用户名: 密码: 验证码:
可降解形状记忆交联聚酯网络合成及在药物缓释中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可降解形状记忆聚合物具有良好的机械性能、可降解性、形状记忆性等性能,在高分子医用材料领域有着广泛的应用前景(例如,手术缝合线、药物释放载体、支架等),已成为近年来研究的热点。本文合成了几种生物相容形状记忆聚氨酯或聚酯材料,并研究了材料的降解和药物缓释性能。
     分别以乙醇酸和D,L-乳酸为原料,合成了乙交酯和丙交酯,其中丙交酯、乙交酯的产率分别超过55%和50%。再以乙交酯、丙交酯为原料,季戊四醇为引发剂,二丁基氧化锡(DBTO)或者辛酸亚锡(Sn(oct)2)为催化剂,开环聚合得到了一系列不同分子量和乙交酯含量的星形丙交酯/乙交酯共聚物(PLGA)。采用羟基滴定、FTIR、GPC、1HNMR等方法对合成的PLGA进行了表征。
     PLGA与异氰酸酯反应得到了交联结构的无定型聚酯型聚氨酯材料(PU)。PU具有良好的形状记忆性能和机械强度,但是材料的亲水性和韧性相对较差。PU的转变温度(Ttrans)在一定程度上,可以通过改变PLGA相对分子质量或者乙交酯来调节。
     合成了聚乙二醇双甲基丙烯酸酯(PEGDMA)和聚酯PLGA聚氨酯无定型互穿网络形状记忆聚合物材料。通过调节PEGDMA的含量,可以方便地调节形状记忆材料的Ttrans和亲水性来适用特殊潜在的医学和临床需要。
     PLGA与丙烯酰氯反应得到了星型双键封端的PLGA大分子单体(PLGATA),并与PEGDMA在紫外光引发下,合成了具有良好形状记忆性能的材料(LP),不仅提高了材料的亲水性,而且材料的Ttrans也可以方便的调节。
     PU材料在PBS溶液的降解结果表明:PU材料的降解过程大致可分为两个阶段:诱导期和加速期。材料的质量损失率和吸水率在诱导期缓慢增加;在加速期迅速增加。
     负载模型药物阿司匹林(ASP)/地塞米松(DEX)形状记忆材料的体外释放结果表明:两种药物的释放都是扩散控制和降解控制两种机制共同作用的结果。但由于ASP呈酸性,导致体外释放过程相对较短,只有20天左右;而DEX释放过程则达120天左右,和没有负载药物的PU相比,材料的降解速度显著加快。
Biodegradable shape-memory polymers have been extensively investigated, which have excellent properties, such as good mechanical properties, and multifunctionalities, etc. They have drawn increasing attention as their potential applications for medical materials, such as surgical sutures, drug delivery carriers and scaffolds, etc. In this thesis, several kinds of biodegradable polyurethanes or polyesters with good shape-memory effect are synthesized. The degradation and drug release behaviors of these biodegradable networks are also studied.
     Star-shaped oligo[(D,L-lactide)-co-glycolide] (PLGA) with different number-average molecular weights and glycolide content is synthesized through ring-opening polymerization of D,L-lactide and glycolide with dibutyl tin oxide (DBTO) or Stannous octoate (Sn(oct)2) as catalyst and pentaerythritol as an initiator. The obtained oligomers are characterized by hydroxy titration, Fourier transform infrared spectrometry (FTIR), gel permeation chromatography (GPC) and 1H proton nuclear magnetic resonance (1HNMR).
     Biodegradable, amorphous polyesterurethanes (PU) are synthesized by the coupling reaction of PLGA and diisocyanate, which have good shape-memory and mechanical properties. But the hydrophilicity and toughness are very poor. The transition temperatures (Ttrans) of PU can be adjusted by changing the molecular weights and compositions of the PLGA.
     Polyesterurethane/poly(ethylene glycol) dimethacrylate (PEGDMA) interpenetrating networks materials (IPNs) with shape-memory properties are synthesized. The hydrophilicity and transition temperatures of IPNs can be conveniently adjusted through variation of network compositions to match the promising potential clinical or medical applications.
     Poly[(D,L-lactide)-co-glycolide] tetracrylate (PLGATA) is synthesized by PLGA and acrylic chloride. Shape-memory polyester materials (LP) are obtained through photopolymerization of PLGATA and PEGDMA. The hydrophilicity and Ttrans of LP can be conveniently adjusted.
     The degradation behavior of the PU is investigated in PBS solution. The degradation process can be approximately divided into two phases: the induction course and the acceleration course. The water uptake and weight loss of PU samples increase slowly in the induction course and increase significantly in acceleration course.
     The release behavior of model drug aspirin (ASP) and dexamethasone (DEX) from biodegradable polyesterurethane networks is also studied. The release result exhibits a typical erosion-controlled release mechanism, which is combined effect of degradation and diffusion. The drug release course of ASP from PU networks is shorter than from DEX for the acidity of ASP. The release course of ASP last about 20 days and it is 120 days for DEX. The degradation course of drug-loaded materials is accelerated faster than those of drug-free materials.
引文
[1] Ota S,The heat shrinkage properties of polyethylene,Radiation Physics and Chemistry,1981,18 (1): 81~84
    [2] Beloshenko V A,Beigelzimer Y E,Borzenko A P,et al,Shape-memory effect in polymer composites with a compactible filler,Mechanics Of Composite Materials,2003,39 (3): 255~264
    [3] Beloshenko V A,Varyukhin V N,Borzenko A P,The shape memory effect in structurally heterogeneous polymer systems,High Pressure Research,2002,22 (3-4): 589~593
    [4] Sillion B,Shape memory polymers,Actualite Chimique,2002,(3): 182~188
    [5] Lendlein A,Kelch S,Shape-memory polymers,Angewandte Chemie-International Edition,2002,41 (12): 2034~2057
    [6] Abrahamson E R,Lake M S,Munshi N A,et al,Shape memory mechanics of an elastic memory composite resin,Journal Of Intelligent Material Systems And Structures,2003,14 (10): 623~632
    [7] Choi N Y,Kelch S,Lendlein A,Synthesis, Shape-Memory Functionality and Hydrolytical Degradation Studies on Polymer Networks from Poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates,Advanced Engineering Materials,2006,8 (5): 439~445
    [8] Lendlein A,Kelch S,Shape-memory polymers as stimuli-sensitive implant materials,Clinical Hemorheology And Microcirculation,2005,32 (2): 105~116
    [9] Wang H-H,Yuen U-E,Synthesis of thermoplastic polyurethane and its physical and shape memory properties,Journal of Applied Polymer Science,2006,102 (2): 607~615
    [10] Liu G,Guan C,Xia H,et al,Novel Shape-Memory Polymer Based on Hydrogen Bonding,Macromolecular Rapid Communications,27 (14): 1100~1104
    [11] Canisius J,Smart products based on shape memory polymers,Advanced Engineering Materials,2003,5 (11): 765~765
    [12] Constable G S,Coughlin E B,Lesser A J,Synthesis of thermal and photo reversible cross-linked polycycloocetene as a shape memory thermoplastic,Abstracts Of Papers Of The American Chemical Society,2003,226: U369~U370
    [13] Jeong H M,Ahn B K,Kim B K,Temperature sensitive water vapour permeability and shape memory effect of polyurethane with crystalline reversible phase and hydrophilic segments,Polymer International,2000,49 (12): 1714~1721
    [14] Liu Y P,Gall K,Dunn M L,et al,Thermomechanical recovery couplings of shape memory polymers in flexure,Smart Materials & Structures,2003,12 (6): 947~954
    [15] Liu G Q,Zhao X P,Tang T,Stimuli-response of gelatin hydrogel under direct current electric field,Acta Polymerica Sinica,2003,(3): 398~402
    [16] 秦瑞丰,朱光明,杜宗罡,et al,电致形状记忆聚己内酯/ 炭黑复合导电高分子材料的研究,中国塑料,2005,19 (5): 23~28
    [17] Mohr R,Kratz K,Weigel T,et al,Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers,2006,103 (10): 3540~3545
    [18] Schmidt A M,Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles,Macromolecular Rapid Communications,2006,27 (14): 1168~1172
    [19] Jiang H Y,Kelch S,Lendlein A,Polymers Move in Response to Light,Advanced Materials,2006,18 (11): 1471~1475
    [20] Lendlein A,Jiang H,Junger O,et al,Light-induced shape-memory polymers,Nature,2005,434: 879~882
    [21] 宋景社,黄宝琛,张昊,高反式-1,4-聚异戊二烯与高密度聚乙烯共混型形状记忆材料的研究,塑料科技,1998,127 (7): 4~7
    [22] Ni X,Sun X,Block copolymer of trans-polyisoprene and urethane segment: Shape memory effects,Journal of Applied Polymer Science,2006,100 (2): 879~885
    [23] Sakurai K,Tanaka H,Ogawa N,et al,Shape-memorizable styrene-butadiene block copolymer.1. Thermal and mechanical behaviors and structural change with deformation,Journal Of Macromolecular Science-Physics,1997,36 (6): 703~716
    [24] Jin D W,Shon K H,Jeong H M,et al,Compatibility enhancement of ABS/polycarbonate blends,Journal Of Applied Polymer Science,1998,69 (3): 533~542
    [25] Jin D W,Shon K H,Kim B K,et al,Compatibility enhancement of ABS/PVC blends,Journal Of Applied Polymer Science,1998,70 (4): 705~709
    [26] Ahn S J,Kim B K,Lee K H,et al,Morphology and physical properties of ABS/NBR blends: The effect of melt viscosity of SAN and the content of NBR,Journal Of Macromolecular Science-Physics,2000,B39 (5-6): 691~700
    [27] Lee K H,Ahn S J,Kim B K,et al,Morphology and physical properties of ABS/NBR blends: The effect of AN content in NBR,Korea Polymer Journal,2001,9 (1): 30~36
    [28] Zhu X L,Gu Y R,Chen G J,et al,Synthesis of poly(octadecyl acrylate-b-styrene-b-octadecyl acrylate) triblock copolymer by atom transfer radical polymerization,Journal Of Applied Polymer Science,2004,93 (4): 1539~1545
    [29] Do I H,Yoon L K,Kim B K,et al,Effect of viscosity ratio and peroxide/coagent treatment in PP/EPR/PE ternary blends,European Polymer Journal,1996,32 (12): 1387~1393
    [30] Li F K,Zhu W,Zhang X,et al,Shape memory effect of slightly-crosslinked polyethylene,Chinese Journal Of Polymer Science,1998,16 (2): 155~163
    [31] Kim S M,HD C,HY J,Dielectric properties of human phantom material using XLPE composite with shape memory characteristics,Polymer Korea,1999,23 (5): 763~772
    [32] Li F K,Zhu W,Zhang X,et al,Shape memory effect of ethylene-vinyl acetate copolymers,Journal Of Applied Polymer Science,1999,71 (7): 1063~1070
    [33] Ahn T O,Choi I S,Jeong H M,et al,Thermal And Mechanical-Properties Of Thermoplastic Polyurethane Elastomers From Different Polymerization Methods,Polymer International,1993,31 (4): 329~333
    [34] Hou J N,Ma X Q,Zhang X,et al,Thermally Stimulated Deformation Recovery Effect Of Segmented Polyurethanes,Vysokomolekulyarnye Soedineniya Seriya A & Seriya B,1995,37 (8): 1377~1381
    [35] Kim B K,Paik S H,UV-curable poly(ethylene glycol)-based polyurethane acrylate hydrogel,Journal Of Polymer Science Part A-Polymer Chemistry,1999,37 (15): 2703~2709
    [36] Tobushi H,Ito N,Takata K et, al. (2000). Thermomechanical constitutive modeling of polyurethane-series shape memory polymer. In Shape Memory Materials, vol. 327-3, pp. 343~346. Zurich-Uetikon: Trans Tech Publications Ltd.
    [37] Urakawa R,Mochizuki A,Takahashi M,Thermal and rheological characterization of polyurethanes and their blends having different soft segment length,Journal Of The Society Of Rheology Japan,2002,30 (3): 141~145
    [38] Chen W,Zhu C Y,Gu X R,Thermosetting polyurethanes with water-swollen and shape memory properties,Journal Of Applied Polymer Science,2002,84 (8): 1504~1512
    [39] Kim B K,Yang J S,Yoo S M,et al,Waterborne polyurethanes containing ionic groups in soft segments,Colloid And Polymer Science,2003,281 (5): 461~468
    [40] Park S H,Kim J W,Lee S H,et al,Temperature-sensitive amorphous polyurethanes,Journal Of Macromolecular Science-Physics,2004,B43 (2): 447~458
    [41] 马俪芳,李杰,罗运军,交联型与线形水性聚氨酯的形状记忆性能比较,化工进展,2006,25 (1): 78~81
    [42] Hu J,Yang Z,Yeung L,et al,Crosslinked polyurethanes with shape memory properties,Polymer International,2005,54 (5): 854~859
    [43] Gilding D K,Reed A M,Biodegradable polymers for use in surgery - polyglycolic/poly(actic acid) homo- and copolymers: 1,Polymer,1979,20 (12): 1459~1464
    [44] Middleton J C,Tipton A J,Synthetic biodegradable polymers as orthopedic devices,Biomaterials,2000,21 (23): 2335~2346
    [45] Hu Y,Rogunova M,Topolkaraev V,et al,Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity,Polymer,2003,44 (19): 5701~5710
    [46] Hu Y,Rogunova M,Topolkaraev V,et al,Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity,Polymer,2003,44 (19): 5711~5720
    [47] Wang W,Ping P,Chen X,et al,Polylactide-based polyurethane and its shape-memory behavior,European Polymer Journa,2006,42: 1240~1219
    [48] 宋存先,王彭延,孙洪范,聚己内酯在体内的降解、吸收和排泄,生物医学工程学杂志,2000,17 (1): 25~28
    [49] 陈建海,聚己内酯材料的生物相容性与毒理学研究,生物医学工程学杂志,2000,17 (4): 380~382
    [50] Charlier A,Leclerc B,Couarraze G,Release of mifepristone from biodegradable matrices: experimental and theoretical evaluations,International Journal of Pharmaceutics,2000,200 (1): 115~120
    [51] Wang N,Wu X S,Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/ glycolic acid polymers. Part II: Biodegradation and drug delivery application,Journal of Biomaterials Science Polymer Edition,1997,9 (1): 75~87
    [52] Alexis F,Factors affecting the degradation and drug-release mechanism of poly(lacticacid) and poly[(lactic acid)-co-(glycolic acid)],Polymer International,2005,54: 36~46
    [53] Li S M,Girod-Holland S,Vert M,Hydrolytic degradation of poly(dl-lactic acid) in the presence of caffeine base,Journal Of Controlled Release,1996,40: 41~53
    [54] Miyajima M,Koshika A,Okada J,The effects of drug physico-chemical properties on release from copoly (lactic:glycolic acid) matrix,International Journal of Pharmaceutics,1998,169 (14): 255~263
    [55] Hedberg E L,Tang A,Crowther R S,et al,Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites,Journal of Controlled Release,2002,84: 137~150
    [56] Tan L P,Venkatraman S S,Sung P F,Effect of plasticization on heparin release from biodegradable matrices,International Journal of Pharmaceutics,2004,283: 89~96
    [57] Shenoy D B,R.J. D,Tiwari S B,Potential application of polymeric microsphere suspension as subcutaneous depot for insulin,Drug Development and Industrial Pharmacy,2003,29 (5): 555~563
    [58] Zignani M,Einmahl S,Baeyens V,et al,A poly(ortho ester) designed for combined ocular delivery of dexamethasone sodium phosphate and 5-fluorouracil: subconjunctival tolerance and in vitro release,European Journal of Pharmaceutics and Biopharmaceutics, Volume 50, Issue 2, September 2000, Pages ,2000,50 (2): 251~255
    [59] Einmahl S,Capancioni S,Schwach-Abdellaoui K,et al,Therapeutic applications of viscous and injectable poly(ortho esters), Advanced Drug Delivery Reviews,2001,53 (1): 45~73
    [60] Heller J,Chang A C,Rood G,et al,Release of insulin from pH-sensitive poly(ortho esters),Journal of Controlled Release,1990,13 (2-3): 295~302
    [61] Heller J,Barra a, J.,Nga S Y,et al,Poly(ortho esters) - their development and some recent applications,European Journal of Pharmaceutics and Biopharmaceutics,2000,50 (2): 121~128
    [62] Wang L,Chaw C S,Yang Y Y,et al,Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(-lactide-co-glycolide) blend microspheres fabricated by spray drying,Biomaterials,2004,25 (16): 3275~3282
    [63] Alteheld A,Feng Y K,Kelch S,et al,Biodegradable, amorphous copolyester-urethane networks having shape-memory properties,Angewandte Chemie-International Edition,2005,44 (8): 1188~1192
    [64] Lendlein A,Langer R,Biodegradable, elastic shape-memory polymers for potential biomedical applications,Science,2002,296 (5573): 1673~1676
    [65] Lu X L,Cai W,Zhao L C. (2005). Study on the shape memory behavior of poly(L-lactide). In Pricm 5: The Fifth Pacific Rim International Conference On Advanced Materials And Processing, Pts 1-5, vol. 475-479, pp. 2399~2402. Zurich-Uetikon: Trans Tech Publications Ltd.
    [66] Chen H,Chen D Z,Yu X H,et al,Synthesis and Properties of Polyurethane Ionomers Based on Carboxylated Polycaprolactone,Journal of Applied Polymer Science,2000,76: 2049~2056
    [67] Ping P,Wang W S,Chen X S,et al,Poly(ε-caprolactone) polyurethane and its shape-memory property,Biomacromolecules,2005,6 (2): 587~592
    [68] Min C C,Cui W J,Bei J Z,et al,Biodegradable shape-memory polymer - polylactide-co-poly(glycolide-co-caprolactone) multiblock copolymer,Polymers For Advanced Technologies,2005,16 (8): 608~615
    [69] Zhu G,Liang G,Xu Q,et al,Shape-memory effects of radiation crosslinked poly(ε-caprolactone),Journal Of Applied Polymer Science,2003,90 (6): 1589~1595
    [70] Zhu G M,Liang G Z,Xu Q Y,et al,Radiation effects on structure and properties of poly(ε-caprolactone),Acta Polymerica Sinica,2003,(5): 667~672
    [71] Zhu C M,Liang G Z,Fei J Y,et al,Radiation crosslinking and shape-memory behavior of blends of poly(ε-caprolactone) and polyfunctional polyester acrylate,Acta Polymerica Sinica,2005,(2): 275~280
    [72] Lendlein A,Schmidt A,Schroeter M,et al,Shape-Memory Polymer Networks fromOligo(ε-caprolactone)Dimethacrylates,Journal of Polymer Science: Part A: Polymer Chemistry,2005,43: 1369~1381
    [73] Lendlein A,Schmidt A M,Langer R,AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties,Proceedings Of The National Academy Of Sciences Of The United States Of America,2001,98 (3): 842~847
    [74] Rickert D,Lendlein A,Schmidt A M,et al,In vitro cytotoxicity testing of AB-polymer networks based on oligo(ε-caprolactone) segments after different sterilization techniques,Journal Of Biomedical Materials Research Part B-Applied Biomaterials,2003,67B (2): 722~731
    [75] Bertmer M,Buda A,Blomenkamp-Hofges I,et al,Biodegradable shape-memory polymer networks: characterization with solid-state NMR,Macromolecules,2005,38 (9): 3793~3799
    [76] Nagata M,Sato Y,Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(epsilon-caprolactone) and poly(L-lactide) segments,Journal of Polymer Science Part A-Polymer Chemistry,2005,43 (11): 2426~2439
    [77] Ibrahima M A,Ismaila A,G?pferich A,Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres,Journal of Controlled Release,2005,106: 241~252
    [78] Lee J H,Ju Y M,Kim D M,Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers,Biomaterials,2000,21 (7): 683~691
    [79] Liu G,Ding X,Cao Y,et al,Novel Shape-Memory Polymer with Two Transition Temperatures,Macromolecular Rapid Communications,2005,26 (8): 649~652
    [80] Gilding D K,Reed A M,Biodegradable polymers for use in surgery-polyglycolic/poly(actic acid) homo- and copolymers: 1,Polymer,1979,20 (12): 1459~1464
    [81] Yoon S S,Kim J H,Ki S C,Synthesis of biodegradable PU/PEGDA IPNs having micro-separated morphology for enhanced blood compatibility,Polym Bull,2005,53: 339~347
    [82] Sakurai K,Kashiwagi T,Takahashi T,Crystal structure of polynorbornene,Journal of Applied Polymer Science,1993,47 (5): 937~940
    [83] 杜锡光,乙交酯(GA)的合成及表征,东北师大学报:自然科学版,2003,35 (3): 109~112
    [84] 任杰. (2003). 可降解与吸收材料. 北京: 化学工业出版社.
    [85] Lendlein A,Schmidt A M,Schroeter M,et al,Shape-memory polymer networks from oligo(epsilon-caprolactone)dimethacrylates,Journal Of Polymer Science Part A-Polymer Chemistry,2005,43 (7): 1369~1381
    [86] Chan-Park M B,Zhu A P,Shen J Y,et al,Novel Photopolymerizable Biodegradable Triblock Polymers for Tissue Engineering Scaffolds: Synthesis and Characterization,Macromolecular Bioscience,2004,4: 665~673
    [87] Cho J W,Lee S H,Influence of silica on shape memory effect and mechanical properties of polyurethane
    [94] Li S M,Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids,Journal of Biomedial Materials Research,1999,48 (3): 342~353
    [95] Kim J M,Seo K S,Jeong Y K,et al,Co-effect of aqueous solubility of drugs and glycolide monomer on in vitro release rates from poly(D,L-lactide-co-glycolide) discs and polymer degradation,Journal of Biomaterials Science Polymer Edition,2005,16: 991~1007
    [96] Sah H K,Chien Y W,Degradability and antigen-release characteristics of polyester microspheres prepared from polymer blends,Journal of Applied Polymer Science,2003,58 (1): 197~206
    [97] Zhou S B,Deng X M,Li X H,Synthesis and characterization of biodegradable low molecular weight aliphatic polyesters and their use in protein-delivery systems,Journal Of Applied Polymer Science,2004,91: 1848~1856,
    [98] Siepmann J,Elkharraz K,Siepmann F,How Autocatalysis Accelerates Drug Release from PLGA-Based Microparticles: A Quantitative Treatment,Biomacromolecules, 2005,6: 2312~2319
    [99] Cui F D,Cun D M,Tao A J,Preparation and characterization of melittin-loaded poly(dl-lactic acid) or poly (dl-lactic-co-glycolic acid) microspheres made by the double emulsion method,Journal of Controlled Release,2005,107: 310~319
    [100] Han J H,Krochta J M,Kurth M J,et al,Lactitol-based poly(ether polyol) hydrogels for controlled release chemical and drug delivery systems,Journal Of Agricultural And Food Chemistry,2000,48 (11): 5278~5282
    [101] Mcmahon G P,Connor S J,Fitzgerald D J,Determination of aspirin and salicylic acid in transdermal perfusates,Journal of Chromatography B: Biomedical Sciences and Applications,1998,707 (1-2): 322~327
    [102] Yoon J J,Kim J H,Park T G,Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method,Biomaterials,2003,24 (13): 2323~2329
    [103] Yoon J J,Kim J H,Park T G,Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method,Biomaterials,2003,24: 2323~2329
    [104] Einmahl S,Zignani M,Varesio E,et al,Concomitant and controlled release of dexamethasone and 5-fluorouracil from poly(ortho ester),International Journal of Pharmaceutics,1999,185 (2): 189~198
    [105] FriederKees,Jehnich D,Grobecker H,Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by high-performance liquid chromatography,Journal of Chromatography B: Biomedical Sciences and Applications,1996,677 (1): 172~177
    [106] Klose D,Siepmann F,Elkharraz K,et al,How porosity and size affect the drug release mechanisms from PLGA-based microparticles,International Journal of Pharmaceutics,2006,341 (2): 198~206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700