)离子的吸附情况,进而研究超声波作用下复合电沉积的机理。利用XRD、SEM、XPS对镀层的结构、镀层的腐蚀过程和腐蚀产物进行分析,研究了纳米复合镀层及其钝化膜的耐蚀机理。
     对纳米氧化铝颗粒分散剂的研究表明,使用阿拉伯胶和阳离子表面活性剂CTAB(十六烷基三甲基溴化铵)协同作用可有效促进镀层中纳米氧化铝的均匀分散,并促进纳米氧化铝与Zn、Ni的共沉积,提高复合量。通过对电镀过程中纳米Al_2O_3分散方式的进一步研究,找到了一种有效的分散纳米氧化铝颗粒的方法,即内置式超声振荡。利用超声的空化作用可使镀液中的纳米Al_2O_3呈单分散状态,并且内置式超声波发生器发出的超声波在溶液中产生超声流,使纳米颗粒向阴极的运动速率加快,显著增大镀层中纳米氧化铝的复合量。因此在无分散剂作用下直接使用内置式超声即可制备单分散、纳米Al_2O_3含量高的复合镀层。该方法有效的解决了纳米复合镀液中纳米颗粒团聚这一制约纳米颗粒优异性能发挥的难题,并避免了使用分散剂可能给镀层耐蚀性能提高带来的负面影响。
     对内置式超声波作用下(Zn-Ni)-Al_2O_3纳米复合电沉积机理的研究表明,超声波通过增大液相传质影响基质金属Zn-Ni合金的电沉积,使镀层Ni含量下降。而纳米Al_2O_3对Ni~(2+)离子的吸附强于对Zn~(2+)离子的吸附,使复合镀层Ni含量增加。纳米Al_2O_3与基质金属的共沉积过程是在超声场和电场共同作用下完成的,吸附着Zn~(2+)和Ni~(2+)离子的纳米Al_2O_3颗粒运动到阴极表面,在纳米Al_2O_3颗粒上吸附的Zn~(2+)和Ni~(2+)离子直接还原,形成Zn-Ni合金,同时把Al_2O_3颗粒包裹入合金镀层中,因此基质金属镀层与纳米氧化铝颗粒结合紧密,这对镀层耐蚀性能的提高至关重要。
     通过对纳米(Zn-Ni)-Al_2O_3复合镀层腐蚀过程及腐蚀产物的研究表明,纳米(Zn-Ni)-Al_2O_3复合电镀层在腐蚀介质中表现出优异的耐蚀性能,主要是由于腐蚀过程中均匀分布于Zn-Ni基质金属中的纳米Al_2O_3微粒把腐蚀介质和晶粒隔开,有效地减少了基质金属在腐蚀溶液中的暴露面积,并且纳米Al_2O_3为不导电的纳米颗粒,基质金属镀层发生腐蚀时纳米颗粒可以分散腐蚀电流,从而有效抑制腐蚀介质对镀层的腐蚀。基质金属为γ相金属间化合物,腐蚀后生成ZnCl_2·4Zn(OH)_2,而不同于Zn镀层的腐蚀产物ZnO,该腐蚀产物不易溶解,它将纳米Al_2O_3和Ni包覆起来形成阻挡层,而腐蚀产物中富集的Ni和纳米Al_2O_3对腐蚀的抑制作用有效地提高了镀层的耐蚀性。
     对复合镀层钝化膜性能研究表明,Al_2O_3含量为3.7mass%的(Zn-Ni)-Al_2O_3复合镀层的钝化膜比Zn-Ni合金镀层的钝化膜更致密,并且纳米Al_2O_3被钝化膜完全包覆,该镀层在5mass%NaCl、pH3.5的醋酸溶液中出白锈和出红锈的时间分别为18.5h和230h,比Zn-Ni合金钝化膜的耐蚀性有大幅提高。研究表明,(Zn-Ni)-Al_2O_3复合镀层钝化膜具有较高耐蚀性的原因是在钝化膜和复合镀层之间存在镍和纳米Al_2O_3的富集层,它起到隔离腐蚀介质与复合镀层的作用,从而抑制复合镀层腐蚀反应的进行,提高纳米复合镀层的耐蚀性。
The (Zn-Ni)-Al_2O_3 nano composite coatings with high anticorrosionperformance were fabricated using electrodeposition method with the aid ofultrasound, aiming to extend the application field of Zn-Ni alloy. Theelectrodeposition parameters were optimized by testing anticorrosion propertieswith immersion test and electrochemical technique. The effect of ultrasonicvibration on the Zn-Ni alloy deposition was investigated and the absorbance ofZn~(2+)and Ni~(2+) on nano alumina particles was analyzed by ICP (inductivelycoupled plasma). Furthermore, the mechanism of composite electrodepositionunder ultrasonic vibration was studied. The anticorrosion behaviors andmechanisms of the nano composite coating and its passivated film were exploredby analyzing the structure, corrosion process and corrosion products of thecoating byusing XRD, SEM and XPS.
     The studies on nano alumina dispersants demonstrate that the synergeticeffect of Arabic gum and CTAB (Hexadecyl trimethyl ammonium Bromide)promotes the codeposition and uniform dispersion of nano alumina particles inthe coating.By comparing the different dispersion methods a very effective way,inserted ultrasonic vibration, has been established to de-agglomerate nanoalumina particles in electrolyte, which can promote the incorporation of nanoalumina particles in the coating. The mono-dispersion and high content of nanoalumina particles in the coating should be attributed to the action of cavitationsand ultrasonic streaming generated by the ultrasonic vibration. The cavitationscaused by the collapse of cavitation bubbles de-agglomerate the nano particles,while the presence of ultrasonic streaming promotes the movement of the nanoparticles toward the cathode. Fabrication of nano composite coatings by usingultrasonic agitation during electrodeposition process resolves the agglomerationproblem of nano alumina particles which restricts super performance of nanoparticles, andavoids the adverse effects of dispersants on coating properties.
     The studies on electrodeposition mechanism of (Zn-Ni)-Al_2O_3 coating underultrasonic conditions indicate that the ultrasound decreases Ni content in thecoating by increasing the mass transport, and the codeposition of nano alumina increases the Ni content due to the more absorbance content of Ni~(2+) on nanoalumina particles than Zn~(2+). The incorporation of nano alumina particles intomatrix results from the synergetic effect of ultrasonic and electric field. Nanoparticles accompanying absorbed Ni~(2+) and Zn~(2+) moved to the cathode vicinity,and then the absorbed Ni~(2+) and Zn~(2+) are induced directly on the particle surface,which lead to the imbedding of the nano particles. This imbedding of nanoalumina particles into matrix is very tight, which would be beneficial to theanticorrosion property.
     The analysis of the corrosion process and corrosion products demonstratesthat the presence of compact and uniformly dispersed nano alumina particlesblocks off the corrosion medium and coating, decreases the contact area,disperses the corrosion current because of the existence of insulative nanoalumina particles, and therefore substantially inhibits the corrosion of Zn-Ni-Al_2O_3 composite coating. The matrix is composed ofγphase intermetalliccompound, and its corrosion products, different from the corrosion products ofZn coating can form a compact ZnCl_2·4Zn(OH)_2 layer. This product with nanoalumina particles and Ni formsan isolative layer. The corrosion inhibition effectsof the enrichedNi and nano alumina particles increase the anticorrosion propertysignificantly.
     The performance studies of thechromate conversion coating on the(Zn-Ni)-Al_2O_3 composite coating indicate that the passivated film on the compositecoating containing 3.7mass%weight content nano alumina is more compact thanthat on Zn-Ni alloy, and the nano alumina particles are completely covered. Theemergence time of white rust and red rust in 5mass%NaCl、pH3.5 acetic acidsolution are 18.5h and 230h respectively, and the anticorrosion properties areincreased significantly compared with the conversion coating on Zn-Ni alloy.The reason for super anticorrosion property of the composite coating afterchromate passivation is the presence of enriched Ni and nano alumina layerbetween the conversion film and composite coating, which isolates the corrosionmedium and composite coating, andinhibit the corrosion reaction.
引文
1 沈品华, 屠振密. 电镀锌及锌合金. 机械工业出版社, 2002:223~253
    2 Y.-P. Lin, J. R. Selman. Electrodeposition of Corrosion-resistant Ni-Zn Alloy.J. Electrochem. Soc. 1993, 140(5): 1299~1303
    3 R. Ramanauskas, P. Quintana, L. Maldonado et al. Corrosion Resistance andMicrostructure of Electrodeposited Zn and Zn Alloy Coatings. Surf. Coat.Technol. 1997, 92(1~2): 16~21
    4 张景双, 安茂忠, 杨哲龙等. 锌酸盐电沉积锌镍合金工艺研究. 新技术新工艺. 1995, (2):37~38
    5 C. J. Lana, W. Y. Liua, S. T. Kea et al. Potassium Salt Based Alkaline bath forDeposition of Zn-FeAlloys. Surf. Coat.Technol. 2006, 201(6): 3103~3108
    6 J. B. Bajat, V. B. Mi?kovi?-Stankovi?, M. D. Maksimovi? et al.Electrochemical Deposition and Characterization of Zn-Co Alloys andCorrosion Protection by Electrodeposited Epoxy Coating on Zn-Co Alloy.Electrochim.Acta. 2002, 47(25): 4101~4112
    7 C.-C. Hu, C.-K. Wang. Effects of Composition and Reflowing on theCorrosion Behavior of Sn-Zn Deposits in Brine Media. Electrochim. Acta.2006, 51(20): 4125~4134
    8 K. Masaaki, T. Hidenori. Aqueous Electrolyte Bath for Cathodic Depositionof Zinc-NickelAlloys and its Use. DE 3231054, 1983
    9 安茂忠. 电镀锌及锌合金发展现状. 电镀与涂饰. 2003, 22(6): 35~40
    10 张立德, 牟季美. 纳米材料和纳米结构. 科学出版社, 2001:21~22
    11 尹邦跃. 纳米时代. 中国轻工业出版社, 2001: 35~39
    12 张志焜, 崔作林. 纳米技术与纳米材料. 国防工业出版社, 2000:45
    13 王清滨, 田秋, 宿辉等. 纳米复合镀层的研究进展. 材料工程. 2004, 19(6):45~48
    14E. P. Schock,A. Hirsch. J.Am. Chem. Soc. 1907, 29(3): 314~321
    15 H. C. Cocks. Plating of Zn-Ni Alloy in Sulfate Electrolyte. Trans. Faraday.Soc. 1928, 24(1): 348~351
    16 B. Lustman. Study of the Deposition Potentials and Microstructures ofElectrodeposited Zinc-Nickel Alloys. Trans. Electrochem. Soc. 1943, 84(4):363~375
    17T. L. Ramachar. Bull. Electrochem. 1956,1(5): 83~85
    18 A. Brenner. Electrodeposition of Alloys. Academic Press. New York, 1963:222~225
    19 E. J. Rochl. Zinc-Nickel Electroplate. BG667537, 1966
    20 E. J. Rochl. Electroplating of Strip Steel with Zinc-Nickel Alloy. 195829,1970
    21 K. S. Corp. Zinc-NickelAlloyElectroplating. JP5809997, 1983
    22 K. S. Corp. Corrosion Proof Zinc-Nickel Alloy Electroplated Sheet Steel. JP57164999, 1983
    23 K. S. Corp. Nickel-ZincAlloyElectroplating of Steel Plate. JP5819487, 1983
    24W. H. Hartford. 3691027, 1972
    25 S. M. I. L.T.D. Zinc and Zinc Alloy Electroplating on Steel. JP 83263688,1982
    26 D. Crotty. Zinc Alloy Plating for the Automotive Industry. Met. Finish. 1996,94(9): 54, 56~58
    27 G. F. Hsu. Zn-Ni Alloy Plating: an Alternative to Cadmium. Plat. Surf. Finish.1984, 71(4): 52~55
    28 A. M. Alfantazi, G. Brehaut, U. Erb. The Effects of Substrate Material on theMicrostructure of Pulse-Plated Zn-Ni Alloys. Surf. Coat. Technol. 1997,89(3): 239~244
    29 S. O. Pagotto, C. M. d. A. Freire, M. Ballester. Zn–Ni Alloy DepositsObtained by Continuous and Pulsed Electrodeposition Processes. Surf. Coat.Technol. 1999, 122(1): 10~13
    30 Y. F. Jiang, L. F. Liu, C. Q. Zhai et al. Corrosion Behavior of Pulse-plated Zn-Ni Alloy Coatings on AZ91 Magnesium Alloy in Alkaline Solutions. ThinSolid Film. 2005, 484(1~2): 232~237
    31 H. Ashassi-Sorkhabi, A. Hagrah, N. Parvini-Ahmadi et al. Zinc-Nickel AlloyCoatings Electrodeposited From a Chloride Bath Using Direct and PulseCurrent. Surf. Coat.Technol. 2001, 140(3): 278~283
    32 Y. F. Jiang, C. Q. Zhai, L. F. Liu et al. Zn-Ni Alloy Coatings Pulse-Plated onMagnesiumAlloySurf. Coat.Technol. 2005, 191(2~3): 393~399
    33 曾良宇, 唐春保. 高耐蚀性的锌-镍合金电镀层. 材料保护. 1986, 19(6):13~18
    34 熊刚, 邹群, 蔡群英. NZ-918 碱性锌镍合金镀液的工艺性能. 材料保护.1994, 27(9): 22~24
    35 屠振密, 张景双, 杨哲龙. 新防护性低氢脆锌镍合金工艺研究. 电镀与精饰. 1987, 9(4): 5~8
    36 杜秉魁. 锌镍合金电镀电缆桥架. CN1030851, 1989
    37 孙电人, 张景双. 矿山液压支柱镀锌镍合金钝化工艺. CN1042738, 1990
    38 卢锦堂, 许乔瑜, 陈锦虹等. 碱性锌镍合金电沉积研究. 材料保护. 1996,29(4): 3~6
    39 肖鑫, 易翔, 郭贤烙等. 光亮碱性 Zn-Ni 合金电镀工艺研究. 湖南工程学院学报. 2005, 15(1): 67~70
    40 蒋永锋, 翟春泉, 郭兴伍等. 强碱性溶液电镀锌镍合金研究进展. 材料科学与工程学报. 2003, 21(4): 286~289
    41 费世东, 张小华, 许岩等. 碱性体系电镀锌镍合金工艺中配位剂对镀层的影响. 材料保护. 2005, 38(4): 48~50, 61
    42 杨防祖, 许书楷, 周绍民. 锌镍合金镀层的组成与相结构的关系. 厦门大学学报. 1994, 33(01): 63~67
    43 宋花平, 崔虹, 李贵银等. 碱性锌酸盐镀液、电镀方法及电镀锌镍合金的长钢管. CN1746337, 2005
    44 蒋永锋, 翟春泉, 郭兴伍等. 碱性溶液电镀锌镍合金、黄铜的添加剂组分及其配制方法. CN1477236, 2004
    45 吴化, 贾慧庆. 连续电镀锌镍合金的研究. 电镀与涂饰. 2002, 21(1): 5~8
    46 C.-C. Hu, C.-H. Tsay, A. Bai. Optimization of the Hydrogen EvolutionActivity on Zinc/Nickel Deposits Using Experimental Strategies. Electrochim.Acta. 2003, 48(7): 907~918
    47 C. Müller, M. Sarret, M. Benballa. Complexing Agents for a Zn–Ni AlkalineBath. J. Electroanal. Chem. 2002, 519(1~2): 85~92
    48 蔡加勒, 周绍民. 碱性锌镍合金电沉积中 Tetren 的基本效应. 厦门大学学报. 1994, 33(3): 345~349
    49 杨防祖, 许书楷, 周绍民. 添加剂的吸附行为及其对锌镍合金镀层结构的影响. 厦门大学学报(自然科学版). 1995, 34(4): 572~576
    50 I. Brooks, U. Erb. Hardness of Electrodeposited Microcrystalline andNanocrystalline γ-Phase Zn-NiAlloys. Scr. Mater. 2001, 44(5): 853~858
    51 E. Beltowska-Lehman, P. Ozga, Z. Swiatek et al. Electrodeposition of Zn-NiProtective Coatings from Sulfate-acetate Baths. Surf. Coat. Technol. 2002,151~152: 444~448
    52 A. Petrauskas, L. Grincevi?ien?, A. ?esūnien?et al. Stripping of Zn-Ni AlloysDeposited in Acetate-Chloride Electrolyte Under Potentiodynamic andGalvanostatic Conditions. Surf. Coat.Technol. 2005, 192(2~3): 299~304
    53 李华峰, 周晓荣, 柳立名等. 弱酸性电镀光亮锌镍合金的研究. 电镀与精饰.1999, 18(1): 8~13
    54 Y. S. Jin, T. Y. Kim, K. Y. Kim. Zn-Ni Codeposition in Chloride Bath Using aFlow-Channel Cell. Surf. Coat.Technol. 1998, 106(2~3): 220~227
    55 A. Petrauskas, L.Gtinvrbi?ien?, A.?e?ūnien? et al. Studies of PhaseComposition of Zn-Ni Alloy Obtained in Acetate-chloride Electrolyte byUsing XRD and Potentiodynamic Stripping. Electrochim. Acta. 2005, 50(10):1189~1196
    56 孟惠民, 吴继勋, 卢燕平等. 微量元素对高速电镀锌-镍合金的影响. 北京科技大学学报.1994, 16(3): 32~36
    57 F. J. F. Miranda, O. E. Barcia, S. L. Diaz et al. Electrodeposition of Zn-NiAlloys in Sulfate Electrolytes. Electrochim.Acta. 1995, 41(7~8): 1041~1049
    58 吴海宏. 锌镍合金电镀在金属制品行业应用探讨. 金属制品. 1998, 24(3):15~18
    59 孔纲, 卢锦棠, 陈锦虹等. 碱性锌镍合金电沉积过程阴极极化的研究. 材料保护. 1999, 32(6): 6~9
    60 杨宇翔, 吴介达, 黄忠良等. 电镀光亮锌-镍合金. 电镀与涂饰. 1997,19(1): 16~18
    61 M. Benballa, L. Nils, M. Sarret et al. Zinc-Nickel Codeposition in AmmoniumBaths. Surf. Coat.Technol. 2000, 123(1): 55~61
    62 K. Higashi, H. Fukushima, T. Urakawa. Mechanism of the Electrodepositionof Zinc Alloys Containing a Small Amount of Cobalt. J. Electrochem. Soc.1981, 128(10): 2081~2085
    63 吴继勋, 刘永勤, 卢燕平等. 锌-镍合金共沉积的交流阻抗行为. 材料保护.1994, 27(1): 16~19
    64 蔡加勒, 周绍民. 添加剂对 Zn-Ni 异常共沉积的作用. 厦门大学学报.1992, 31(1): 51~56
    65 M. J. Nicola, H. I. Philip. Underpotential Deposition and its Relation to theAnomalous Deposition of Metals in Alloys. J. Electroanal. Chem. 1976, 70(2):233~237
    66 田京城, 缪娟, 符德学. 锌基合金异常共沉积的机理研究现状. 中州大学学报. 2005, 22(4): 112~114
    67 仓知三夫, 追田章人. 合金めつき. 金属表面技术(日). 1980, 32(10):512~155
    68 何为. 锌镍合金的异常共沉积与正常共沉积的转变. 表面技术. 1998,27(2): 22~24
    69 L. Felloni, R. Fratesi, E. Quadrini et al. Electrodeposition of Zinc-NickelAlloys from Chloride Solution. J.Appl. Electrochem. 1987, 17(3): 574~582
    70 沈慕昭, 胡志彬. 离子软硬度对锌合金电沉积的影响. 电镀与精饰. 1994,16(3): 4~8
    71 王建明, 张昭, 张鉴清等. Zn-Fe-P 合金共沉积行为研究. 中国腐蚀与防护学报. 2001,21(5): 280~285
    72 王云燕, 彭文杰. 锌-铁合金异常共沉积中锌沉积机理的研究(Ⅰ)—Zn 阴极沉积反应历程的拟定. 材料保护.2004, 37(11): 1~4
    73 符德学, 缪娟, 舒余德. 锌锰合金异常共沉积的热力学条件研究. 河南理工大学学报(自然科学版). 2005,24(4): 321~325
    74 彭文杰, 王云燕. 锌基合金异常共沉积机理的研究进展. 材料保护. 2004,37(10): 34~37
    75 H. Park, J. A. Szpunar. The Role of Texture and Morphology in Optimizingthe Corrosion Resistance of Zinc-Based Electrogalvanized Coatings. Corros.Sci. 1998, 40(4~5): 525~545
    76 葛华才, 黄定启, 谢粦祥. 金属及其二元合金镀层耐蚀性能的理论研究.华南理工大学学报. 1993, 21(4): 13~18
    77 安茂忠, 屠振密, 张景双. 锌-镍合金镀层耐蚀性的研究. 中国腐蚀与防护学报. 1989, 9(2): 87~94
    78 卢锦堂, 陈锦虹, 许乔瑜等. 锌镍合金镀层盐雾腐蚀行为的研究. 材料保护. 1997, 30(5): 8~10
    79 安茂忠, 杨哲龙, 张景双等. 电镀防护性锌基合金镀层钝化膜的耐蚀性.中国腐蚀与防护学报. 1998, 18(1): 41~45
    80 T. Bellezze, G. Roventi, R. Fratesi. Electrochemical Study on the CorrosionResistance of Cr III-based Conversion Layers on Zinc Coatings. Surf. Coat.Technol. 2002, 155(2~3): 221~230
    81 韩克麦, 叶向荣, 方景礼. 镀锌层表面硅酸盐防腐膜的研究. 腐蚀科学与防护技术.1997, 9(2): 167~170
    82 E. Almeida, T. C. Diamantino, M. O. Figueiredo et al. Oxidising AlternativeSpecies to Chromium VI in Zinc Galvanised Steel Surface Treatment. Part 1-A Morphological and Chemical Study. Surf. Coat. Technol. 1998, 106(1):8~17
    83 E. Almeida, L. Fedrizzi, T. C. Diamantinio. Oxidising Alternative Species toChromium VI in Zinc-Galvanised Steel Surface Treatment. Part 2-AnElectrochemical Study. Surf. Coat.Technol. 1998, 105(1~2): 97~101
    84 B. R. W. Hinton. Corrosion Inhibition with Rare Earth Metal Salts. J. AlloysCompd. 1992, 180(1~2): 15~25
    85 J. Bibber. An Overview of Nonhexavalent Chromium Conversion Coatings-Part II: Zinc. Met. Finish. 2002, 100(2): 98~102
    86 吴海江, 陈锦虹, 卢锦堂. 镀锌层无铬钝化耐蚀机理的研究进展. 材料保护. 2004, 37(3): 43~47
    87 C. Müller, M. Sarre, E. García et al. Cr-Free Passivation on ZnNi Alloys. J.Electrochem. Soc. India. 2004, 151(2): C149~C154
    88 郭鹤桐, 张三元. 复合镀层. 天津大学出版社, 1991: 15
    89 H. Hayashi, S. lzumi, I. Tari. Codeposition of α-alumina Particles from AcidCopper Sulfate Bath. J. Electrochem. Soc. 1993, 140(2): 362~365
    90 S. Hashimoto, M. Abe. The Characterization of Electrodeposited Zn-SiO2Composites before and after Corrosion Test. Corros. Sci. 1994, 36(12):2125~2137
    91 徐滨士. 纳米表面工程. 化学工业出版社, 2004: 15~24
    92 G.-j. Chi, S.-w. Yao, J. Fan et al. Study on Photocatalytic AntibacterialPerformance of Ni/TiO2 Composite Deposits. Mater. Sci. Technol. 2004,12(1): 52~56
    93 L. Du, B. Xu, S. Dong et al.Study of Tribological Characteristics and WearMechanism of Nano-particle Strengthened Nickel-based CompositeCoatings under Abrasive Contaminant Lubrication. Wear. 2004, 257(9~10):1058~1063
    94 K. Ui, T. Fujita, N. Koura et al. Development of Ag-TiO2 (anatase) ParticleComposite Coating Film for Photocatalyst and Effect of the Matrix Metal.J.Electrochem. Soc. 2006, 153(6): C449~C454
    95 M. B. Karam??, K. Y?ld?zl?, H. ?ak?rer. Wear Behaviour of Al-Mo-NiComposite Coating at Elevated Temperature. Wear. 2005, 258(5~6):744~751
    96 B. S. Xu, H. D. Wang, S. Y. Dong et al.Fretting Wear Resistance of Ni-baseElectro-brush Plating Coating Reinforced by Nano-alumina Grains. Mater.Lett. 2006, 60(5): 710~713
    97 S. Arai, M. Endo, T. Sato et al. Fabrication of Nickel-Multiwalled CarbonNanotube Composite Films with Excellent Thermal Conductivity by anElectrodeposition Technique. Electrochem. Solid-State Lett. 2006, 9(8):C131~C133
    98 S. Arai, M. Endo. Various Carbon Nanofiber-Copper Composite FilmsPrepared byElectrodeposition. Electrochem. Commun. 2005, 7(1): 19~22
    99 M. Itagaki, G. Sato, K. Watanabe. BTA-Containing Microcapsule CompositeCopper Coating. 208th ECS Meeting. LosAngeles, 2005: 309
    100 李丽华, 吴继勋, 张海冬. Zn-SiO2 复合镀工艺研究. 电镀与涂饰. 1995,14(3): 31~33
    101 舒余德, 邓朝阳, 谢勤. (Zn-Co)-TiO2复合电镀的工艺研究. 电镀与精饰.2000, 22(6): 12~16
    102 Y. Y. Wang, W. J. Peng, L. Y. Cai. Electrochemical Behaviors of Zn-Fe Alloyand Zn-Fe-TiO2 Composite Electrodeposition. 中南工业大学学报(英文版). 2003, 10(3): 183~120
    103 R. A. Tacken, P. Jiskoot, L. J. J. Janssen. Effect of Magnetic Charging of Nion Electrolytic Codeposition of Zn with Ni Particles. J. Appl. Electrochem.1996, 26(2): 129~134
    104 吴元康, 余昆, 熊晓辉. 纳米晶金刚石织构粒子增强银基电接触复合镀层的研究. 电镀与涂饰. 2002, 21(3): 6~11
    105 X. H. Chen, C. S. Chen, H. N. Xiao et al. Corrosion Behavior of CarbonNanotubes-Ni Composite Coating. Surf. Coat. Technol. 2005, 191(2~3):351~356
    106 熊忠华, 魏锡文, 黄锋. 化学复合镀 Ni-P-TiO2 光催化降解次甲基蓝. 材料开发与应用. 2002, 17(1): 11~13
    107 H. Matsuda, S. Yae, T. Iwagishi et al.Development of Electrolesly DepositedNano Fe-PFilms.Trans. IMF. 1998, 76(6): 241~243
    108 许乔瑜, 蔡勤. 锌及锌合金基电沉积耐蚀复合镀层的研究进展. 腐蚀与防护.2006, 27(6):271~275,279
    109 D. Aslanidis, J. Fransaer, J. P. Celis. The Electrolytic Codeposition of Silicaand Titania Modified Silica with Zinc. J. Electrochem. Soc. 1997, 144(7):2352~2357
    110 S. Yukimitsu, O. Akiyoshi, A. Masaki et al. Deposition Behavior ofElectrodeposited Zinc-silica Composite Coating from a Sodium Nitrate-added Bath and the Coating Characteristics. J. Iron Steel I. Jap. 1991, 77(7):878~885
    111 K. Kondo, A. Ohgishi, Z. Tanaka. Electrodeposition of Zinc-SiO2Composite.J. Electrochem. Soc. 2000, 147(7): 2611~2613
    112 T. J. Tuaweri, G. D. Wilcox. Behaviour of Zn-SiO2 Electrodeposition in thePresence of N,N-dimethyldodecylamine. Surf. Coat. Technol. 2005, 200(20-21): 5921~5930
    113 吴继勋, 张海冬, 李丽华. 高速 Zn-SiO2 复合电镀. 北京科技大学学报.1995,17(5): 476~480
    114 曹江利, 吴继勋, 卢燕平. Zn-SiO2 复合镀中氢的侵入及镀后逸出行为.材料保护. 2000, 33(4): 8~9
    115 黄新民, 吴玉程, 郑玉春. 分散方法对纳米颗粒复合镀层组织及性能的影响. 电镀与精饰. 1999, 21(5): 12~14
    116 曲济方, 吕靖, 张丽敏. 耐蚀性纳米 TiO2-Zn 复合镀的研究. 防腐蚀工程.2003, 1(1): 12~14
    117 A. Gomes, M. I. d. S. Pereira, M. H. Mendon?a et al. Zn-TiO2 CompositeFilms Prepared by Pulsed Electrodeposition. J. Solid State Electrochem.2005, 9(4): 190~196
    118 何建平, 骆心怡, 李顺林. 纳米氧化铈颗粒对锌镀层结构和耐蚀性能的影响. 稀土. 2003, 24(1): 24~27
    119 X. Y. Luo, J. P. He, S. L. Li. CeO2-Zn Nanocomposite Coating byElectrodeposition. Trans. Nanjing Univ. Aeron. Astron. 2002, 19(2):161~165
    120 骆心怡, 何建平, 朱正吼等. 纳米氧化铈颗粒对电沉积锌层耐蚀性的影响. 材料保护. 2003, 36(1): 1~4
    121 B. M. Praveen, T. V. Venkatesha, Y. A. Naik et al. Corrosion Studies ofCarbon Nanotubes-Zn Composite Coating. Surf. Coat. Technol. 2007,201(12): 5836~5842
    122 T. Yoshihara, H. Kimura, S. Harada. Study of High Corrosion Resistant Zinc-Aluminum Composite Electro-Plated Steel Sheet. J. Iron Steel Institute Jap.1980, 66(7): 779~789
    123 黄安, 高军, 金勇杰等. 表面活性剂在复合电镀中作用研究. 电镀与环保. 1996, 16(3): 6~8
    124 何建平, 李士嘉, 李忠东. 铝元素对锌镀层耐蚀性的影响. 南京航空航天大学学报. 1994, 26(4): 510~516
    125 Y. Zhang, Y. Fan, X. Yang. The Process and Mechanism of ElectrodepositionZn-Fe-SiO2 Composite Coating. Plat. Surf. Finish. 2004, 91(9): 39~43
    126 A. Takahashi, Y. Miyoshi, T. Hada. Effect of SiO2 Colloid on theElectrodeposition of Zinc-Iron Group Metal Alloy Composites. J.Electrochem. Soc. 1994, 141(4): 954~957
    127 周永令, 王昭盛. 锌基复合镀工艺在我厂的应用. 电镀与精饰. 1995,17(1): 9~12
    128 M. Hino, M. Hiramatsu, K. Murakami et al. Electroplated Zn-Ni-SiO2Composite Coatings Treated with a Silane Coupling Agent to ReplaceChromating.Acta Metall. Sinica. 2005, 18(3): 416~422
    129 桑付明, 成旦红, 袁蓉等. 镍基-纳米 SiO2 复合镀层抗腐蚀性能的研究.材料导报. 2003, 17: 131~134
    130 L. Benea, P. L. Bonora, A. Borello et al. Preparation and Investigation ofNanostructured SiC-nickel Layers by Electrodeposition. Solid State Ionics.2002, 151(1~4): 89~95
    131 L. Benea, P. L. Bonora, A. Borello et al. Composite Electrodeposition toObtain Nanostructured Coatings. J. Electrochem. Soc. 2001, 148(7):C461~C465
    132 L. Benea, P. L. Bonora, A. Borello et al. Wear corrosion Properties of Nano-Structured SiC–Nickel Composite Coatings Obtained by Electroplating.Wear. 2002, 249(10~11): 995~1003
    133 禹萍, 苏玉长, 谭澄宇等. Ni-SiC 和 Ni-SiO2 复合镀层性能的研究. 表面技术. 2001, 30(3): 27~29
    134 王健雄. 碳纳米管的制备、纯化及其在复合镀层研究. 湖南大学硕士学位论文. 2002: 21~22
    135 王健雄, 陈小华, 彭景翠. 碳纳米管镍基复合镀层材料和腐蚀性的初步研究. 腐蚀与防护. 2002, 23(1): 6~9
    136 张刚, 李绍禄, 陈小华等. 碳纳米管/镍基复合镀层的腐蚀行为. 中国有色金属学报.2003, 13(4): 996~1000
    137 X. Peng, Y. Zhang, F. Wang. ANovel Electrodeposited Ni-Cr Nanocompositewith Increased Resistance to Pitting Corrosion in 3.5% NaCl Solution.Electrochem. Solid-State Lett. 2005, 8(9): B46~B49
    138 朱立群. 非晶态 Fe-Mo 合金复合镀. 材料保护. 1993, 26(11): 15~17
    139 N. Gugliemi. Kinetics of the Deposition of Inert Particles from ElectrolyticBaths. J. Electrochem. Soc. 1972, 119(8): 1009 ~1012
    140 J. L. Valdes. Electrodeposition of Colloidal Particles. J. Electrochem. Soc.1987, 134(4): C223~C225
    141 B. J. Hwang, C. S. Hwang. Mechanism of Codeposition of Silicon Carbidewith Electrolytic Cobalt. J. Electrochem. Soc. 1993, 140(4): 979~984
    142 L. Stappers, J. Fransaer. The Effect of Turbulence on the Electrodepositionof Composite Coatings. J. Electrochem. Soc. 2005, 152(6): C392~C398
    143 J. Fransaer, J. P. Celis, J. R. Roos. Analysis of the Electrolytic Codepositionof Non-brownina Particles with a Metals. J. Electrochem. Soc. 1992, 139(2):413~425
    144 J. P. Celis, J. R. Roos, C. Buelens.AMathematical Model for the ElectrolyticCodeposition of Particles with a Metallic Matrix. J. Electrochem. Soc. 1987,134(6): 1402~1408
    145 S.-L. Kuo, Y.-C. Chen, M.-D. Gerc et al. Nano-Particles Dispersion Effect onNi/Al2O3Composite Catings. Mater. Chem. Phys. 2004, 86(1): 5~10
    146 R. E. Cavicchi, R. H. Silsbee. Coulomb Suppression of Tunneling Rate fromSmall Metal Particles. Phys. Rev. Lett. 1984, 52(16): 1453~1456
    147 P. Ball, L. Garwin. Science at theAtomic Scale.Nature. 1992, 355: 761~766
    148 R. Kubo. Electronic Properties of Metallic Fine Particles. J. Phys. Soc. Jpn.1962, 17(12): 975~986
    149 史建明. 纳米碳酸钙的分散和聚合物包覆. 浙江大学博士学位论文.2005: 3
    150 高濂, 孙静, 刘阳桥. 纳米粉体的分散及表面改性. 化学工业出版社,2003: 70~71
    151 王为, 侯峰岩, 刘家臣等. 纳米 ZrO2 粒子在镀液中的分散悬浮与单分散Ni-ZrO2纳米复合镀层的制备. 材料保护. 2004, 37(2): 4~6
    152 G. Vidrich, J.-F. Castagnet, H. Ferkel. Dispersion Behavior of Al2O3 andSiO2 Nanoparticles in Nickel Sulfamate Plating Baths of DifferentCompositions.J. Electrochem. Soc. 2005, 152(5): C294~C297
    153 P. Gyftou, M. Stroumbouli, E. A. Pavlatou. Electrodeposition of Ni/SiCComposites byPulse Electrolysis.Trans IMF. 2002, 80(3): 88~91
    154 吴蒙华, 李智, 夏法锋等. 纳米 Ni-Al2O3 复合层的超声电沉积制备. 功能材料. 2004, 35(6): 776~778
    155 吴蒙华, 李智, 夏法锋等. 纳米 Ni-Si3N4-x复合镀层的超声电沉积机理及工艺研究. 材料保护. 2004, 37(7): 29~31
    156 吴蒙华, 傅欣欣, 李智等. 超声电沉积镍/纳米碳化硅复合镀层组织结构研究. 机械工程材料. 2004, 28(12): 46~48
    157 吴蒙华, 李智, 夏法锋等. 纳米金属陶瓷 Ni-AlN 复合层的超声-电沉积制备. 材料科学与工艺. 2005, 13(5): 548~551
    158 包胜华, 吴蒙华, 刘正宁等. 功率超声在电沉积 Ni/纳米 Al2O3复合镀层中应用. 现代制造工程. 2004, (9): 3~5
    159 高濂, 孙静, 刘阳桥. 纳米粉体的分散及表面改性. 化学工业出版社,2003: 278
    160 韩廷水, 于爱兵, 田欣利. 表面活性剂对 Ni-Si3N4 复合镀层的影响. 中国表面工程. 2004, (6): 32~35
    161 F. Hou, W. Wang, H. Guo. Effect of the Dispersibility of ZrO2 Nanoparticlesin Ni-ZrO2 Electroplated Nanocomposite Coatings on the MechanicalProperties of Nanocomposite Coatings. Appl. Surf. Sci. 2006, 252(10):3812~3817
    162 D. M. Ger, K. H. Hou, B. J. Hwang. Transient Phenomena of theCodeposition of PTFE with Electroless Ni-P Coating at the Early Stage.Mater. Chem. Phys. 2004, 87(1): 102~108
    163 C. T. Walker, R. Walker. Hardening Effect of Ultrasonic Agitation on CopperElectrodeposits.J. Electrochem. Soc. 1977, 124(5): 661~669
    164 E. Agulló, J. González-García, E. Expósito et al. Influnce of An UltrasonicField on Lead Electrodeposition on Copper Using a Fluoroboric Bath. New J.Chem. 1999: 95~101
    165 T. R. Mahmood, J. K. Dennis, P. L. Barrett. Effect of Ultrasonic Agitation onNi-Co and Ni-Fe Deposition. Surf.Technol. 1984, 22(3): 219~239
    166 查全性等. 电极过程动力学导论. 北京: 科学出版社, 2004: 431
    167 E. B. Flint, K. S. Suslick. The Temperature of Cavitation. 1991, 20:1397~1399
    168 C. Karwas, T. Hepel. Influence of Boric Acid on Electrodeposition andStripping of Ni-ZnAlloys. J. Electrochem. Soc. 1988, 135(4): 839~844
    169 B. Mutel, A. B. Taleb, O. Dessaux et al. Characterization of Mixed Zinc-oxidized Zinc thin Films Deposited by a Cold Remote Nitrogen Plasma.Thin Solid Film. 1995, 266(2): 119~128
    170 S. Feliu, V. Barranco. XPS Study of the Surface Chemistry of ConventionalHot-Dip Galvanised Pure Zn, Galvanneal and Zn-Al AlloyCoatings on Steel.Acta Mater. 2003, 51(18): 5413~5424
    171 A. B. Velichenko, J. Portillo, M. Sarret et al. Surface Analysis of FilmsFormed on a Zinc Anode in a Zn-Ni Electroplating Bath. Appl. Surf. Sci.1999, 148(1~2): 17~23
    172 P. T. Andrews, T. Collins, C. E. Johnson et al. X-ray photoelectronspectroscopy of Ni in Ni–Zn and Ni–Al alloys. J. Electron Spectrosc. Relat.Phenom. 1979, 15(1): 39-42
    173 A. S. M. A. Haseeb, P. Chakraborty, I. Ahmed et al. XRD, XPS and SIMSInvestigations on Electrodeposited Nickel-phosphorous Alloy Coatings.Thin Solid Films. 1996, 283(1-2): 140-144
    174 Z. Hou, O. Yokota, T. Tanaka et al. Characterization of Ca-Promoted Ni-Al2O3 Catalyst for CH4 Reforming with CO2. Appl.Catal. A: Gen. 2003,253(2): 381~387
    175 X. Zhang, W. G. Sloof, A. Hovestad et al. Characterization of ChromateConversion Coatings on Zinc Using XPS and SKPFM. Surf. Coat. Technol.2005, 197(2~3): 168~176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700