用户名: 密码: 验证码:
粘土在聚丙烯/聚苯乙烯不相容共混物中优先插层行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物共混物/粘土纳米复合材料由于其优异的性能与潜在的应用价值,引起了学术界与工业界极大的兴趣。在不相容共混物中,粘土存在着优先插层现象。这种优先插层行为会影响共混物的相行为和凝聚态结构,进而影响复合材料的宏观性能。本文针对粘土在聚丙烯(PP)/聚苯乙烯(PS)共混物中存在优先插层现象的特点,对控制粘土优先插层行为的因素,以及该行为对复合材料结构与性能的影响进行研究。
     通过熔融共混法在160℃加工条件下制备了PP/PS/clay复合材料。X射线衍射分析(XRD)、透射电镜分析(TEM)和X射线能量色散谱分析(EDX)的结果表明,粘土在共混物中存在着优先插层现象。粘土优先被PS分子链所插层,且不受PS组分含量和加料方式的影响。基于复合材料中PP和PS组分的熔体粘度对温度敏感性的差别,通过改变加工温度的方法,研究组分的粘度差别对粘土优先插层行为的影响。随共混加工温度的升高,粘土在共混物中的分散位置从PS相逐渐向PP相进行迁移。TEM、EDX和动态粘弹行为测试(ARES)的结果表明,组分间粘度的差别能控制粘土的优先插层行为。组分粘度越高,加工过程中所能传递的剪切应力就越大,插层能力也就越强。
     通过分别对PP基体熔融接枝马来酸酐(MAH)和PS基体溶液磺化处理,成功地改变了聚合物组分的极性。在此基础上,熔融共混制备各类PP/PS/clay基复合材料,考察组分间的极性差别对粘土优先插层行为的影响。当两组分均为非极性时,粘土选择性地分散在PS相中;当引入PP接枝马来酸酐(PPMA)到共混物中,粘土优先分散在极性PP/PPMA相中;当两组分均被赋予极性后,粘土片层主要分散在极性sPS相中,部分分散在相界面间和PP/PPMA相中。作用能密度的计算和选择性抽提后傅立叶变换红外光谱(FTIR)的结果表明,组分极性越强,其与粘土片层之间相互作用也就越强,从而有着更强的插层粘土的能力。
     通过熔融共混法制备各类PP/PS/clay基复合材料,考察粘土优先插层行为对PP/PS/clay基复合材料结构和性能的影响。粘土优先被分散相所插层时,能提高材料的动态储存模量,且其提高程度受粘土分散状态的影响;当两相组分共插层时,储存模量进一步提高;当粘土被连续相所优先插层时,粘土片层能最大程度地限制聚合物分子链运动,复合材料获得最大的储存模量.热失重分析(TGA)的结果表明,粘土分散得越好,其对基体的保护作用就越强,相应对复合材料的热稳定化作用也就越强;优先插层在连续相中的粘土比优先插层在分散相中的粘土对复合材料有着更好的阻隔保护作用;而被两相组分共插层的粘土片层能起最佳的热稳定化作用。
     通过示差扫描量热分析(DSC)研究粘土优先插层行为对PP/PS/clay基复合材料结晶行为的影响。在等温结晶条件下,优先插层在分散相PS中的粘土对复合材料的结晶速率基本没有影响。而极性化PP(PP/PPMA)中的羰基能起诱导成核作用并诱导PP生成β晶,使得复合材料的结晶速率变大。分散在连续相中的粘土片层通过成核作用,进一步加速复合材料的结晶速率;而分散在相界面的粘土则成核作用不如前者显著。在非等温结晶条件下,粘土的优先插层对复合材料结晶行为的影响与等温条件相似,但分散在PS中的粘土通过提高分散相的粘度,进而起到加快复合材料结晶速率的作用。PPMA中的羰基对PP的β晶的诱导作用不如等温条件下明显,并且依赖于降温速率。
     通过TEM、EDX、ARES、FTIR和扫描电子显微镜(SEM)等测试,研究粘土的优先插层行为对PP/PS基共混物相容性的影响及其增容机理。结果表明,(a)对于粘土优先插层于连续相的体系,粘土的加入能减小分散相的尺寸,提高共混物的相容性。分散在连续相中的粘土通过提高连续相的粘度,减小了组分间的粘度比,从而实现动力学增容。(b)对于粘土被两相共插层的体系,粘土的加入能最大程度地减小分散相的尺寸,具有最佳的增容效果。粘土通过与极性PP和极性PS分子链间的化学作用,在相界面间形成原位接枝相容剂,增强了两相间的相互作用,从而主要在热力学上实现增容。(c)对于粘土优先插层于分散相的体系,粘土的加入也能减小分散相的尺寸,提高共混物的相容性。在分散相中的粘土片层聚集形成了“粘土刀片”结构,在加工过程中易集中剪切应力使分散相粒子破碎,减小分散相粒子尺寸,从而实现动力学增容。
Polymer blends/clay nanocomposites have evoked great interest in both academic and industrial world, due to their excellent performance and potential application. Interestingly, preferential intercalation phenomenon of clay is present in polymer blends. The behavior of clay may play a significant role in the phase morphology and aggregate structure of polymer blends, and thereby influences the final performance of the composites. Based on the preferential intercalation phenomenon of clay in the polypropylene (PP)/polystyrene (PS) blends, the factors which control the preferential intercalation behavior are investigated. Moreover, the effects of the preferential intercalation behavior on the structure and properties of the composites are comprehensively studied.
     PP/PS/clay composites were prepared by melt blending at 160℃. The results show that the preferential intercalation phenomenon of clay does occur in the PP/PS blends, as evidenced by wide angle X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray energy dispersion spectroscopy (EDX). Independing on the proportion of PS and its feeding modes, PS chains intercalate preferentially into clay. Based on different dependence of melt viscosity on temperature between PP and PS, the effects of viscosity on the preferential intercalation behavior of clay are investigated via changing the processing temperatures. The clay platelets gradually transferred from PS phase to PP phase with increasing processing temperature. The results suggest that the preferential intercalation behavior of clay is determined by the difference between the viscosity of the two components. Furthermore, the higher viscosity of component, the stronger shear stress during the compounding process, consequently results in stronger capabilities of the intercalation.
     The polarity of polymer components was successfully changed through melt grafting maleic anhydride (MAH) onto PP chains and solution grafting sulfonic groups onto PS chains, respectively. To investigate the effects of polarities of components on the preferential intercalation behavior of clay, different PP/PS/clay based composites were prepared via melt blending. In the case of the two non-polar components, clay is totally dispersed in the PS domains. When PP (as the continuous phase) is polarized by introducing MAH groups onto PP chains, clay is preferred to disperse in PP phase. While for two polar components, the majorities of clay platelets are dispersed in PS domains, with partial ones locating at the interface. Infrared spectra (IR) and evaluation of the interaction energy density were employed to explain above phenomena. The results reveal that different interaction between clay platelets and polymer components leads to the preferential intercalation behavior. Most important of all, the polymer with high polarity generates higher interaction with clay than does that with low or/and no polarity, and hence results in stronger capability of preferential intercalation.
     Different PP/PS/clay based composites were fabricated by melt blending to study the effects of the preferential intercalation behavior of clay on the structure and properties of the composites. When clay is dispersed in the PS domains, the storage modulus of the composites is still enhanced, and the extent of increase in modulus is strongly depended on the dispersion of clay. Upon both of components intercalating into clay layers, the modulus of composites is further improved. It is worth noting that the composites exhibit the highest modulus as clay is dispersed in the continuous phase (PP), which is attributed to the restraint of clay platelets on the mobility of polymer chains. TGA results show that the better the clay disperses, the higher thermal stability of the composites could be achieved due to the better barrier effect of clay platelets. Moreover, the composite where clay preferentially resides in continuous phase has better thermal stability than that where clay locates in dispersed phase. The composite where the clay was intercalated both by PP and PS chains exhibits the highest thermal stability.
     Differential scanning calorimetry (DSC) was employed to investigate the effect of the preferential intercalation behavior of clay on the crystallization behavior of the composites. Under the isothermal crystallization condition, the clay platelets dispersed in domains do not influence the crystallization rate of the composites. The carbonyl group of the MAH can induce nucleation and the formation ofβcrystalline, resulting in the increase of the crystallization rate of the composites. Owing to the nucleating role of clay platelets, the presence of them in the continuous phase further accelerates the crystallization process of composites. The clay platelets at the interface show less nucleating effect. Under the nonisothermal crystallization condition, the preferential intercalation behavior of clay shows the similar effect on the crystallization behavior. However, the clay platelets dispersed in the domains can speed up the crystallization process, due to the increase of the viscosity of domains. The inducing behavior of MAH groups on the formation ofβcrystalline is weaker under nonisothermal condition than that under isothermal condition; meanwhile, the inducing behavior depends on the cooling rate.
     On the basis of the preferential intercalation behavior of clay, the compatibilization effects and mechanisms of clay on immiscible blends based on PP/PS were systematically investigated. The results show: (a) In the case of composite where clay preferentially disperses in continuous phase, the addition of clay reduces the domain size and improves the compatibility of blends, which can be explained by the fact that the clay platelets can effectively reduce the viscosity ratio of two components. (b) For composite where clay is intercalated by both components, the incorporation of clay dramatically reduces the domain size and plays a significant role in the compatibilization of polymer blends. The compatibilization behavior can be explained by what the 'in-situ grafts', formed at the interface due to the strong chemical interaction between components and clay platelets, reduce the interface tension and improve the interaction between the two components. (c) For the composite where clay is preferentially dispersed in the domains, the introduction of clay also can reduce the domain size and enhance the compatibility of blends. To explain the compatibilization mechanism, we proposed a model that clay platelets form the "clay knife" structure to split the dispersed PS domains.
引文
[1]R.Roy,S.Komameni,D.M.Roy.Cation-exchange properties of hydrated cements.Materials Research Society symposia proceedings.Materials Research Society.1984,32:347-359.
    [2]A.Okada,M.Kawasumi,T.Kurauchi.Preparation and evaluation of composites from montmorillonite and some heterocyclic polymers.Polymer Preparation.1987,28:447-452.
    [3]E.P.Giannelis.Polymer Layered Silicate Nanocomposites.Advanced Materials.1996,8:29-35.
    [4]E.P.Giannelis.Polymer-layered silicate nanocomposites:Synthesis,properties and applications.Applied Organometallic Chemistry.1998,12:675-680.
    [5]M.S.Wang,T.Pinnavaia.Clay-polymer nanocompostes fromed from acidic derivatives of montmorillonite and an epoxy resin.Chemistry of Materials.1994,6:468-474.
    [6]S.Wong,S.Vasudevan,R.A.Vaia,E.P.Giannelis,D.B.Zax.Dynamics in a confined polmyer electrolyte:A ~7Li and ~2H NMR study.Journal of the American Chemical Society.1995,117:7568-7569.
    [7]J.S.Ma,Z.N.Qi,Y.L.Hu.Synthesis and characterization of polypropylene/clay nanocomposites.Journal of Applied Polymer Science.2001,82:3611-3617.
    [8]S.S.Ray,M.Okamoto.Polymer/layered silicate nanocomposites:a review from preparation to processing.Progress in Polymer Science.2003,28:1539-1641.
    [9]M.Alexandre,P.Dubois.Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials.Materials Science & Engineering R-Reports.2000,28:1-63.
    [10]A.S.Baranski,P.Norouzi.Voltammetric determination of surface active compounds at Au and Pt ultramicroelectrodes in flowing solutions.Canadian Journal of Chemistry.1997,75:1736-1749.
    [11]T.Kyu,Z.L.Zhou,G.C.Zhu,Y.Tajuddin,S.Qutu-.buddin.Novel filled polymer composites prepared from in situ polymerization via a colloidal approach I.Kaolin/Nylon 6in situ composites.Journal of Polymer Science Part B:Polymer Physics.1996,34:1761-1768.
    [12]H.R.Fischer,L.H.Gielgens,T.P.M.Koster.Nanocomposites from polymers and layered minerals.Acta Polymerica Sinica.1999,50:122-126.
    [13]H.L.Frisch,J.E.Mark.Nanocomposites prepared by threading polymer chains through zeolites,mesoporous silica,or silica nanotubes Chemistry of Materials.1996,8:1735-1738.
    [14]P.B.Messersmith,S.I.Stupp.Synthesis of nanocomposites:Organoceramics.Journal of Materials Research.1992,7:2599-2611.
    [15]P.B.Messersmith,P.Osenar,I.S.Samuel.Preparation of a nanostructured organoceramic and its reversible interlayer expansion.Journal of Material Research.1999,14:315-318.
    [16]S.D.Burnside,H.C.Wang,E.P.Giannelis.Direct polymer intercalation in single crystal vermiculite.Chemistry of Materials.1999,11:1055-1060.
    [17]T.Lan,P.D.Kaviratna,T.J.Pinnavaia.Mechanism of clay tactoid exfoliation in Epoxy-clay nanocomposites.Chemistry of Materials.1995,7:2144-2150.
    [18]P.B.Messersmith,E.P.Giannelis.Polymer-layered silicate nanocomposites:in situ intercalative polymerization of c-Caprolactone in layered silicates Chemistry of Materials.1993,5:1064-1066.
    [19]K.Tamura,H.Nakazawa.Intercalation of n-alkyltrirnethylammonium into swelling fluoro-mica.Clays and Clay Minerals.1996,44:501-505.
    [20]T.L.Porter,M.E.Hagerman,B.P.Reynolds,M.P.Eastman,R.A.Parnell.Inorganic/organic host-guest materials:Surface and interclay reactions of styrene with copper(Ⅱ)-exchanged hectorite.Journal of Polymer Science Part B-Polymer Physics.1998,36:673-679.
    [21]K.A.Carrado,P.Thiyagarajan,D.L.Elder.Polyvinyl alcohol-clay complexes formed by direct synthesis.Clays and Clay Minerals.1996,44:506-514.
    [22]A.Akelah,A.Moet.Polymer-clay nanocomposites:Free-radical grafting of polystyrene on to organophilic montmorillonite interlayers.Journal of Materials Science.1996,31:3589-3596.
    [23]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践.化学工业出版社:北京,2002.
    [24]王月欣,李英,张留成.聚合物/层状硅酸盐纳米复合材料的研究进展-层状硅酸盐粘土的有机改性.化学世界2005.46:562-565.
    [25]陈光明,李强,漆宗能,王佛松.聚合物/层状硅酸盐纳米复合材料研究进展.高分子通报.1999.4:1-10.
    [26]R.A.Vaia,K.D.Jandt,E.J.Kramer,E.P.Giannelis.Kinetics of polymer melt intercalation.Macromolecules.1995,28:8080-8085.
    [27]R.A.Vaia,E.P.Giannelis.Polymer melt intercalation in organically-modified layered silicates:Model predictions and experiment.Macromolecules.1997,30:8000-8009.
    [28]S.Fujiwara,T.Sakamoto.Japanese Kokai Patent.1976,Application No.109998
    [29]A.Okada,M.Kawasumi,T.Kurauchi,O.Kamigaito.Synthesis and characterization of Nylon6 -clay hybrid.Polymer Preprints.1987,28:447-448.
    [30]A.Usuki,M.Kawasumi,Y.Kojima,Y.Fukushima,A.Okada,T.Kurauchi,O.Kamigaito.Synthesis of nylon 6-clay hybrid.Journal of Material Research.1993,8:1179-1184.
    [31]A.Usuki,M.Kawasumi,Y.Kojima,A.Okada,T.Kurauchi,O.Kamigaito.Swelling behavior of montmorillonite cation exchanged for omega-amino acids by s-caprolactam.Journal of Material Research.1993,8:1174-1178.
    [32]Y.Kojima,A.Usuki,M.Kawasumi,A.Okada,T.Karauchi,O.Kamigaito.Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam.Journal of Polymer Science Part α-Polymer Chemistry.1993,31:983-986.
    [33]Y.Kojima,A.Usuki,M.Kawasumi,A.Okada,T.Karauchi,O.Kamigaito.One Pot Synthesis of Nylon 6 Clay Hybrid.Journal of Polymer Science Part α-Polymer Chemistry.1993,31:1755-1758.
    [34]Y.Kojima,A.Usuki,M.Kawasumi,A.Okada,Y.Fukushima,T.Kurauchi,O.Kamigaito.Mechanical properties of nylon6-clay hybrid.Journal of Material Research.1993,8:1185-1189.
    [35]L.M.Liu,Z.N.Qi,X.G.Zhu.Studies on nylon 6/clay nanocomposites by melt-intercalation process.Journal of Applied Polymer Science.1999,71:1133-1138.
    [36]N.Hasegawa,H.Okamoto,M.Kato,A.Usuki,N.Sato.Nylon 6/Na-montmorillonite nanocomposites prepared by compounding Nylon 6 with Na-montmorillonite slurry.Polymer.2003,44:2933-2937.
    [37]A.Usuki,M.Kato,A.Okada,T.Kurauchi.Synthesis ofpolypropylene-clay hybrid.Journal of Applied Polymer Science.1997,63:137-139.
    [38]N.Hasegawa,M.Kawasumi,M.Kato,A.Usuki,A.Okada.Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer.Journal of Applied Polymer Science.1998,67:87-92.
    [39]P.Maiti,P.H.Nam,M.Okamoto,N.Hasegawa,A.Usuki.Influence of crystallization on intercalation,morphology,and mechanical properties of polypropylene/clay nanocomposites.Macromolecules.2002,35:2042-2049.
    [40]M.Kawasumi,N.Hasegawa,M.Kato,A.Usuki,A.Okada.Preparation and mechanical properties of polypropylene-clay hybrids.Macromolecules.1997,30:6333-6338.
    [41]M.Kato,A.Usuki,A.Okada.Synthesis of polypropylene oligomer-clay intercalation compounds.Journal of Applied Polymer Science.1997,66:1781-1785.
    [42]T.Sun,J.M.Garces.High-performance polypropylene-clay nanocomposites by in-situ polymerization with metallocene/clay catalysts.Advanced Materials.2002,14:128-130.
    [43]D.Garcia-Lopez,O.Picazo,J.C.Merino,J.M.Pastor.Polypropylene-clay nanocomposites:effect of compatibilizing agents on clay dispersion.European Polymer Journal.2003,39:945-950.
    [44]J.Heinemann,P.Reichert,R.Thomann,R.Mulhaupt.Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethene homo- and copolymerization in the presence of layered silicates.Macromolecular Rapid Communications.1999,20:423-430.
    [45]Y.H.Jin,H.J.Park,S.S.Im,S.Y.Kwak,S.Kwak.Polyethylene/clay nanocomposite by in-situ exfoliation of montmorillonite during Ziegler-Natta polymerization of ethylene.Macromolecular Rapid Communications.2002,23:135-140.
    [46]S.Y.A.Shin,L.C.Simon,J.B.P.Soares,G.Scholz.Polyethylene-clay hybrid nanocomposites:in situ polymerization using bifunctional organic modifiers.Polymer.2003,44:5317-5321.
    [47]M.Kato,H.Okamoto,N.Hasegawa,A.Tsukigase,A.Usuki.Preparation and properties of polyethylene-clay hybrids.Polymer Engineering and Science.2003,43:1312-1316.
    [48]K.H.Wang,M.H.Choi,C.M.Koo,M.Z.Xu,I.J.Chung,M.C.Jang,S.W.Choi,H.H.Song.Morphology and physical properties of polyethylene/silicate nanocomposite prepared by melt intercalation.Journal of Polymer Science Part B-Polymer Physics.2002,40:1454-1463.
    [49]C.kato,K.Kuroda,H.Takahara.Preparation and electrical properties of quaternary ammonium montmorillinite polystyrene complexs.Clays and Clay Minerals.1981,29:294-209.
    [50]G.M.Chen,Y.M.Ma,Z.N.Qi.Preparation of polystyrene/toluene-2,4-di-isocyanatemodified montmorillonite hybrid.Journal of Applied Polymer Science.2000,77:2201-2205.
    [51]A.Akelah,A.Moet.Polymer-clay nanocomposites:Free-radical grafting of polystyrene on to organophilic montmorillonite interlayers.Journal of Materials Science.1996,31:3589-3596.
    [52]N.Hasegawa,H.Okamoto,M.Kawasumi,A.Usuki.Preparation and mechanical properties of polystyrene-clay hybrids.Journal of Applied Polymer Science.1999,74:3359-3364.
    [53]X.Fu,S.Qutubuddin.Polymer-clay nanocomposites:exfoliation of organophilic montmorillonite nanolayers in polystyrene Polymer.2001,42:807-813.
    [54]R.A.Vaia,H.Ishii,E.P.Giannelis.Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates.Chemistry of Materials.1993,5:1694-1696.
    [55]T.H.Kim,L.W.Jang,D.C.Lee,H.J.Choi,M.S.Jhon.Synthesis and rheology of intercalated polystyrene/Na+-montmorillonite nanocomposites.Macromolecular Rapid Communications.2002,23:191-195.
    [56]S.Tanoue,L.A.Utracki,A.Garcia-Rejon,J.Tatibouet,K.C.Cole,M.R.Kamal.Melt compounding of differenet grades of polystyrene with organoclay.Part 1:Compounding and characterization.Polymer Engineering and Science.2004,44:1046-1060.
    [57]B.Hoffmann,C.Dietrich,R.Thomann,C.Friedrich,R.Mulhaupt.Morphology and rheology of polystyrene nanocomposites based upon organoclay,Macromolecular Rapid Communications.2000,21:57-61.
    [58]X.Y.Huang,W.J.Brittain.Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization.Macromolecules.2001,34:3255-3260.
    [59]X.Y.Huang,S.Lewis,W.J.Brittain,R.A.Vaia.Synthesis of polycarbonate-layered silicate nanocomposites via cyclic oligomers.Macromolecules.2000,33:2000-2004.
    [60]A.R.Tripathy,E.Burgaz,S.N.Kukureka,W.J.MacKnight.Poly(butylene terephthalate)nanocomposites prepared by in-situ polymerization.Macromolecules.2003,36:8593-8595.
    [61]S.S.Lee,Y.T.Ma,H.W.Rhee,J.Kim.Exfoliation of layered silicate facilitated by ring-opening reaction of cyclic oligomers in PET-clay nanocomposites.Polymer.2005,46:2201-2210.
    [62]C.H.Davis,L.J.Mathias,J.W.Gilman,D.A.Schiraldi,J.R.Shields,P.Trulove,T.E.Sutto,H.C.Delong.Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites.Journal of Polymer Science Part B-Polymer Physics.2002,40:2661-2666.
    [63]A.Sanchez-Solis,A.Garcia-Rejon,O.Manero.Production of nanocomposites of PET-montmorillonite clay by an extrusion process.Macromolecular Symposia.2003,192:281-292.
    [64]S.E.Vidotti,A.C.Chinellato,G.H.Hu,L.A.Pessan.Preparation of poly(ethylene terephthalate)/Organoclay nanocomposites using a polyester lonorner as a compatibilizer.Journal of Polymer Science Part B-Polymer Physics.2007,45:3084-3091.
    [65]X.D.Feng,D.C.Sayle,Z.L.Wang,M.S.Paras,B.Santora,A.C.Sutorik,T.X.T.Sayle,Y.Yang,Y.Ding,X.D.Wang,Y.S.Her.Converting ceria polyhedral nanoparticles into single-crystal nanospheres.Science.2006,312:1504-1508.
    [66]L.Biasci,M.Aglietto,G.Ruggeri,F.Ciardelli.Functionalization of Montmorillonite by Methyl-Methacrylate Polymers Containing Side-Chain Ammonium Cations.Polymer.1995,35:3296-3304.
    [67]S.Kumar,J.P.Jog,U.Natarajan.Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation:The effect of organoclay on the structure and thermal properties.Journal of Applied Polymer Science.2003,89:1186-1194.
    [68]S.S.Ray,P.Maiti,M.Okamoto,K.Yamada,K.Ueda.New polylactide/layered silicate nanocomposites.1.Preparation,characterization,and properties.Macromolecules.2002,35:3104-3110.
    [69]范.D.W.聚合物的性质.科学出版社:1981;p 304-308.
    [70]沈家瑞,贾德民.聚合物共混物与合金.华南理工大学出版社:广州,1999;p 12-14.
    [71]L.A.Urtacki,Clay-containing polymeric nanocomposites.Rapra Technology:Shawbury,UK,2004.
    [72]S.S.Ray,M.Bousmina.Compatibilization efficiency of organoclay in an immiscible polycarbonate/poly(methyl methacrylate) blend.Macromolecular Rapid Communications.2005,26:450-455.
    [73]S.S.Ray,J.Bandyopadhyay,M.Bousmina.Effect of Organoclay on the Morphology and Properties of Poly(propylene)/Poly[(butylene succinate)-co-adipate]Blends.Macromolecular Materials and Engineering.2007,209:729-747.
    [74]S.S.Ray,S.Pouliot,M.Bousmina,L.A.Utracki.Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends.Polymer.2004,45:8403-8413.
    [75]I.Gonzalez,J.I.Eguiazabal,J.Nazabal.Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend:Effects of clay loading on morphology and mechanical properties.European Polymer Journal 2006,42:2905-2913.
    [76]I.Gonzalez,J.I.Eguiazabal,J.Nazabal.Rubber-toughened polyamide 6/clay nanocomposites.Composites Science and Technology.2006,66:1833-1843.
    [77]I.Gonzalez,J.I.Eguiazabal,J.Nazabal.Effects of the processing sequence and critical interparticle distance in PA6-clay/mSEBS nanocomposites.European Polymer Journal 2008,44:287-299.
    [78]W.S.Chow,Z.A.M.Ishak,U.S.Ishiaku,J.Karger-Kocsis,A.A.Apostolov.The effect of organoclay on the mechanical properties and morphology of injection-molded polyamide 6/polypropylene nanocomposites.Journal of Applied Polymer Science.2004,91:175-189.
    [79]A.Kelaraki,E.P.Giannelis,K.Yoon.Structure-properties relationships in clay nanocomposites based on PVDF/(ethylene-vinyl acetate) copolymer blends.Polymer.2007,48:7567-7572.
    [80]K.Wang,C.Wang,J.Li,J.X.Su,Q.Zhang,R.N.Du,Q.Fu.Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites.Polymer.2007,48:2144-2154.
    [81]Y.J.Xu,W.J.Brittain,R.A.Vaia,G.Price.Improving the physical properties of PEA/PMMA blends by the uniform dispersion of clay platelets.Polymer.2006,47:4564-4570.
    [82]Y.M.Li,G.X.Wei,H.J.Sue.Morphology and toughening mechanisms in clay-modified styrene-butadiene-styrene rubber-toughened polypropylene.Journal of Materials Science.2002,37:2447-2459.
    [83]J.R.Austin,M.Kontopoulou.Effect of organoclay content on the rheology,morphology,and physical properties of polyolefin elastomers and their blends with polypropylene.Polymer Engineering and Science.2006,46:1491-1501.
    [84]M.Q.Zhang,U.Sundararaj.Thermal,rheological,and mechanical behaviors of LLDPE/PEMA/clay nanocomposites:Effect of interaction between polymer,compatibilizer, and nanofiller.Macromolecular Materials and Engineering.2006,291:697-706.
    [85]S.C.Tjong,S.P.Bao,G.D.Hang.Polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA:Structure-property relationship.Journal of Polymer Science Part B-Polymer Physics.2005,43:3112-3126.
    [86]R.J.Varley,A.M.Groth,K.H.leong.Preparation and characterisation of polyamide-polyimide organoclay nanocomposites.Polymer International.2008,57:618-625.
    [87]G.Ozkoc,G.Bayram,M.Quaedflieg.Effects of microcompounding process parameters on the properties of ABS/polyamide-6 blends based nanocomposites.Journal of Applied Polymer Science.2008,107:3058-3070.
    [88]X.H.Liu,Q.J.Wu,L.A.Berglund,J.Q.Fan,Z.N.Qi.Polyamide 6-clay nanocompositles/polypropylene-grafted-maleic anhydride alloys.Polymer 2001,42:8235-8239.
    [89]A.Blumstein.Polymerization of adsorbed monolayers:Ⅱ.Thermal degradation of the inserted polymers.Journal of Polymer Science Part α-Polymer Chemistry.1965,3:2665-2672.
    [90]T.J.Pinnavaia,G.W.Beall,Polymer-clay composites.John Wiley Sons:2000.
    [91]J.Q.Wang,J.X.Du,J.Zhu,C.A.Wilkie.An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites.Polymer Degradation and Stability.2002,77:249-252.
    [92]J.X.Du,D.Y.Wang,C.A.Wilkie,J.Q.Wang.An XPS investigation of thermal degradation and charting on poly(vinyl chloride)-clay nanocomposites.Polymer Degradation and Stability.2003,79:319-324.
    [93]J.Zhu,F.M.Uhl,A.B.Morgan,C.A.Wilkie.Studies on the mechanism by which the formation of nanocomposites enhances thermal stability.Chemistry of Materials.2001,13:4649-4654.
    [94]A.Valera-Zaragoza,E.Ramirez-Vargas,F.J.Medellin-Rodriguez,B.M.Huerta-Martinez.Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites.Polymer Degradation and Stability.2006,91:1319-1325.
    [95]Y.Tang,Y.Hu,L.Song,R.W.Zong,Z.Gui,W.C.Fan.Preparation and combustion properties polypropylene-polyamide-6 of flame retarded alloys.Polymer Degradation and Stability.2006,91:234-241.
    [96]Y.Tang,Y.Hu,J.E Xiao,J.Wang,L.Song,W.C.Fan.PA-6 and EVA alloy/clay nanocomposites as char forming agents in poly(propylene) intumescent formulations.Polymers for Advanced Technologies.2005,16:338-343.
    [97]G.X.Chen,J.S.Yoon.Morphology and thermal properties of poly(L-lactide)/poly(butylene succinate-co-butylene adipate) compounded with twice functionalized clay.Journal of Polymer Science Part B-Polymer Physics.2005,43:478-487.
    [98]T.H.Chuang,W.J.Guo,K.C.Cheng,S.W.Chen,H.T.Wang,Y.Y.Yen.Thermal properties and flammability of ethylene-vinyl acetate copolymer/montmorillonite/polyethylene nanocomposites with flame retardants.Journal of Polymer Research.2004,11:169-174.
    [99]S.M.Lai,H.C.Li,Y.C.Liao.Properties and preparation of compatibilized nylon 6nanocomposites/ABS blends:Part Ⅱ - Physical and thermal properties.European Polymer Journal. 2007,43: 1660-1671.
    [100] T. C. Sun, X. Dong, K. Du, K. Wang, Q. Fu, C. C. Han. Structural and thermal stabilization of isotactic polypropylene/organo-montmorillonite/poly(ethylene-co-octene) nanocomposites by an elastomer component. Polymer. 2008,49: 588-598.
    [101] H. Acharya, S. K. Srivastava, A. K. Bhowmick. Ethylene propylene diene tempolymer/ ethylene vinyl acetate/layered silicate ternary nanocomposite by solution method. Polymer Engineering and Science. 2006,46: 837-843.
    [102] J. W. Lim, A. Hassan, A. R. Rahmat, M. U. Wahit. Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly(ethylene-co-octene). Polymer International. 2006, 55: 204-215.
    [103] M. U. Wahit, A. Hassan, Z. A. M. Ishak, A. R. Rahmat, A. Abu Bakar. Morphology, thermal, and mechanical behavior of ethylene octene copolymer toughened polyamide 6/polypropylene nanocomposites. Journal of Thermoplastic Composite Materials. 2006, 19: 545-567.
    [104] M. Zanetti, L. Costa. Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer. 2004,45: 4367-4373.
    [105] P. B. Messersmith, P. Osenar, I. S. Samuel. Preparation of a nanostructured organoceramic and its reversible interlayer expansion. Journal of Material Research. 1999, 14: 315-318.
    [106] P. B. Messersmith, E. P. Giannelis. Polymer-layered silicate nanocomposites: in situ intercalative polymerization of c-Caprolactone in layered silicates. Chemistry of Materials. 1993, 5: 1064-1066.
    [107] M. Frounchi, S. Dadbin, Z. Salehpour, M. Noferesti. Gas barrier properties of PP/EPDM blend nanocomposites. Journal of Membrane Science. 2006,282: 142-148.
    [108] L. Cabedo, J. L. Feijoo, M. P. Villanueva, J. M. Lagaron, E. Gimenez. Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromolecular Symposia. 2006,233: 191-197.
    [109] R. Stephen, C. Ranganathaiah, S. Varghese, K. Joseph, S. Thomas. Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer. 2006,47: 858-870.
    [110] Y. S. Lipatov, Polymer reinforcement. ChemTec Publishing: Toronto, Chanada, 1995.
    [111] A. E. Nesterov, Y. S. Lipatov. Compatibilizing effect of a filler in binary polymer mixtures. Polymer. 1999,40: 1347-1349.
    [112] Q. Zhang, H. Yang, Q. Fu. Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO_2 particles. Polymer. 2004, 45: 1913-1922.
    [113] G. Guerrica-Echevarria, J. I. Eguiazabal, J. Nazabal. Morphology and physical properties of injection-molded mineral-filled polyamide 6/poly(hydroxy ether of bisphenol A) blends. Journal of Applied Polymer Science. 1999,73: 1805-1814.
    [114] O. G. Ersoy, N. Nugay. Effect of inorganic filler phase on mechanical and morphological properties of binary immiscible polymer blends. Polymer Bulletin. 2003,49: 465-472.
    [115] S. M. Zhu, Y. Liu, M. Rafailovich, J. Sokolov, D. Gersappe, D. A. Winesett, H. Ade. Confinement induced miscibility in thin film polymer blends. Abstracts of Papers of the American Chemical Society. 1999, 218: U431-U431.
    [116] D. Voulgaris, D. Petridis. Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends.Polymer.2002,43:2213-2218.
    [117]Y.J.Li,H.Shimizu.Novel morphologies of poly(phenylene oxide)(PPO)/polyamide 6(PA6) blend nanocomposites.Polymer.2004,45:7381-7388.
    [118]B.B.Khatua,D.J.Lee,H.Y.Kim,J.K.Kim.Effect of organoclay platelets on morphology of nylon-6 and poly(ethylene-ran-propylene) robber blends.Macromolecules.2004,37:2454-2459.
    [119]M.Kontopoulou,Y.Liu,J.R.Austin,J.S.Parent.The dynamics of montmorillonite clay dispersion and morphology development in immiscible ethylene-propylene rubber/polypropylene blends.Polymer.2007,48:4520-4528.
    [120]H.Zou,Q.Zhang,H.Tan,K.Wang,R.N.Du,Q.Fu.Clay locked phase morphology in the PPS/PA66/clay blends during compounding in an internal mixer.Polymer.2006,47:6-11.
    [121]M.H.Lee,C.H.Dan,J.H.Kim,J.Cha,S.Kim,Y.Hwang,C.H.Lee.Effect of clay on the morphology and properties of PMMA/poly(styrene-co-acrylonitrile)/clay nanocomposites prepared by melt mixing.Polymer.2006,47:4359-4369.
    [122]Y.Yoo,C.Park,S.G.Lee,K.Y.Choi,D.S.Kim,J.H.Lee.Influence of addition of organoclays on morphologies in nylon 6/LLDPE blends.Macromolecular Chemistry and Physics.2005,206:878-884.
    [123]J.S.Hong,H.Namkung,K.H.Ahn,S.J.Lee,C.Kim.The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends.Polymer.2006,47:3967-3975.
    [124]D.P.Dharaiya,S.C.Jana.Nanoclay-induced morphology development in chaotic mixing of immiscible polymers.Journal of Polymer Science Part B-Polymer Physics.2005,43:3638-3651.
    [125]Y.J.Li,H.Shimizu.Co-continuous polyamide 6(PA6)/acrylonitfile-cutadiene-styrene (ABS) nanocomposites.MacromolecularRapid Communications.2005,26:710-715.
    [126]Y.S.Lipatov,A.E.Nesterov,T.D.Ignatova,D.A.Nesterov.Effect of polymer-filler surface interactions on the phase separation in polymer blends.Polymer.2002,43:875-880.
    [127]A.E.Nesterov,Y.S.Lipatov,T.D.Ignatova.Effect of an interface with solid on the component distribution in separated phases of binary polymer mixtures.European Polymer Journal 2001,37:281-285.
    [128]Y.Wang,Q.Zhang,Q.Fu.Compatibilization of immiscible poly(propylene)/polystyrene blends using clay.Macromolecular Rapid Communications.2003,24:231-235.
    [129]S.S.Ray,M.Bousmina.Effect of organic modification on the compatibilization efficiency of clay in an immiscible polymer blend.Macromolecular Rapid Communications.2005,26:1639-1646.
    [130]M.Si,T.Araki,H.Ade,A.L.D.Kilcoyne,R.Fisher,J.C.Sokolov,M.H.Rafailovich.Compatibilizing bulk polymer blends by using organoclays.Macromolecules.2006,39:4793-4801.
    [131]W.S.Chow,Z.A.M.Ishak,J.Karger-Kocsis.Atomic force microscopy study on blend morphology and clay dispersion in polyamide-6/polypropylene/organoclay systems.Journal of Polymer Science Part B-Polymer Physics.2005,43:1198-1204.
    [132]Z.P.Fang,Y.Z.Xu,L.F.Tong.Effect of clay on the morphology of binary blends of polyamide 6 with high density polyethylene and HDPE-graft-acrylic acid.Polymer Engineering and Science.2007,47:551-559.
    [133]Q.S.Su,M.Feng,S.M.Zhang,J.M.Jiang,M.S.Yang.Melt blending of polypropylene-blend-polyamide 6-blend-organoclay systems.Polymer International.2007,56:50-56.
    [134]Y.Z.Xu,Z.P.Fang,L.E Tong.On promoting intercalation and exfoliation of bentonite in high-density polyethylene by grafting acrylic acid.Journal of Applied Polymer Science.2005,96:2429-2434.
    [135]Z.P.Fang,Y.Z.Xu,L.F.Tong.Free-volume hole properties of two kinds thermoplastic nanocomposites based on polymer blends probed by positron annihilation lifetime spectroscopy.Journal of Applied Polymer Science.2006,102:2463-2469.
    [136]B.Q.Chen,J.R.G.Evans.Preferential intercalation in polymer-clay nanocomposites.Journal of Physical Chemistry B.2004,108:14986-14990.
    [137]N.Hasegawa,A.Usuki.Arranged Microdomain structures induced by clay silicate layers in block copolymer-clay nanocomposites.Polymer Bulletin.2003,51:77-83.
    [138]N.Hasegawa,H.Okamoto,M.Kato,A.Usuki.Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay.Journal of Applied Polymer Science.2000,78:1918-1922.
    [139]H.Y.Ma,Z.P.Fang,L.E Tong.Preferential melt intercalation of clay in ABS/brominated epoxy resin-antimony oxide(BER-AO) nanocomposites and its synergistic effect on thermal degradation and combustion behavior.Polymer Degradation and Stability.2006,91:1972-1979.
    [140]D.F.Wu,C.X.Zhou,M.Zhang.Effect of clay on immiscible morphology of poly(butylene terephthalate)/polyethylene blend nanocomposites.Journal of Applied Polymer Science.2006,102:3628-3633.
    [141]S.F.Wang,Y.A.Hu,L.Song,J.Liu,Z.Y.Chen,W.C.Fan.Study on the dynamic self-organization of montmorillonite in two phases.Journal of Applied Polymer Science.2004,91:1457-1462.
    [142]S.K.Lim,J.W.Kim,I.Chin,Y.K.Kwon,H.J.Choi.Preparation and interaction characteristics of organically modified montmorillonite nanocomposite with miscible polymer blend of poly(ethylene oxide) and poly(methyl methacrylate).Chemistry of Materials.2002,14:1989-1994.
    [143]何曼君,陈维孝,董西侠.高分子物理.复旦大学出版社:1990.
    [144]约翰.J 阿克 洛尼斯,威廉.J.马克尼特,沈明琦.聚合物粘弹性引论.宇航出版社:1984.
    [145]王贵恒.高分子材料成型加工原理.化学工业出版社:北京,1998.
    [146]H.R.Dennis,D.L.Hunter,D.Chang,S.Kim,J.L.White,J.W.Cho,D.R.Paul.Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites.Polymer.2001,42:9513-9522.
    [147]T.D.Fomes,P.J.Yoon,H.Keskkula,D.R.Paul.Nylon 6 nanocomposites:the effect of matrix molecular weight.Polymer.2001,42:9929-9940.
    [148]K.N.Kim,H.Kim,J.W.Lee.Effect of interlayer structure,matrix viscosity and composition of a functionalized polymer on the phase structure of polypropylene-montmorillonite nanocomposites.Polymer Engineering and Science.2001,41:1963-1969.
    [149]M.Modesti,A.Lorenzetti,D.Bon,S.Besco.Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites.Polymer.2005,46:10237-10245.
    [150]M.Modesti,A.Lorenzetti,D.Bon,S.Besco.Thermal behaviour of compatibilised polypropylene nanocomposite:Effect of processing conditions.Polymer Degradation and Stability.2006,91:672-680.
    [151]曹艳霞,杜淼,郑强.粒子填充聚合物体系的特征粘弹行为.高分子材料科学与工程2003,19:17-20.
    [152]卢红斌,杨玉良.填充聚合物的熔体流变学.高分子通报.2001,14:18-26.
    [153]B.Hoffmann,J.Kressler,G Stoppelmann,C.Friedrich,G M.Kim.Rheology of nanocmoposites based on layered silicates and polyamide- 12.Colloid and Polymer Science.2000,278:629-636.
    [154]W.S.Chow,Z.A.M.Ishak,J.Karger-Kocsis.Morphological and theological properties of polyamide 6/poly(propylene)/organoclay nanoeomposites.Macromolecular Materials and Engineering.2005,290:122-127.
    [155]C.C.Han,J.K.Kim.On the use of time-temperature superposition in multieomponent/multiphase polymer systems.Polymer.1993,34:2533-2539.
    [156]陈光明,漆宗能.聚苯乙烯/蒙脱土纳米符合材料中的剪切诱导有优结构.高等学校化学学报
    1999,20:1987-1989.
    [157]N.Artzi,B.B.Khatua,M.Narkis,A.Siegmann.Studies on nylon-6/EVOH/clay ternary composites.Polymer Composites.2006,27:15-23.
    [158]M.Xanthos,S.S.Dagli.Compatilization of polymer blends by reactive processing.Polymer Engineering and Science.1991,31:929-935.
    [159]尹骏,张军.马来酸酐与聚烯烃接枝产物的表征.功能高分子学报.2002,15:99-106.
    [160]G.G.Norman.Compatibilizing agents:Structure and function in polyblends.Journal of Macromolecular Science Part A-Chemistry.1989,26:1211-1229.
    [161]J.S.Yi,H.H.GUO.Free radical grafting of glycidyl methaerylate onto polypropylene in a co-rotating twin screw extruder.Journal of Applied Polymer Science.1995,57:1043-1054.
    [162]N.G.Gaylord,M.Mehta,V.Kumar.High density polyethylene-g-maleic anhydride preparation in presence of electron donors.Journal of Applied Polymer Science.1989,38:359-371.
    [163]N.G.Gaylord,M.Mehta,D.R.Mohan.Maleation of linear low-density polyethylene by reactive processing.Journal of Applied Polymer Science.1992,44:1941-1949.
    [164]H.S.Makowski,R.D.Lundberg,G.H.Singhal.USPat.3.870,841,1975.
    [165]李谷,席世平,刘振兴,黄月娥.磺化聚苯乙烯(SPS)及其离聚物的光谱特性.光谱学与光谱分析.1999.19:289-292.
    [166]刘杰,何嘉松.磺化聚苯乙烯和聚碳酸酯共混物相容性的红外光谱研究.高分子学报戒.1997:620-623.
    [167]刘晓辉.中科院化学所博士后出站报告.2000:
    [168]M.Lewin,A.Mey-Marom,R.Frank.Surface Free Energies of Polymeric Materials.Polymers for Advanced Technologies.2005,16:429-441.
    [169]B.Minisini,F.tsobnang.Molecular mechanics studies of specific interactions in organomodified clay nanocomposite.Composites Part α-Applied Science and Manufacturing.2005,36:531-537.
    [170]B.Minisini,F.tsobnang.Molecular dynamics study of specific interaction in grafted polypropylene organomodified clay nanocomposite.Composites Part a-Applied Science and Manufacturing.2005,36:539-544.
    [171]T.Nishi,T.T.Wang.Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures.Macromolecules.1975,8:909-915.
    [172]W.H.Jo,Y.K.Kwon,I.H.Kwon.Phase behavior of ternary polymer blends of poly(styrene-co-acrylic acid),poly(ethylene oxide),and poly(methyl methacrylate).Macromolecules.1991,24:4708-4712.
    [173]M.Y.Gelfer,H.H.Song,L.Z.Liu,B.S.Hsiao,B.Chu,M.Rafailovich,M.Y.Si,V.Zaitsev.Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends.Journal of Polymer Science Part B-Polymer Physics.2003,41:44-54.
    [174]K.Yurekli,A.Karim,E.J.Amis,R.Krishnamoorti.Influence of layered silicates on the phase-separated morphology of PS-PVME blends.Macromolecules.2003,36:7256-7267.
    [175]I.Gonzalez,J.I.Eguiazabal,J.Nazabal.New clay-reinforced nanocomposites based on a polycarbonate/polycaprolactone blend.Polymer Engineering and Science.2006,46:864-873.
    [176]S.N.Cassu,M.I.Felisberti.Poly(vinyl alcohol) and poly(vinylpyrrolidone) blends:2.Study of relaxations by dynamic mechanical analysis.Polymer.1999,40:4845-4851.
    [177]K.Wang,S.Liang,J.N.Deng,H.Yang,Q.Zhang,Q.Fu,X.Dong,D.J.Wang,C.C.Han.The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites.Polymer.2006,47:7131-7144.
    [178]钟世云,许乾慰,王公善.聚合物降解与稳定化.化学工业出版社:北京,2002.
    [179]R.S.Lenk.聚合物流变学.学国防工业出版社:1983.
    [180]郑强,杨碧波,吴刚,李立伟.多组分高分子体系动态流变学研究.高等学校化学学报.1999,20:1483-1490.
    [181]B.De Carvalho,R.E.S.Bretas.Quiescent crystallization kinetics and morphology of i-PP resins for injection molding.Ⅲ.Nonisothermal crystallization of the heterophasic and grafted polymers.Journal of Applied Polymer Science.1999,72:1741-1753.
    [182]G.Bogoeva-Gaceva,B.Mangovska,E.Mader.Crystallization kinetics of maleic anhydride-modified iPP studied by POM.Journal of Applied Polymer Science.2000,77:3107-3118.
    [183]Y.Seo,J.Kim,K.U.Kim,Y.C.Kim.Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene.Polymer.2000,41:2639-2646.
    [184]S.Hambir,N.Bulakh,P.Kodgire,R.Kalgaonkar,J.P.Jog.PP/clay nanocomposites:A study of crystallization and dynamic mechanical behavior.Journal of Polymer Science Part B-Polymer Physics.2001,39:446-450.
    [185]C.Saujanya,S.Radhakrishnan.Structure development and crystallization behaviour of PP/nanoparticulate composite.Polymer 2001,42:6723-6731.
    [186]W.B.Xu,G.D.Liang,W.Wang,S.P.Tang,P.S.He,W.P.Pan.Poly(propylene)-poly(propylene)-grafted maleic anhydride-organic montmorillonite (PP-PP-g-MAH-Org-MMT) nanocomposites.Ⅱ.Nonisothermal crystallization kinetics.Journal of Applied Polymer Science.2003,88:3093-3099.
    [187]W.B.Xu,G.D.Liang,H.B.Zhai,S.P.Tang,G.P.Hang,W.P.Pan.Preparation and crystallization behaviour of PP/PP-g-MAH/Org-MMT nanocomposite.European Polymer Journal.2003,39:1467-1474.
    [188]J.Li,C.X.Zhou,W.Gang.Study on nonisothermal crystallization of maleic anhydride grafted polypropylene/montmorillonite nanocomposite.Polymer Testing.2003,22:217-223.
    [189]Q.Yuan,S.Awate,R.D.K.Misra.Nonisothermal crystallization behavior of polypropylene-clay nanocomposites.European Polymer Journal.2006,42:1994-2003.
    [190]M.Avrami.Kinetics of phase change.I general theory.Journal of Chemical Physcis.1939,7:1103-1112.
    [191]M.Avrami.Kinetics of phase change.Ⅱ transformation-time relations for random distribution of nuclei.Journal of Chemical Physics.1940,8:212-224.
    [192]M.Avrami.Granulation,phase change,and microstructure kinetics of phase change.Ⅲ.Journal of Chemical Physcis.1941,9:177-184.
    [193]G.Bogoeva-gaceva,A.Janevski,A.Grozdanov.Crystallization and melting behavior of iPP studied by DSC.Journal of Applied Polymer Science.1998,67:395-404.
    [194]Y.Long,R.A.Shanks,Z.H.Satchurski.Kinetic polymer crystallisation.Progress in Polymer Science.1995,20:651-701.
    [195]O.O.Santana,J.A.Muller.Homogeneous nucleation of the dispersed crystallisable component of immiscible polymer blends.Polymer Bulletin.1994,32:471-477.
    [196]P.Cebe,S.D.Hong.Crystallization behaviour of poly(ether-ether-ketone)Polymer.1986,27:1183-1192.
    [197]F.J.Padden,H.D.Keith.Spherulitic crystallization in polypropylene.Journal of Applied Physics.1959,30:1479-1484.
    [198]F.J.Padden,H.D.Keith.Evidence for a second crystal form of polypropylene.Journal of Applied Physics.1959,30:1485-1488.
    [199]F.J.Padden,H.D.Keith.Crystallization in thin films of isotactic polypropylene.Journal of Applied Physics.1966,37:4013-4020.
    [200]B.Lotz.alpha and beta phases of isotactic polypropylene:a case of growth kinetics 'phase reentrency' in polymer crystallization.Polymer.1998,39:4561-4567.
    [201]O.MethCohn,S.Goon.Intramolecular Vilsmeier processes:A new route to cyclopenta[b]-and cyclohexa[b]-fused quinolines by cyclisation of adipic and pimelic bis-amides.Journal of the Chemical Society-Perkin Transactions 1.1997:85-89.
    [202]H.Huo,S.C.Jiang,L.J.An,J.C.Feng.Influence of shear on crystallization behavior of the beta phase in isotactic polypropylene with beta-nucleating agent.Macromolecules.2004,37:2478-2483.
    [203]M.L.Di Lorenzo,C.Silvestre.Non-isothermal crystallization of polymers.Progress in Polymer Science.1999,24:917-950.
    [204]A.Jeziorny.Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terphthalate) determined by d.s.c.Polymer.1978,19:1142-1144.
    [205]T.Ozawa.Kinetics of non-isothermal crystallization.Polymer.1971,264:117-122.
    [206]T.X.Liu,Z.S.Mo,S.G.Wang,H.F.Zhang.Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone).Polymer Engineering and Science.1997,37:568-575.
    [207]H.E.Kissinger.Variation of peak temperature with heating rate in differential thermal analysis.Journal of Research of the National Bureau of Standards.1956,57:217-223.
    [208]封朴.聚合物合金.同济大学出版社:1997.
    [209]Z.Horak,D.Hlavata,I.Fortelny,E Lednicky.Effect of styrene-butadiene triblock copolymer structure on its compatibilization efficiency in PS/PB and PS/PP blends.Polymer Engineering and Science.2002,42:2042-2047.
    [210]P.Raghu,C.K.Nere,R.N.Jagtap.Effect of styrene-isoprene-styrene,styrene-butadiene-styrene,and styrene-butadiene-rubber on the mechanical thermal,rheological,and morphological properties of polypropylene/polystyrene blends.Journal of Applied Polymer Science.2003,88:266-277.
    [211]S.Raha,N.Kao,S.N.Bhattacharya.Effect of polypropylene on the rheology of co-continuous PS/SEBS blends.Polymer Engineering and Science.2005,45:1432-1444.
    [212]Halimatudahliana,H.Ismail,M.Nasir.Morphological studies of uncompatibilized and compatibilized polystyrene/polypropylene blend.Polymer Testing.2002,21:263-267.
    [213]P.H.P.Macaubas,N.R.Demarquette.Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers.Polymer.2001,42:2543-2554.
    [214]Y.Zhang,Y.P.Huang,K.C.Mai.Crystallization and dynamic mechanical properties of polypropylene/polystyrene lends modified with maleic anhydride and styrene.Journal of Applied Polymer Science.2005,96:2038-2045.
    [215]A.A.Adewole,A.Denicola,C.G.Gogos,L.Mascia.Compatibilization ofpolypropylene -Polystyrene blends:Part 2,crystallization behavior and mechanical properties.Advances in Polymer Technology.2000,19:180-193.
    [216]A.A.Adewole,A.DeNicola,C.G.Gogos,L.Mascia.Compatibilisation of polypropylene-polystyrene blends - Part 1 - Effect of mixing intensity on morphology and rheological properties.Plastics Rubber and Composites.2000,29:70-79.
    [217]L.DOrazio,R.Guarino,C.Mancarella,E.Martuscelli,G.Cecchin.Isotactic polypropylene/polystyrene blends:Effects of the addition of a graft copolymer of propylene with styrene.Journal of Applied Polymer Science.1997,65:1539-1553.
    [218]P.Potschke,H.Malz,J.Pionteck.Influence of interfacial reaction on morphology in modified PP/PS blends.Macromolecular Symposia.2000,149:231-236.
    [219]J.Kim,J.Kwak,D.Kim.Synthesis and characterization of polyethylene-g-polystyrene as the compatibilizer for polypropylene/polystyrene blends.Polymers for Advanced Technologies.2003,14:58-65.
    [220]L.Elias,F.Fenouillot,J.C.Majeste,P.Cassagnau.Morphology and rheology of immiscible polymer blends filled with silica nanoparticles.Polymer.2007,48:6029-6040.
    [221]M.L.Lopez-Quintanilla,S.Sanchez-Valdes,L.F.R.de Valle,E J.Medellin-Rodriguez.Effect of some compatibilizing agents on clay dispersion of polypropylene-clay nanocomposites.Journal of Applied Polymer Science.2006,100:4748-4756.
    [222]R.Krishnamoorti,E.P.Giannelis.Rheology of end-tethered polymer layered silicate nanocomposites.Macromolecules.1997,30:4097-4102.
    [223]C.E.Scott,C.W.Macosko.Morphology development during the initail stages of polymer-polmyer blending.Polymer.1995,36:461-470.
    [224]I.Fortelny,J.Kovar,M.Stephan.Analysis of the phase structure development during the melt mixing of polymer blends.Journal of Elastomers and Plastics.1996,28:106-139.
    [225]L.A.Utracki,Z.H.Shi.Development of polymer blend morphology during compounding in a twin screw extruder,Part Ⅰ:droplet dispersion and coalescence - a review.Polymer Engineering and Science.1992,32:1824-1833.
    [226]N.Tokita.Analysis of morphology formation in elastomer blends.Rubber Chemistry and Technology.1977,50:292-300.
    [227]G.I.Taylor.The formation of emulsion in definable of flow.Proceedings of Royal Society SeriesA.1934,146:501-523.
    [228]S.H.Wu.Formation of dispersed phase in incompatible polymer blends:interfacial and rheological effects.Polymer Engineering and Science.1987,27:335-343.
    [229]V.Everaert,L.Aerts,G.Groeninckx.Phase morphology development in immiscible PP/(PS/PPE) blends influence of the melt-viscosity ratio and blend composition.Polymer.1999,40:6627-6644.
    [230]J.Zhao,A.B.Morgan,J.D.Harris.Rheological characterization of poly styrene-clay nanocomposites to compare the degree of exfoliation and dispersion.Polymer.2005,46:8641-8660.
    [231]M.Dijkstra,J.P.Hansen,P.A.Madden.Gelation of a clay colloid suspension.Physical Review Letters.1995,75:2236-2239.
    [232]K.Haraguchi,H.J.Li,K.Mastuda,T.Takehisa,E.Elliott.Mechanism of forming organoic/inorganic networking structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels.Macromolecules.2005,38:3482-3490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700