用户名: 密码: 验证码:
多维校正方法及在植物激素与农药定量分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的飞速发展,人们对自然现象的研究逐步深入,化学家所面临的研究体系日益复杂,促使物理、电子学家研制大量新型多通道高阶分析仪器。高阶分析仪器所产生的数据,不再是简单的标量或矢量响应数据,而是成千上万个数据点组成的基于阵列基础之上的三维或四维的数据阵。这些庞大的数据阵在含有丰富的有用的化学信息的同时,也含有一些仪器噪音、干扰物质响应和背景响应等,促使化学计量学多维校正理论与方法不断地发展。多维校正方法利用“数学分离”去除背景基质和干扰信号,从而代替或增强了“化学或物理分离”效果;即使在目标分析物与背景干扰物质的响应信号相互重叠的情况下,仍能实现目标分析物的直接快速定量分析。为直接解决农业化学、环境化学、生物医药等学科中的实际分析难题提供了强有力的武器。本文作者在跟踪化学计量学发展前沿与动态及当前分析化学界亟需解决的难题的基础上,对多维校正方法进行了深入的理论研究及其在植物激素、除草剂定量分析中的应用研究。本论文的主要内容如下:
     1.三维校正方法用于农业体系中植物激素的定量分析(第2-4章)
     吲哚乙酸(IAA)是一种植物激素,它在很低的浓度下就可以调节植物生长与发育的全过程:从发芽到果实成熟。因此,在复杂体系中吲哚乙酸的定量分析是十分重要的工作。本文提出了一种新的直接测定土壤样中吲哚乙酸含量的荧光分析方法(第2章)。它运用激发-发射矩阵荧光(EEMs)并结合以交替三线性分解(ATLD)算法和自加权交替三线性分解(SWATLD)算法为基础的二阶校正方法。本方法充分体现了三维荧光二阶校正方法的“二阶优势”,即使在土壤样品中有未知荧光干扰物共存也能够定量测定吲哚乙酸的浓度,避免了繁琐的前处理工作。另外,实际应用证明,这两种算法对预估计的过大组分数不敏感。
     提出了较灵敏的激发发射荧光光谱与二阶校正相结合,同时测定银杏叶和芽样品中脱落酸(ABA)和赤霉素(GA)含量的方法(第3章)。该方法基于交替归一加权残差(ANWE)算法和平行因子分析(PARAFAC)算法,能够在提取液中存在未知干扰物的情况下同时测定脱落酸和赤霉素的含量。尽管这两种分析物的激发和发射光谱与植物提取液中的内源荧光物质光谱严重重叠,但该方法仍然获得满意的结果。在银杏叶样品中,脱落酸和赤霉素的检测下限分别是6.9ng mL-1和9.6ng mL-1,满足了银杏叶样在不同时期时脱落酸和赤霉素的浓度范围(从几百到几ng g-1)。另外,为了进一步考察该方法的准确性,评价了ANWE和PARAFAC算法的一些统计参数和品质因子。该方法为植物提取液中植物激素的定量测定提供了新的途径,进而在植物生长过程研究中可能有更多的应用。
     激动素(kinetin,简称KT)是一种非天然的细胞分裂素,具有促进细胞分裂、延缓离体叶片和切花衰老的作用。6-苄氨基嘌呤(6-Benzylaminopurine,简称6-BAP)是第一个人工合成的细胞分裂素,具有延缓叶片衰老、保绿作用。秋水仙素(colchicine,简称COL),一种生物碱,能抑制有丝分裂,广泛应用于细胞学、遗传学的研究和植物育种。运用高效液相色谱-二极管阵列(HPLC-DAD)结合自加权交替三线性分解(SWALTD)算法同时测定黄豆芽、黄豆提取液和土壤中的三种植物生长调节剂激动素、6-苄氨基嘌呤和秋水仙素(第4章)。在相同的简单色谱条件下,该方法成功快速地定量分析了三种不同背景体系黄豆芽、黄豆提取液和土壤样品中激动素、6-苄氨基嘌呤和秋水仙素的含量,充分体现了二阶校正方法的“二阶优势”。
     2.三维校正方法用于环境体系中除草剂的定量分析(第5-6章)
     提出了一种快速、非分离的荧光分析方法,该方法基于激发-发射矩阵荧光和二阶校正方法,成功地检测了土壤、淤泥、污水和河水等环境样品中除草剂敌草胺(NAP)的含量(第5章)。在pH为2.2的0.1mol L-1柠檬酸钠-盐酸缓冲溶液介质中,敌草胺体系的荧光强度得到了极大地增强。为了处理环境样品中内源的荧光物质干扰,采用有效的二阶校正方法,在复杂的环境样品中准确测定了敌草胺的含量。另外,我们利用交替惩罚三线性分解(APTLD)算法与多个环境基质样品数据集,实施不同的校正步骤包括单基质模型、同天的多基质模型和总模型,进一步考察了二阶校正方法的性能。结果表明二阶校正方法能够在多种不同基质的样品中同时测定一种或多种感兴趣组分,进一步丰富了二阶校正方法的“二阶优势”的内涵。
     给出了基于APTLD算法的二阶校正方法用于解析高效液相色谱-二极管阵列检测(HPLC-DAD)数据的新的应用实例(第6章)。该方法准确可靠地分析了土壤、淤泥和污水中莠去津、莠灭净和扑草净的含量。尽管三种三嗪类除草剂的色谱保留时间和光谱图与环境样品中背景干扰物的色谱流出时间和光谱图严重重叠,仍然获得了满意的结果。另外,运用椭圆置信区间(EJCR)测试评价了该方法的准确度和精密度。该方法为复杂环境样品中多种有害物质的同时定量分析开辟了新的道路,并且通过对污水-土壤-淤泥整体系统的了解,为环境的改善和管理提供了可靠的科学依据。
     3.开发了一种新的方法用于解析非四线性的四维数据(第7章)
     在四维数据产生过程中,由于实验条件的不可控制性,经常出现其中一维是非线性的情况,面对这样的非四线性的四维数据,而经典的解析四维数据阵的算法,如四线性平行因子算法(4-PARAFAC),则无能为力。因此,提出了非四线性四维数据分解方法(第7章)。该方法将非四线性的四维数据,沿着非线性的一维展开,形成一个扩展的三维数据阵,然后可以选择合适的三线性分解算法进行分解,对获得的扩展矩阵,按照单个样本进行逐列归一化,得到样本的相对浓度,从而实现对非四线性四维数据的解析。我们利用模拟的和真实的四维数据对该方法进行了测试,并与四线性平行因子分析算法进行了比较。研究结果显示,该方法可以实现对非四线性的四维数据的解析,获得了满意的定性定量结果。而当非线性比较严重时,四线性平行因子分析算法不能进行正确的分辨与校正。在实际复杂化学体系和过程量测数据分析中,该新方法将有可能成为一种普适性算法。
With the rapid development of modern science and technology, the natural phenomena have been studied in depth. The application systems that chemistry researchers are faced become more and more complicated, which makes physical scientist manufacture a large number of multi-channel and high-order analytical instruments. The data produced by the instruments are three-dimensional or four-dimensional data arrays, rather than just simple scaler or vector response data. The data arrays contain useful chemical information, at the same time, including background and interference response, it boosts the development of chemometric multi-way calibration methods. Multi-way calibration can extract useful chemical information from these complex data arrays; they can replace the "physical or chemical separation" with "mathematical separation" strategy through separating the signals of target analytes away from those of uncalibrated background or interferences. The benefit of the method, known as "second-order advantage", is capable to determine the content of analytes of interest even in the presence of unknown interferents. Such methods have shown positive effects on various subjects, especially agricultural chemistry, environmental chemistry, biochemistry and pharmaceutical chemistry, and can provide a variety of powerful techniques to resolve practical difficult problems occurred in these subjects. The research work in this dissertation focuses on the methodologies of multi-way calibration and applying it to quantitation of phytohormones and herbicides.
     1. Quantitative analysis of phytohormones in agricultural system by using second-order calibration method (Chapter2to Chapter4)
     Indole-3-acetic acid (IAA) is one phytohormone of the auxin group and is capable of coordinating the overall process of plant growth and development. IAA is active in the very low concentration range. Therefore, it is important to quantify IAA in the low concentration range in complex system. A new spectrofluorimetric method for the direct determination of IAA in soil is proposed and discussed (Chapter2). It combines the fluorescence excitation-emission matrices (EEMs) with second-order calibration methods based on the alternating trilinear decomposition (ATLD) algorithm and the self-weighed alternating trilinear decomposition (SWATLD) algorithm. These methodologies fully exploit the second-order advantage of second-order calibration method, allowing the concentrations of indole-3-acetic acid to be quantified even in the presence of unknown fluorescent interferents in soil samples. Moreover, it has been demonstrated that both algorithms are insensitive to the number of components in complex system.
     A sensitive excitation-emission fluorescence method with second-order calibration strategy is proposed to simultaneously determine of abscisic acid (ABA) and gibberellin (GA) contents in extracts of leaves and buds of ginkgo (Chapter3). The methodology is based on the alternating normalization-weighed error (ANWE) and the parallel factor analysis (PARAFAC) algorithms, which make it possible that gibberellin and abscisic acid concentration can be attained in extract of plants even in the presence of unknown interference from potential interfering matrix contaminants introduced during simple pretreatment procedure. Satisfactory recoveries were obtained although the excitation and emission profiles of the abscisic acid and gibberellin were heavily overlapped with each other and with background in the plant extracts. The limits of detection obtained for gibberellin and abscisic acid in leaf samples were9.6and6.9ng mL-1, respectively, which were in the concentration range (from hundreds to several ng g-1) for gibberellin and abscisic acid in leaves in different periods. Furthermore, in order to investigate the performance of the developed method, some statistical parameters and figures of merit of ANWE and PARAFAC are evaluated. The method proposed lights a new avenue to determine quantitatively phytohormones in extracts of plants with a simple pretreatment procedure, and may hold potential to be extended as a promising alternative for more practical applications in plant growth process.
     Kinetin (KT) is a synthetic substance belonging to the cytokinines family.6-Benzylaminopurine (6-BAP) is a common model compound as one of the most important classes of plant hormones—cytokinins. Colchicine is an alkaloid prepared from the dried corns and seeds of colchicum autumnale. A novel method based on high performance liquid chromatography-diode array detection (HPLC-DAD) coupled with SWATLD algorithm is decribed for the determination of kinetin,6-benzylaminopurine and colchicine in extracts of bean and buds of bean and soil samples (Chapter4). Satisfactory results have been achieved for kinetin,6-benzylaminopurine and colchicine in three different complex samples at simple chromatographic condition, fully exploiting the "second-order advantage" of second-order calibration method.2. Second-order calibration method for quantitative analysis of herbicides in environmental system (Chapter5to Chapter6)
     A rapid non-separative spectrofluorometric method based on the second-order calibration of excitation-emission matrix (EEM) fluorescence is proposed for the determination of napropamide (NAP) in soil, river sediment, and wastewater as well as river water samples (Chapter5). With0.10mol L-1sodium citrate-hydrochloric acid (HC1) buffer solution of pH=2.2, the system of NAP has a large increase in fluorescence intensity. To handle the intrinsic fluorescence interferences of environmental samples, the alternating penalty trilinear decomposition (APTLD) algorithm as an efficient second-order calibration method is employed. Satisfactory results have been achieved for napropamide in complex environmental samples. Furthermore, in order to fully investigate the performance of second-order calibration method, we test the second-order calibration method using different calibration approaches including the single matrix model, the intra-day various matrices model and the global model based on the APTLD algorithm with nature environmental datasets. The results showed the second-order calibration methods also enable one or more analyte(s) of interest to be determined simultaneously in the samples with various types of matrices. The maintenance of second-order advantage has been demonstrated in simultaneous determination of the analyte of interest in the environmental samples of various matrices.
     A novel application of second-order calibration method based on an APTLD algorithm is presented to treat with the data from high performance liquid chromatography-diode array detection (HPLC-DAD)(Chapter6). The method makes it possible to accurately and reliably analyze atrazine (ATR), ametryn (AME) and prometryne (PRO) contents in soil, river sediment and wastewater samples. Satisfactory results are obtained although the elution time and spectral profiles of atrazine, ametryn and prometryne are heavily overlapped with the background in environmental samples. Furthermore, the accuracy and precision of the proposed method are evaluated with the elliptical joint confidence region (EJCR) test. It lights a new avenue to determine quantitatively herbicides in environmental samples with a simple pretreatment procedure and provides the scientific basis for an improved environment management through a better understanding of the wastewater-soil-river sediment system as a whole.
     3. Developing a new method for decomposition non-quadrilinear four-way data (Chapter7)
     A four-way data array deviates from the quadrilinear condition, because of non-linear relationship between signal and analyte concentration, non-multilinear signal for a single sample and non-constant component profiles. The classic algorithms for decomposition four-way data, such as quadrilinear parrel factor analysis (4-PARAFAC), can not treat with these data array. The new method produced in the dissertation can model for non-quadrilinear four-way data (Chapter7). The four-way data array is rearranged into an expanded three-way data array following the non-linear way, then it is decomposed by three-way calibration algorithms, finally the relative spectra and concentration have been attained. Based on these attracted merits, such a novel method may hold great potential to be extended as a promising alternative for the non-quadrilinear four-way data array analysis and high-order calibration.
引文
[1]俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991,1-5
    [2]许禄.化学计量学方法.北京:科学出版社,1995,1-20
    [3]梁逸曾.白灰黑复杂多组份分析体系及其化学计量学算法.长沙:湖南科学技术出版社,1996,1-8
    [4]陆晓华.化学计量学.武汉:华中理工大学出版社,1997,1-9
    [5]梁逸曾,俞汝勤.化学计量学在我国的发展.化学通报,1999,10(1):14-19
    [6]梁逸曾,俞汝勤.分析化学手册(第十分册),化学计量学.北京:化学工业出版社,2000,1-3
    [7]史永刚,冯新泸,李子存.化学计量学.北京:中国石化出版社,2002,1-10
    [8]梁逸曾,俞汝勤.化学计量学.北京:高等教育出版社,2003,1-4
    [9]Ottom M化学计量学:统计学与计算机在分析化学中的应用.邵学广,蔡文生,徐筱杰(译).北京:科学出版社,2003,1-6
    [10]许禄.化学计量学:一些重要方法的原理及应用.北京:科学出版社2004:1-6
    [11]倪永年.化学计量学在分析化学中的应用.北京:科学出版社,2004,1-5
    [12]许禄,邵学广.化学计量学方法(第二版).北京:科学出版社,2004,1-8
    [13]邵学广,蔡文生.化学信息学.北京:科学出版社,2002,185-186
    [14]Kowalski B R. Analytical chemistry as an information science. Trends in Analytical Chemistry,1981,1(3):71-74
    [15]Yu R Q. Chemometrics in China. Chemometrics and Intelligent Laboratory Systems,1992,14(1):23-29
    [16]Wold S. Chemometrics:What do we mean with it, and what do we want from it? Chemometrics and Intelligent Laboratory Systems,1995,3(1): 109-115
    [17]Lavine B K. Chemometrics. Analytical Chemistry,2000,72 (12):91R-97R
    [18]Lavine B K, Workman J. Chemometrics. Analytical Chemistry,2002,74 (12): 2763-2770
    [19]Lavine B K, Workman J. Chemometrics. Analytical Chemistry,2004,76 (12): 3365-3372
    [20]Lavine B K, Workman J. Chemometrics. Analytical Chemistry,2006,78 (12): 4137-4145
    [21]Lavine B K, Workman J. Chemometrics. Analytical Chemistry,2008,80 (12): 4519-4531
    [22]Lavine B K, Workman J. Chemometrics. Analytical Chemistry,2010,82 (12): 4699-4711
    [23]Brown S D, Tauler R, Walzak B. Comprehensive Chemometrics:Chemical and Biochemical Data Analysis. Amsterdam:Elsevier B V,2009,1-17.
    [24]Deming S N, Morgan S L. Experimental Design:A Chemometric Approach, Amsterdam:Elsevier,1993,30-40
    [25]Brereton R G. Applied Chemometrics for Scientists. England:John Wiley & Sons Ltd,2007,9-62
    [26]Meyers R A. Encyclopedia of Analytical Chemistry:Applications, Theory, and Instrumentation. New York:John Wiley & Sons Ltd,2002
    [27]Smilde A, Bro R, Geladi P. Multi-way Analysis with Applications in the Chemical Sciences. England:John Wiley & Sons Ltd,2004,102-106
    [28]Gemperline P. Practical Guide to Chemometrics. New York:Taylor & Francis, 2006,30-80
    [29]吴海龙,梁逸曾,俞汝勤.分析化学计量学.分析实验室,1999,11(2):94-102
    [30]Kowalski B R, Bender C F. Solving chemical problems with pattern recognition. Naturwissenschaften,1975,62(1):10-14.
    [31]梁逸曾,吴海龙,沈国励.分析化学计量学的若干新进展.中国科学B辑,2006,36(2):93-100
    [32]陈念贻,钦佩,陈瑞亮等.模式识别方法在化学化工中的应用.北京:科学出版社,2000,10-120.
    [33]Qu H N, Li G Z, Xu W S. An asymmetric classifier based on partial least squares, Pattern Recognition,2010,43 (10):3448-3457
    [34]Arancibia J A, Boschetti C E, Olivieri A C, et al. Screening of oil samples on the basis of excitation-emission room-temperature phosphorescence data and multiway chemometric techniques. Introducing the second-order advantage in a classification study. Analytical Chemistry,2008,80(8):2789-2798
    [35]Roy K, Leonard J T. QSAR by LFER model of cytotoxicity data of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives using principal component factor analysis and genetic function approximation. Bioorganic and Medicinal Chemistry,2005,13(8):2967-2973
    [36]Daszykowski M, Wu W, Nicholls A W, et al. Identifying potential biomarkers in LC-MS data. Journal of Chemometrics,2007,21(7-9):292-302
    [37]Rodriguez N, Ortiz M C, Sarabia L A, et al. A multivariate multianalyte screening method for sulfonamides in milk based on front-face fluorescence spectroscopy. Analytica Chimica Acta,2010,657 (2):136-146
    [38]Lozano V A, Ibanez G A., Olivieri A C. A novel second-order standard addition analytical method based on data processing with multidimensional partial least-squares and residual bilinearization. Analytica Chimica Acta, 2009,651(2):165-172
    [39]De Zan M M, Gil Garcia M D, Culzoni M J, et al. Solving matrix-effects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms Ⅰ. Effect of signal pre-treatment. Journal of Chromatography A, 2008,1179(2):106-114
    [40]Chen Z P, Fevotte G, Caillet A, et al. Advanced calibration strategy for in situ quantitative monitoring of phase transition processes in suspensions using FT-Raman spectroscopy. Analytical Chemistry,2008,80(17):6658-6665
    [41]Hansch C, Fujita T. Classical and Three-Dimensional QSAR in Agrochemistry. In:ACS Symposium Series 606. Washington DC:American Chemical Society, 1995,23-56
    [42]Einax J W. Chemometrics in Environmental Chemistry-Statistical Methods. Berlin Germany:Springer-Verlag,1995,25-35
    [43]Rios P, Stuart J A, Grant E. Plastics disassembly versus bulk recycling: Engineering design for end-of-life electronics resource recovery. Environmental Science and Technology,2003,37(23):5463-5470
    [44]Rodriguez E M R, Alaejos M S, Romero C D. Chemometric studies of several minerals in milks. Journal of Agricultural and Food Chemistry,1999,47(4): 1520-1524
    [45]Chaudry U A, Popelier P L. Estimation of pKa using quantum topological molecular similarity descriptors:Application to carboxylic acids, anilines and phenols. Journal of Organic Chemistry,2004,69(2):233-241
    [46]Mannhold R, Krogsgaard-Larsen P, Timmerman H, et al. Methods and Principles in Medical Chemistry, In:Gubernator K and Bohm H J (eds) Structure-based Ligand Design, Weinheim Germany:Wiley,1995,478-488
    [47]Kelly J J, Callis J B. Nondestructive analytical procedure for simultaneous estimation of major classes of hydrocarbon constituents of finished gasolines. Analytical Chemistry,1990,62 (62):1444-1451
    [48]Lakshminarayanan S, Mhatre P, Gudi R. Identification of bilinear models for chemical processes using canonical variate analysis. Industrial and Engineering Chemistry Research,2001,40(20):4415-4427
    [49]Shen M, Wagner M S, Castner D G, et al. Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir,2003,19(5):1692-1699
    [50]Wold S, Sjostrom M. Chemometrics:Present and future success. Chemometrics and Intelligent Laboratory Systems,1998,44(1):3-14
    [51]Hopke P K. The evolution of chemometrics. Analytica Chimica Acta,2003, 500(3):365-377
    [52]Sanchez E, Kowalski B R. Tensorial calibration:Ⅰ. First-order calibration. Journal of Chemometrics,1988,2(4):247-263
    [53]Booksh K S, Kowalski B R. Theory of analytical chemistry. Analytical Chemistry,1994,66(15):782A-791A
    [54]Olivieri A C. Analytical advantages of multivariate data processing. One, two, three, infinity? Analytical Chemistry,2008,80(15):5713-5720
    [55]Booksh K, Henshaw J M, Burgess L W, et al. A second-order standard addition method with application to calibration of a kinetics-spectroscopic sensor for quantitation of trichloroethylene. Journal of Chemometirics,1995,9(4): 263-282
    [56]Vandeginste B G M, Massart D L, Buydens L C M, et al. Handbook of Chemometrics and Qualimetrics:Part B, Amsterdam:Elsevier,2003,349-379
    [57]Hoskuldsson A. PLS regression methods. Journal of Chemometrics,1988,2(4): 211-228
    [58]Malinowski E R. Factor Analysis in Chemistry,3rd Edition, New York:Wiley, 2002,73-130
    [59]Lohnes M T, Guy R D, Wentzell P D. Window target-testing factor analysis: Theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection. Analytica Chimica Acta,1999, 389(1-3):95-113
    [60]Xu Q S, Liang Y Z. On the equivalence of window factor analysis and orthogonal projection resolution. Chemometrics and Intelligent Laboratory Systems.1999,45(1-2):335-338
    [61]Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Analytical Chemistry,1987,59(3):527-530
    [62]Kvalheim O M, Liang Y Z. Heuristic evolving latent projections:Resolving two-way multicomponent data.1. Selectivity, latent-projective graph, data scope, local rank, and unique resolution. Analytical Chemistry,1992,64(8): 936-946
    [63]Jiang J H, Sasic S, Yu R Q, et al. Resolution of two-way data from spectroscopic monitoring of reaction or process systems by parallel vector analysis (PVA) and window factor analysis (WFA):Inspection of the effect of mass balance, methods and simulations. Journal of Chemometrics,2003,17(3): 186-197
    [64]Jiang J H, Ozaki Y, Kleimann M, et al. Resolution of two-way data from on-line Fourier-transform Raman spectroscopic monitoring of the anionic dispersion polymerization of styrene and 1,3-butadiene by parallel vector analysis (PVA) and window factor analysis (WFA). Chemometrics and Intelligent Laboratory Systems,2004,70(1):83-92
    [65]Jiang J H, Liang Y Z, Ozaki Y. On simplex-based method for self-modeling curve resolution of two-way data. Chemometrics and Intelligent Laboratory Systems,2003,65(1):51-65
    [66]Paatero P. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems,1997,37(1):23-35
    [67]Gargallo R, Tauler R, Sanchez F C, et al. Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation. Trends in Analytical Chemistry,1996,15(7):279-286
    [68]Statheropoulos M, Smaragdis E, Tzamtzis N, et al. Principal component analysis for resolving coeluting substances in gas chromatography-mass spectrometry doping control analysis. Analytica Chimica Acta,1996,331(1-2): 53-61
    [69]Sanchez F C, Vandeginste B G M, Hancewicz T M, et al. Resolution of complex liquid chromatography-fourier transform infrared spectroscopy data. Analytical Chemistry,1997,69(8):1477-1484
    [70]Thurston T J, Brereton R G, Foord D J, et al. Monitoring of a second-order reaction by electronic absorption spectroscopy using combined chemometric and kinetic models. Journal of Chemometrics,2003,17(6):313-322
    [71]Joaquim C G, Esteves da S, Adelio A S C M, et al. Simultaneous use of evolving factor analysis of fluorescence spectral data and analysis of pH titration data for comparison of the acid-base properties of fulvic acids. Analytica Chimica Acta,1996,318(3):365-372
    [72]Koons J M, Ellis P D. Applicability of factor analysis in solid state NMR. Analytical Chemistry,1995,67(23):4309-4315
    [73]Grabaric B S, Grabaric Z, Tauler R, et al. Application of multivariate curve resolution to the voltammetric data Factor analysis ambiguities in the study of weak consecutive complexation of metal ion with ligand. Analytica Chimica Acta,1997,341(2-3):105-120
    [74]Bijlsma S, Boelens H F M, Hoefsloot H C J, et al. Constrained least squares methods for estimating reaction rate constants from spectroscopic data. Journal of Chemometrics,2002,16(1):28-40
    [75]Andrew J J, Hancewicz T M. Rapid analysis of raman image data using two-way multivariate curve resolution. Applied Spectroscopy,1998,52(6): 797-807
    [76]Diaz-Cruz M S, Tauler R, Casassas E, et al. Application of multivariate curve resolution to voltammetric data. Part 1. Study of Zn (Ⅱ) complexation with some polyelectrolytes. Journal of Electroanalytical Chemistry,1995,393(1-2): 7-16
    [77]Mendieta J, Diaz-Cruz M S, Tauler R, et al. Application of multivariate curve resolution to voltammetric data. Ⅱ. Study of metal-binding properties of the peptides. Analytical Biochemistry,1996,240(1):134-141
    [78]Grung B, Kvalheim O M. Detection and quantification of embedded minor analytes in three-way multicomponent profiles by evolving projections and internal rank annihilation. Chemometrics and Intelligent Laboratory Systems, 1995,29(2):213-221
    [79]Furusjooe E, Danielsson L G, Koenberg E, et al. Evaluation techniques for two-way data from in situ Fourier transform mid-infrared reaction monitoring in aqueous solution. Analytical Chemistry,1998,70(9):1726-1734
    [80]Diaz-Cruz M S, Mendieta J, Tauler R, et al. Multivariate curve resolution of cyclic voltammetric data:Application to the study of the cadmium-binding properties of glutathione. Analytical Chemistry,1999,71(20):4629-4636
    [81]Bijlsma S, Smilde A K. Application of curve resolution based methods to kinetic data. Analytica Chimica Acta,1999,396(2-3):231-240
    [82]Darj M M, Malinowski E R. Complexation between copper (II) and glycine in aqueous acid solutions by window factor analysis of visible spectra. Analytical Chemistry,1996,68(9):1593-1598
    [83]Tucker L R. The extension of factor analysis to three-dimensional matrices. In N. Frederiksen and H. Gulliksen (Eds.), Contributions to Mathematical Psychology, New York:Holt, Rinehart & Winston,1964,110-182
    [84]Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika,1966,31(3):279-311
    [85]Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika,1970,35(3):283-319
    [86]Harshman R A. Foundations of the PARAFAC procedure:Models and conditions for an 'explanatory' multimodal factor analysis. UCLA Working Papers in Phonetics,1970,16(1):1-84
    [87]Kourti T. Process analytical technology beyond real-time analyzers:The role of multivariate analysis. Critical Reviews in Analytical Chemistry,2006,36(3): 257-278
    [88]Escandar G M, Faber N M, Goicoechea H C, et al. Second-and third-order multivariate calibration:Data, algorithms and applications. Trends in Analytical Chemistry,2007,26(7):752-765
    [89]Gomez V, Callao M P. Analytical applications of second-order calibration methods. Analytica Chimica Acta,2008,627(2):169-183
    [90]Galera M M, Garcia M D G, Goicoechea H C. The application to wastewaters of chemometric approaches to handling problems of highly complex matrices. Trends in Analytical Chemistry,2007,26(11):1032-1042
    [91]Wu H L, Nie J F, Yu Y J, et al. Multi-way chemometrics methodologies and applications:A central summary of our research work. Analytica Chimica Acta,2009,650(1):131-142
    [92]Yu Y J, Wu H L, Nie J F, et al. A comparison of several trilinear second-order calibration algorithms. Chemometrics and Intelligent Laboratory Systems, 2011,106(1):93-107
    [93]de Juan A, Tauler R. Factor analysis of hyphenated chromatographic data: Exploration, resolution and quantification of multicomponent systems. Journal of Chromatography A,2007,1158(1-2):184-195
    [94]Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis, Analytical Chemistry,1986,58(2):496-499.
    [95]Wilson B E, Sanchez E, Kowalski B R. An improved algorithm for the generalized rank annihilation method. Journal of Chemometrics,1989,3(3): 493-498
    [96]Li S S, Hamilton C, Gemperline P J. Generalized rank annihilation method using similarity transformations. Analytical Chemistry,1992,64(6):599-607
    [97]Kiers H A L, Smilde A K. Some theoretical results on second-order calibration methods for data with and without rank overlap. Journal of Chemometrics, 1995,9(3):179-195
    [98]Faber K, Lorber A, Kowalski B R. Generalized rank annihilation method: Standard errors in the estimated eigenvalues if the instrumental errors are heteroscedastic and correlated. Journal of Chemometrics,1997,11(2):95-109
    [99]Faber N M. The price paid for the second-order advantage when using the generalized rank annihilation method (GRAM). Journal of Chemometrics, 2001,15(9):743-748
    [100]Booksh K S, Lin Z, Wang Z, et al. Extension of trilinear decomposition method with an application to the flow probe sensor. Analytical Chemistry, 1994,66(15):2561-2569
    [101]Sanchez E, Kowalski B R. Tensorial resolution:A direct trilinear decomposition. Journal of Chemometrics,1990,4(1):29-45
    [102]Li S, Gemperline P J. Eliminating complex eigenvectors and eigenvalues in multiway analyses using the direct trilinear decomposition method. Journal of Chemometrics,1993,7(1):77-88
    [103]Gui M, Rutan S C, Agbodian A. Kinetic detection of overlapped amino acids in thin-layer chromatography with a direct trilinear decomposition method. Analytical Chemistry,1995,67(18):3293-3299
    [104]Wu H L. Studies on Chemometric Algorithms for Multivariate Calibration Based on Singular Value Decomposition. Ph. D. Dissertation, Chiba University, Japan,1998,62-90
    [105]Smilde A K, Doornbos D A. Three-way methods for the calibration of chromatographic systems:Comparing PARAFAC and three-way PLS. Journal of Chemometrics,1991,5(3):345-360
    [106]Smilde A K, Doornbos D A. Simple validatory tools for judging the predictive performance of PARAFAC and three-way PLS. Journal of Chemometrics,1992, 6(1):11-28
    [107]Mitchell B C, Burdick D S. Slowly converging PARAFAC sequences:Swamps and two-factor degeneracies. Journal of Chemometrics,1994,8(2):155-168
    [108]Bro R, Kiers H A L. A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics,2003,17(5): 274-286
    [109]Rayens W S, Mitchell B C. Two-factor degeneracies and a stabilization of PARAFAC. Chemometrics and Intelligent Laboratory Systems,1997,38(2): 173-181
    [110]Krijnen W P. The Analysis of Three-way Arrays by Constrained PARAFAC Methods, Leiden:DSWO Press,1993,25-36
    [111]Bro R. PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems,1997,38(2):149-171
    [112]Bahram M, Bro R, Stedmon C, et al. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics,2006,20(3-4):99-105
    [113]Abdollahi H, Sajjadi S M. On rotational ambiguity in parallel factor analysis. Chemometrics and Intelligent Laboratory Systems,2010,103(2):144-151
    [114]Tauler R. Multivariate curve resolution applied to second order data. Chemometrics and Intelligent Laboratory Systems,1995,30(1):133-146
    [115]Tauler R, Smilde A, Kowalski B. Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. Journal of Chemometrics,1995,9(1):31-58
    [116]Saurina J, Hemandez-Cassou S, Tauler R. Multivariate curve resolution and trilinear decomposition methods in the analysis of stopped-flow kinetic data for binary amino acid mixtures. Analytical Chemistry,1997,69(13): 2329-2336
    [117]Juan A, Rutan S C, Tauler R, et al. Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemometrics and Intelligent Laboratory Systems,1998,40(1):19-32
    [118]Jaumot J, Gargallo R, Juan A D, et al. A graphical user-friendly interface for MCR-ALS:A new tool for multivariate curve resolution in MATLAB. Chemometrics and Intelligent Laboratory Systems,2005,76(1):101-110
    [119]Bezemer E, Rutan S. Study of the hydrolysis of a sulfonylurea herbicide using liquid chromatography with diode array detection and mass spectrometry by three-way multivariate curve resolution-alternating least squares. Analytical Chemistry,2001,73 (18):4403-4409
    [120]Paatero P. Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics,2000,14(3):285-299
    [121]Paatero P. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems,1997,37(1):23-35
    [122]Tomasi G, Bro R. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems,2005,75(2):163-180
    [123]Wu H L, Shibukawa M, Oguma K. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. Journal of Chemometrics,1998,12(1):1-26
    [124]Chen Z P, Wu H L, Jiang J H, Li Y, Yu R Q. A novel trilinear decomposition algorithm for second-order linear calibration. Chemometrics and Intelligent Laboratory Systems,2000,52(1):75-86
    [125]Chen Z P, Wu H L, Yu R Q. On the self-weighted alternating trilinear decomposition algorithm-the property of being insensitive to excess factors used in calculation. Journal of Chemometrics,2001,15(5):439-453
    [126]Xia A L, Wu H L, Fang D M, et al. Alternating penalty trilinear decomposition for second-order calibration with an application to interference-free analysis of excitation-emission matrix fluorescence data. Journal of Chemometrics, 2005,19(2):65-76
    [127]Xia A L, Wu H L, Fang D M, et al. Determination of daunomycin in human plasma and urine using an interference-free analysis of excitation-emission matrix fluorescence data with second-order calibration. Analytical Sciences, 2006,22(9):1189-1195
    [128]Xia A L, Wu H L, Zhu S H, et al. Determination of psoralen in human plasma by using excitation-emission matrix fluorescence coupled to second-order calibration. Analytical Sciences,2008,24(9):1171-1176
    [129]Xie H P, Chu X, Jiang J H, et al. Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochimica Acta Part A,2003,59(4): 743-749
    [130]Chen Z P, Wu H L, Li Y, et al. A novel constrained PARAFAC algorithm for second-order linear calibration. Analytica Chimica Acta,2000,423(1): 187-196
    [131]Jiang J H, Wu H L, Chen Z P, et al. Coupled vectors resolution method for chemometric calibration with three-way data. Analytical Chemistry,1999, 71(19):4254-4262
    [132]Hu L Q, Wu H L, Ding Y J, et al. Alternating asymmetric trilinear decomposition for three-way data arrays analysis. Chemometrics and Intelligent Laboratory Systems,2006,82(1-2):145-153
    [133]Jiang J H, Wu H L, Li Y, et al. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. Journal of Chemometrics,2000, 14(1):15-36
    [134]Nie J F, Wu H L, Zhang S R, et al. Self-weighted alternating normalized residue fitting algorithm with application to quantitative analysis of excitation-emission matrix fluorescence data. Analytical Methods,2010, 2(12):1918-1926
    [135]Ohman J, Geladi P, Wold S. Residual bilinearizetion. Part 1:Theory and algorithms. Journal of Chemometrics,1990,4(1):79-90
    [136]Ohman J, Geladi P, Wold S. Residual bilinearizetion. Part 2:Application to HPLC-diode array data and comparison with rank annihilation factor analysis. Journal of Chemometrics,1990,4(2):135-146
    [137]Linder M, Sundberg R. Second-order calibration:Bilinear least squares regression and a simple alternative. Chemometrics and Intelligent Laboratory Systems,1998,42(1-2):159-178
    [138]Linder M, Sundberg R. Precision of prediction in second-order calibration with focus on bilinear regression method. Journal of Chemometrics,2002, 16(1):12-27
    [139]Linder M, Sundberg R. Second-order bilinear calibration:The effects of vectorising the data matrices of the calibration set. Chemometrics and Intelligent Laboratory Systems,2002,63(2):107-116
    [140]Damiani P C, Nepote A J, Bearzotti M, et al. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses:Fluorescence determination of ciprofloxacin in human urine. Analytical Chemistry,2004, 76(10):2798-2806
    [141]Olivieri A C. On a versatile second-order multivariate calibration method based on partial least-squares and residual bilinearization:Second-order advantage and precision properties. Journal of Chemometrics,2005,19(4): 253-265
    [142]Bro R. Multiway calibration. Multilinear PLS. Journal of Chemometrics,1996, 10(1):47-61
    [143]Smilde A K. Comments on multilinear PLS. Journal of Chemometrics,1997, 11(5):367-377
    [144]Jong D S. Regression coefficients in multilinear PLS. Journal of Chemometrics,1998,12(1):77-81
    [145]Lozano V A, Ibanez G A, Olivieri A C. Three-way partial least-squares/residual bilinearization study of second-order lanthanide-sensitized luminescence excitation-time decay data. Analysis of benzoic acid in beverage samples. Analytica Chimica Acta,2008, 610(2):186-195
    [146]Olivieri A C. A combined artificial neural network/residual bilinearization approach for obtaining the second-order advantage from three-way non-linear data. Journal of Chemometrics,2005,19(11-12):615-624
    [147]Lozano V A, Ibanez G A, Olivieri A C. Second-order analyte quantitation under identical profiles in one data dimension. A dependency-adapted partial least-squares/residual bilinearization method. Analytical Chemistry,2010, 82(11):4510-4519
    [148]Olivieri A C, Goicoechea H C, Inon F A. MVC1:An integrated MatLab toolbox for first-order multivariate calibration. Chemometrics and Intelligent Laboratory Systems.2004,73 (2):189-197
    [149]Jaumot J, Gargallo R, de Juan A, et al. A graphical user-friendly interface for MCR-ALS:a new tool for multivariate curve resolution in MATLAB Chemometrics and Intelligent Laboratory Systems,2005,76(1):101-110
    [150]Olivieri A C, Wu H L, Yu R Q. MVC2:A MATLAB graphical interface toolbox for second-order multivariate calibration. Chemometrics and Intelligent Laboratory Systems.2009,96(2):246-251
    [151]Jaumot J, Tauler R. MCR-BANDS:A user friendly MATLAB program for the evaluation of rotation ambiguities in Multivariate Curve Resolution. Chemometrics and Intelligent Laboratory Systems,2010,103(2):96-107
    [152]Saxberg B E H, Kowalski B R. Generalized standard addition method. Analytical Chemistry,1979,51(7):1031-1038
    [153]Moran M G, Kowalski B R. Effect of random experimental error on the generalized standard addition method. Analytical Chemistry,1984,56(3): 562-269
    [154]Saurina J, Tauler R. Strategies for solving matrix effects in the analysis of triphenyltin in sea-water samples by three-way multivariate curve resolution. Analyst,2000,125(11):2038-2043
    [155]Wu H L, Yu R Q, Shibukawa M, et al. Second-order standard addition method based on alternating trilinear decomposition. Analytical Sciences,2000,16(1): 217-220
    [156]龙宁,吴海龙.二阶标准加入法误差传递的Monte Carlo模拟.化学分析计量,2004,13(5):18-21
    [157]Nie J F, Wu H L, Zhu S H, et al. Simultaneous determination of 6-methylcoumarin and 7-methoxycoumarin in cosmetics using three-dimensional excitation-emission matrix fluorescence coupled with second-order calibration methods. Talanta,2008,75(5):1260-1269
    [158]Zhu S H, Wu H L, Xia A L, et al. Determination of pesticides in honey by excitation-emission matrix fluorescence coupled with second-order calitration and second-order standard addition methods. Analytical Chimica Acta,2008, 619(2):165-172
    [159]Gomez V, Cuadros R, Ruisanchez I, et al. Matrix effect in second-order data: Determination of dyes in a tanning process using vegetable tanning agents. Analytica Chimica Acta,2007,600(1-2):233-239
    [160]Amigo J M, Skov T, Bro R. ChroMATHography:Solving Chromatographic Issues with Mathematical Models and Intuitive Graphics. Chemical Reviews, 2010,110(8):4582-4605
    [161]Sadygov R G, Maroto F M, Huhmer A F R. ChromAlign:A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces. Analytical Chemistry,2006,78(24):8207-8217
    [162]Johnson K J, Prazen B J, Young D C, et al. Quantification of naphthalenes in jet fuel with GC×GC/Tri-PLS and windowed rank minimization retention time alignment. Journal of Separation Science,2004,27(5-6):410-416
    [163]Nielsen N P V, Carstensen J M, Smedsgaard J. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of Chromatography A,1998,805(1-2): 17-35
    [164]Tomasi G, van den Berg F, Andersson C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics,2004,18(5):231-241
    [165]Skov T, van den Berg F, Tomasi G, et al. Automated alignment of chromatographic data. Journal of Chemometrics,2006,20(11-12):484-497
    [166]Wang Y D, Kowalski B R. Standardization of second-order instruments. Analytical Chemistry,1993,65(9):1174-1160
    [167]Prazen B J, Synovec R E, Kowalski B R. Standardization of second-order chromatographic/spectroscopic data for optimum chemical analysis, Analytical Chemistry,1998,70(2):218-225.
    [168]Comas E, Gimeno R A, Ferre J, et al. Time shift correction in second-order liquid chromatographic data with iterative target transformation factor analysis, Analytical Chimica Acta,2002,470(2):163-173
    [169]Bortolato S A, Arancibia J A, Escandar G M, et al. Time-alignment of bidimensional chromatograms in the presence of uncalibrated interferences using parallel factor analysis:Application to multi-component determinations using liquid-chromatography with spectrofluorimetric detection, Chemometrics and Intelligent Laboratory Systems,2010,101(1):30-37
    [170]Christensen J, N(?)rgaard L, Bro R, et al. Multivariate auto fluorescence of intact food systems. Chemical reviews,2006,106(6):1979-1994
    [171]Vosough M, Bayat M, Salemi A. Matrix-free analysis of aflatoxins in pistachio nuts using parallel factor modeling of liquid chromatography diode-array detection data. Analytica Chimica Acta,2010,663(1):11-18
    [172]Perez I S, Culzoni M J, Siano G G, et al. Detection of unintended stress effects based on a metabonomic study in tomato fruits after treatment with carbofuran pesticide. capabilities of MCR-ALS applied to LC-MS three-way data arrays. Analytical Chemistry,2009,81(20):8335-8346
    [173]Tan Y X, Jiang J H, Wu H L, et al. Resolution of kinetic system of simultaneous degradations of chlorophyll a and b by PARAFAC. Analytica Chimica Acta,2000,412(1-2):195-202
    [174]Zhu S H, Wu H L, Xia A L, et al. Determination of carbendazim in bananas by excitation-emission matrix fluorescence with three second-order calibration methods. Analytical Sciences,2007,23(10):1173-1177
    [175]Wang X M, Wu H L, Nie J F, et al. Rapid determination of thiabendazole in orange extract using excitation-emission matrix fluorescence and second-order calibration based on alternating trilinear decomposition and alternating normalization-weighted error algorithms. Science in China, Series B: Chemistry,2008,51 (8):729-735
    [176]江军朵,吴海龙,夏阿林,等.交替惩罚三线性分解二阶校正荧光分析法快速测定牛奶中洛美沙星含量.精细化工中间体,2007,37(1):69-72
    [177]Li Y N, Wu H L, Zhu S H, et al. Determination of indole-3-acetic acid in soil using excitation-emission matrix fluorescence with trilinear decomposition-based calibration methods. Analytical Science,2009,25(1): 83-88
    [178]Li Y N, Wu H L, Nie J F, et al. Interference-free determination of abscisic acid and gibberellin in plant samples using excitation-emission matrix fluorescence based on oxidation derivatization coupled with second-order calibration methods. Analytical Methods.2009,1(1):115-122
    [179]Zhang Y, Wu H L, Xia A L, et al. Interference-free determination of Sudan dyes in chilli foods using second-order calibration algorithms coupled with HPLC-DAD. Talanta.2007,72(3):926-931.
    [180]王雪梅,吴海龙,聂瑾芳,等.激发发射荧光二阶校正算法快速检测桔子中噻苯咪唑.中国科学B辑:化学,2008,38(4):288-293
    [181]王雪梅,吴海龙,聂瑾芳,等.三维荧光二阶校正方法快速检测香蕉中双苯三唑醇含量.分析化学,2009,37(6):811-816
    [182]Braga J W B, Bottoli C B G, Jardim I C S F, et al. Determination of pesticides and metabolites in wine by high performance liquid chromatography and second-order calibration methods. Journal of Chromatography A,2007, 1148(2):200-210
    [183]Culzoni M J, Schenone A V, Llamas N E, et al. Fast chromatographic method for the determination of dyes in beverages by using high performance liquid chromatography-diode array detection data and second order algorithms. Journal of Chromatography A,2009,1216 (42):7063-7070
    [184]Hashemi J, Kram G A, Alizadeh N. Enhanced spectrofluorimetric determination of aflatoxin B1 in wheat by second-order standard addition method. Talanta,2008,75(4):1075-1081
    [185]Mohler R E, Dombek K M, Hoggard J C, et al. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells. Analytical Chemistry,2006,78(8):2700-2709
    [186]Mas S, de Juan A, Tauler R, et al. Application of chemometric methods to environmental analysis of organic pollutants:A review. Talanta,2010,80(3): 1052-1067
    [187]Gimeno R A, Comas E, Marce R M, et al. Second-order bilinear calibration for determining polycyclic aromatic compounds in marine sediments by solvent extraction and liquid chromatography with diode-array detection. Analytica Chimica Acta,2003,498(1-2):47-53
    [188]Bortolato S A, Arancibia J A, Escandar G M. Non-trilinear chromatographic time retention-fluorescence emission data coupled to chemometric algorithms for the simultaneous determination of 10 polycyclic aromatic hydrocarbons in the presence of interferences. Analytical Chemistry,2009,81(19):8074-8084
    [189]Rodriguez-Cuesta M J, Boque R, Rius F X, et al. Development and validation of a method for determining pesticides in groundwater from complex overlapped HPLC signals and multivariate curve resolution. Chemometrics and Intelligent Laboratory Systems,2005,77(1-2):251-260
    [190]Pere-Trepat E, Lacorte S, Tauler R. Solving liquid chromatography mass spectrometry coelution problems in the analysis of environmental samples by multivariate curve resolution. Journal of Chromatography A,2005,1096(1-2); 111-122
    [191]Pere-Trepart E, Tauler R. Analysis of environmental samples by application of multivariate curve resolution on fused high-performance liquid chromatography-diode array detection mass spectrometry data. Journal of Chromatography A,2006,1131(1-2):85-96
    [192]Bosco M V, Larrechi M S. PARAFAC and MCR-ALS applied to the quantitative monitoring of the photodegradation process of polycyclic aromatic hydrocarbons using three-dimensional excitation emission fluorescent spectra Comparative results with HPLC. Talanta,2007,71(4): 1703-1709
    [193]Zhu S H, Wu H L, Xia A L, et al. Quantitative analysis of hydrolysis of carbaryl in tap water and river by excitation-emission matrix fluorescence coupled with second-order calibration. Talanta,2008,74(5):1579-1585.
    [194]Li Y N, Wu H L, Qing X D, et al. Quantitative analysis of triazine herbicides in environmental samples by using high performance liquid chromatography and diode array detection combined with second-order calibration based on an alternating penalty trilinear decomposition algorithm. Analytica Chimica Acta, 2010,678(1):26-33
    [195]Li Y N, Wu H L, Qing X D, et al. The maintenance of the second-order advantage:Second-order calibration of excitation-emission matrix fluorescence for quantitative analysis of herbicide napropamide in various environmental samples. Talanta,2011,85(1):325-332
    [196]张卉枫,吴海龙,夏阿林,等.荧光二阶校正法用于多环芳烃葱和菲的直接定量测定.计算机与应用化学,2007,24(1):1 17-120
    [197]卿湘东,吴海龙,李元娜,等.三维荧光二阶校正法快速测定块茎类蔬菜、土壤和污水中克百威残留量.中国科学B辑:化学,2010,40(11):1655-1663
    [198]Rodriguez-Cuesta M J, Guiberteau Cabanillas A, Bohoyo Gil D, et al. Quantification of danofloxacin and difloxacin in chicken tissues in the presence of sarafloxacin as interference. Journal of Agricultural and Food Chemistry,2009,57(17):7627-7633
    [199]Madrakian T, Afkhami A, Mohammadnejad M. Second-order advantage applied to simultaneous spectrofluorimetric determination of paracetamol and mefenamic acid in urine samples. Analytica Chimica Acta,2009,645(1-2): 25-29
    [200]Shirakawa H, Miyazaki S. Blind spectral decomposition of single-cell fluorescence by parallel factor analysis. Biophysical Journal,2004,86(3): 1739-1752
    [201]Ryan P W, Li B, Shanahan M, et al. Prediction of cell culture media performance using fluorescence spectroscopy. Analytical Chemistry,2010, 82(4):1311-1317
    [202]王建瑶,吴海龙,张娟,等.三维荧光光谱结合二阶校正方法测定细胞培养基中阿霉素的含量.中国科学:化学,2011,41(5):884-892.
    [203]Matero S, Pajander J, Soikkeli A M, et al. Predicting the drug concentration in starch acetate matrix tablets from ATR-FTIR spectra using multi-way methods. Analytica Chimica Acta,2007,595(1-2):190-197
    [204]孙翔宇,吴海龙,陆剑忠,等.三维荧光光谱结合交替三线性分解算法同时分辨及定量测定秦皮中的秦皮甲素和秦皮乙素成分.分析科学学报,2005,21(2):149-151
    [205]丁玉洁,吴海龙,夏阿林,等.交替拟合残差算法与高效液相色谱-二极管阵列检测方法结合同时测定两种抗结核药物.分析科学学报,2008,24(1): 1-6
    [206]Fang D M, Wu H L, Ding Y J, et al. Interference-free determination of fluoroquinolone antibiotics in plasma by using fluorescence excitation-emission matrix coupled with second-order calibration algorithms. Talanta,2006,70(4):58-62
    [207]边英超,吴海龙,夏阿林,等.三维荧光光谱结合二阶校正方法直接测定人体血浆中的水杨酸.计算机与应用化学.2008,25(3):257-260
    [208]Zhang Y, Wu H L, Xia A L, et al. Fluorescence determination of metoprolol in human plasma by trilinear decomposition-based calibration techniques. Analytical and Bioanalytical Chemistry,2006,386(2):1741-1748
    [209]Jiang J D, Wu H L, Xia A L, et al. Determination of honokiol and magnolol in both human plasma and complex magnoliase officinalis by second-order calibration couoled to three-dimensiional excitation-emission fluorescence spectra. Chemical Journal of Chinese Universities,2008,29(1):71-78
    [210]李淑芳,吴海龙,夏阿林,等.荧光动力学二阶校正法定量分析人血浆样中去甲肾上腺素.化学学报,2008,66(8):947-952
    [211]Zhang Y, Wu H L, Ding Y J, et al. Simultaneous determination of cortisol and prednisolone in body fluids by using HPLC-DAD coupled with second-order calibration based on alternating trilinear decomposition. Journal of Chromatography B,2006,840(2):116-123
    [212]Li S F, Wu H L, Huang L, et al. Quantitative analysis of fluphenazine hydrochloride in human urine using excitation-emission matrix fluorescence based on oxidation derivatization combined with second-order calibration methods. Analytical Methods,2010,2(8):1069-1077
    [213]Li S F, Wu H L, Yu Y J, et al. Quantitative analysis of levodopa, carbidopa and methyldopa in human plasma samples using HPLC-DAD combined with second-order calibration based on alternating trilinear decomposition algorithm. Talanta,2010,81(3):805-812
    [214]Nikolajsen R P H, Booksh K S, Hansen A M, et al. Quantifying catecholamines using muti-way kinetic modeling. Analytica Chimica Acta, 2003,475(1-2):137-150
    [215]Olivieri A C, Arancibia J A, Pena A M, et al. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine. Analytical Chemistry,2004, 76(19):5657-5666
    [216]Bezemer E, Rutan S C. Analysis of three- and four-way data using multivariate curve resolution-alternating least squares with global multi-way kinetic fitting. Chemometrics and Intelligent Laboratory Systems,2006,81(1-2):82-93
    [217]Porter S E G, Stoll D R, Rutan S C, et al. Analysis of four-way two-dimensional liquid chromatography-diode array data:Application to metabolomics. Analytical Chemistry,2006,78(15):5559-5569
    [218]Munoz de la Pena A, Meras I D, Giron A J, et al. Evaluation of unfolded-partial least-squares coupled to residual trilinearization for four-way calibration of folic acid and methotrexate in human serum samples. Talanta, 2007,72(4):1261-1268
    [219]Goicoechea H C, Yu S J, Olivieri A C, et al. Four-way data coupled to parallel factor model applied to environmental analysis:Determination of 2,3,7,8-tetrachloro-dibenzo-para-dioxin in highly contaminated waters by solid-liquid extraction laser-excited time-resolved shpol' skii spectroscopy. Analytical Chemistry,2005,77(8):2608-2616
    [220]Nahorniak M L, Cooper G A, Kim Y C, et al. Three-and four-way parallel factor (PARAFAC) analysis of photochemically induced excitation-emission kinetic fluorescence spectra. Analyst,2005,130 (1):85-93
    [221]Arancibia J A, Olivieri A C, Gil D B, et al. Trilinear least-squares and unfolded-PLS coupled to residual trilinearization:New chemometric tools for the analysis of four-way instrumental data. Chemometrics and Intelligent Laboratory Systems,2006,80(1):77-86
    [222]Munoz de la Pena A, Meras I D, Giron A J. Four-way calibration applied to the simultaneous determination of folic acid and methotrexate in urine samples. Analtical and Bioanalytical Chemistry,2006,385(7):1289-1297
    [223]Stanimirova I, Simeonov V. Modeling of environmental four-way data from air quality control. Chemometrics and Intelligent Laboratory Systems,2005, 77(1-2):115-121
    [224]Damiani P C, Duran-Meras I, Garcia-Reiriz A, et al. Multiway partial least-squares coupled to residual trilinearization:A genuine multidimensional tool for the study of third-order data. Simultaneous Analysis of procaine and its metabolite p-aminobenzoic acid in equine serum. Analytical Chemistry, 2007,79(18):6949-6958
    [225]Garcia-Reiriz A, Damiani P C, Olivieri A C, et al. Nonlinear four-way kinetic-excitation-emission fluorescence data processed by a variant of parallel factor analysis and by a neural network model achieving the second-order advantage:Malonaldehyde determination in olive oil samples. Analytical Chemistry,2008,80(19):7248-7256
    [226]Rodriguez N, Ortiz M C, Sarabia L A. Fluorescence quantification of tetracycline in the presence of quenching matrix effect by means of a four-way model. Talanta,2009,77(3):1129-1136
    [227]Zhu S H, Wu H L, Xia A L, et al. Excitation-emission-kinetic fluorescence coupled with third-order calibration for quantifying carbaryl and investigating the hydrolysis in effluent water. Talanta,2009,77(5):1640-1646
    [228]Xia A L, Wu H L, Li S F, et al. Alternating penalty quadrilinear decomposition algorithm for an analysis of four-way data arrays. Journal of Chemometrics, 2007,20(3-4):133-144
    [229]Fu H Y, Wu H L, Yu Y J, et al. A new third-order calibration method for analysis of four-way data arrays. Journal of Chemometrics,2011, 25(8):408-429
    [230]Calatayud J M, de Ascencao J G, Albert-Garcia J R. FIA-fluorimetric determination of the pesticide 3-indolyl acetic acid. Journal of Fluorescence, 2006,16(1):61-67.
    [231]Caric D, Tomisic V, Kveder M, et al. Absorption and fluorescence spectra of ring-substituted indole-3-acetic acids. Biophysical Chemistry,2004,111(3): 247-257
    [232]Thimann K V. Hormone Action in the Whole Life of Plants, Amherst:The University of Massachusetts Press.1977,4-70
    [233]de Toledo R A, Vaz C M P. Use of a graphite-polyurethane composite electrode for electroanalytical determination of indole-3-acetic acid in soil samples. Microchemical Journal,2007,86(2):161-165
    [234]Schneider E A, Wightman F. Metabolism of auxin in higher plants. Annual Review of Plant Physiology,1974,25(7):487-513
    [235]Lebuhn M, Hartmann A. Method for the determination of indole-3-acetic acid and related compounds of L-tryptophan catabolism in soils. Journal of Chromatography A,1993,629(2):255-266
    [236]Li J, L. Xiao T., Zeng G. M, et al. A renewable amperometric immunosensor for phytohormone β-indole acetic acid assay. Analytica Chimica Acta,2003, 494(1-2):177-185
    [237]De Mello M P, De Toledo S M, Haun M, et al. Excited indole-3-aldehyde from the peroxidase-catalyzed aerobic oxidation of indole-3-acetic acid. Reaction with and energy transfer to transfer ribonucleic acid. Biochemistry,1980, 19(23):5270-5275
    [238]Bertuzzi A, Mingrone G, Gandolfi A, et al. Binding of indole-3-acetic acid to human serum albumin and competition with L-tryptophan. Clinica Chimica Acta,1997,265(2):183-192
    [239]Greco A V, Mingrone G, Favuzzi A, et al. Subclinical hepatic encephalopathy: Role of tryptophan binding to albumin and the competition with indole-3-acetic acid. Journal of Investigative Medicine,2000,48(4):274-280
    [240]Motojima M, Hosokawa A, Yamato H, et al. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. British Journal of Pharmacology,2002,135(2):555-563
    [241]Carretero A S, Cruces-Blanco C, Pena M S, et al. Determination of phytohormones of environmental impact by capillary zone electrophoresis. Journal of Agricultural and Food Chemistry,2004,52(6):1419-1422
    [242]River L, Crozier A. Principles and Practice of Hormone Analysis, London: Academic Press,1987,10-56
    [243]Weiler E W. Immunoassay of plant growth regulators. Annual Review of Plant Physiology,1984,35(6):85-96
    [244]Weiler E W, Eberle J, Mertens R, et al. Immunology in Plant Science, Cambridge:Cambridge Press,1986,5-60
    [245]Durgbanshi A, Arbona V, Pozo O, et al. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Journal of Agricultural and Food Chemistry,2005,53(22):8437-8442
    [246]Hoenicke K, Simat T J, Steinhart H, et al. Determination of free and conjugated indole-3-acetic acid, tryptophan, and tryptophan metabolites in grape must and wine. Journal of Agricultural and Food Chemistry,2001, 49(11):5494-5501
    [247]Hunter W J. High-performance gas chromatographic method for the estimation of the indole-3-acetic acid content of plant materials. Journal of Chromatography A,1986,362:430-435.
    [248]Munoz de la Pena A, Mansilla A E, Diez N M, et al. Second-order calibration of excitation-emission matrix fluorescence spectra for the determination of N-phenylanthranilic acid derivatives. Applied Spectroscopy,2006,60(3): 330-338.
    [249]Arancibia J A, Escandar G M. Room-temperature excitation-emission phosphorescence matrices and second-order multivariate calibration for the simultaneous determination of pyrene and benzo[a]pyrene. Analytica Chimica Acta,2007,584(2):287-294
    [250]Christensena J, Beckerb E M, Frederiksenb C S. Fluorescence spectroscopy and PARAFAC in the analysis of yogurt. Chemometrics and Intelligent Laboratory Systems,2005,75(2):201-208
    [251]Mortensen P P, Bro R. Real-time monitoring and chemical profiling of a cultivation process. Chemometrics and Intelligent Laboratory Systems,2006, 84(1-2):106-113
    [252]Holbrook R D, Yen J H, Grizzard T J. Characterizing natural organic material from the Occoquan Watershed (Northern Virginia, US) using fluorescence spectroscopy and PARAFAC. Science of the Total Environment,2006, 361(1-3):249-266
    [253]Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta,2003,60(6):1113-1121
    [254]Nie J F, Wu H L, Xia A L, et al. Determination of sulpiride in human urine using excitation-emission matrix fluorescence coupled with second-order calibration. Analytical Sciences,2007,23(12):1377-1382
    [255]Gonzalez A G, Herrador M A, Asuero A G. Intra-laboratory testing of method accuracy from recovery assays. Talanta,1999,48(3):729-736
    [256]Lorber A. Error propagation and figures of merit for quantification by solving matrix equations. Analytical Chemistry,1986,58(6):1167-1172
    [257]Olivieri A C. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques:The need for further developments in net analyte signal theory. Analytical Chemistry,2005,77(15):4936-4946
    [258]Boque R, Ferre J, Faber N M, et al. Limit of detection estimator for second-order bilinear calibration. Analytica Chimica Acta,2002,451(2): 313-321
    [259]Hou S J, Zhu J, Ding M Y, et al. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-elctrospray tandem mass spectrometry. Talanta,2008,76(4):798-802
    [260]Pozo L V. Endogenous hormonal status in citrus flowers and fruitlets: Relationship with postbloom fruit drop. Scientia Horticulturae,2001,91(3-4): 251-260
    [261]Ge L, Chyn Peh C Y, Hong Yong J W, et al. Analysis of gibberellins by capillary electrophoresis-mass spectrometry combined with solid-phase extraction. Journal of chromatography A,2007,1159(1-2):242-249
    [262]Lopez-Carbonell M, Jauregui O, A rapid method for analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandem mode. Plant Physiology and Biochemistry,2005,43(4):407-411
    [263]Pallardy S G. Plant hormones and other signaling molecules, Physiology of woody plants (Third Edition), Amsterdam:Elsevier/Academic press,2008, 367-377
    [264]Liu X, Ma L, Lin Y W, et al. Determination of abscisic acid by capillary electrophoresis with laser-induced fluorescence detection. Journal of chromatography A,2003,1021(1-2):209-213
    [265]Weiler E W. Radioimmunoassay for the determination of free and conjugated abscisic acid. Planta,1979,144(3):225-263
    [266]Durgbanshi A, Arbona V, Poza O, et al. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Journal of Agricultural and Food Chemistry,2005,53(22):8437-8442
    [267]Dobrev P I, Havlicek L, Vagner M, et al. Purification and determination of plant hormones auxin and abscisicacid using solid phase extraction and two-dimensional high performance liquid chromatography. Journal of Chromatography A,2005,1075(1-2):159-166
    [268]Pan X Q, Welt R, Wang X M. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 2008,69(8):1773-1781
    [269]Hogenboom A C, Hofman M P, Jolly D A, et al. On-line dual-precolumn-based trace enrichment for the determination of polar and acidic microcontaminants in river water by liquid chromatography with diode-array UV and tandem mass spectrometric detection. Journal of chromatography A,2000,885(1-2),377-388
    [270]Wu H, Wan Y. A study on the fluorescence properties of abscisic acid, Journal of Xuzhou Normal University (Nature Science),2002,20(2):39-41
    [271]Xue Q H, Li D, Tang L. Improvement of fluorescence method for determination of gillerellin, Acta University Agriculture Boreali-occidentalis, 2000,28(4):34-39
    [272]Canada-Canada F, Espinosa-Mansilla A, Munoz de la Pena A, et al. Determination of danofloxacin in milk combining second-order calibration and standard addition method using excitation-emission fluorescence data. Food Chemistry,2009,113(4):1260-1265
    [273]Bortolato S A, Arancibia J A, Escandar G M. Chemometrics-assisted excitation-emission fluorescence spectroscopy on nylon membranes. simultaneous determination of benzo[a]pyrene and dibenz[a,h]anthracene at parts-per-trillion levels in the Presence of the Remaining EPA PAH Priority pollutants as interferences. Analytical Chemistry,2008,80(21):8276-8286
    [274]Olivieri A C, Faber N M. A closed-form expression for computing the sensitivity in second-order bilinear calibration. Journal of Chemometrics,2005, 19(11-12):583-592
    [275]Ballesteros Y, Gonzalez de la Huebra M J, Quintana M C, et al. Voltamperometric determination of kinetin with a carbon paste modified electrode. Microchemical Journal,2003,74 (2):193-202
    [276]Zhang H, Tan G L, Yang L N, et al. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiology and Biochemistry,2009,47(3): 195-204
    [277]Sun D, Zhang H J. Voltammetric determination of 6-benzylaminopurine (6-BAP) using an acetylene black-dihexadecyl hydrogen phosphate composite film coated glassy carbon electrode. Analytica Chimica Acta,2006,557(1-2): 64-69
    [278]Costa M L, Civello P M, Chaves A R, et al. Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20 ℃. Postharvest Biology and Technology, 2005,35(2):191-199
    [279]Vinnersten A, Larsson S. Colchicine is still a chemical marker for the expanded colchicaceae. Biochemical Systematics and Ecology,2010,38(6): 1193-1198
    [280]Zhang.H J. Electrochemistry and voltammetric determination of colchicine using an acetylene black-dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode. Bioelectrochemistry,2006,68(2):197-201
    [281]Bodoki E, Oprean R, Vlase L, et al. Fast determination of colchicine by TLC-densitometry from pharmaceuticals and vegetal extracts. Journal of Pharmaceutical and Biomedical Analysis,2005,37(5):971-977
    [282]Griffaut B, R. Bos, Maurizis J C, et al. Cytotoxic effects of kinetin riboside on mouse, human and plant tumour cells. International Journal of Biological Macromolecules,2004,34(4):271-275
    [283]杨途熙,魏安智,郑元,等.高效液相色谱法同时分离测定仁用杏花芽中8种植物激素.分析化学,2007,35(9):1359-1361
    [284]谢君,张义正.植物内源激素的反相高效液相色谱法测定.分析测试学报,2001,20(1):60-62
    [285]Giannarelli S, Muscatello B, Bogani P, et al. Comparative determination of some phytohormones in wild-type and genetically modified plants by gas chromatograph-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry. Analytical Biochemistry,2010, 398(1):60-68
    [286]Jiang Y, Wang J, Wang Y W, et al. Rapid and sensitive liquid chromatography-tandem mass spectrometry method for the quantitation of colchicine in human plasma. Journal of Chromatography B,2007,850(1-2): 564-568
    [287]Munoz de la Pena A, Mansilla A E, Gomez D G, et al. Interference-free analysis using three-way fluorescence data and the parallel factor model. determination of fluoroquinolone antibiotics in human serum. Analytical Chemistry,2003,75(11):2640-2646
    [288]Culzoni M J, Aucelio R Q, Escandar G M. Spectrofluorimetry in organized media coupled to second-order multivariate calibration for the determination of galantamine in the presence of uncalibrated interferences. Talanta,2010, 82(1):325-332
    [289]Nie J F, Wu H L, Wang X M, et al. Determination of testosterone propionate in cosmetics using excitation-emission matrix fluorescence based on oxidation derivatization with the aid of second-order calibration methods. Analytica Chimica Acta,2008,628(1):24-32
    [290]Olivieri A C, Faber N M. Standard error of prediction in parallel factor analysis of three-way data. Chemometrics and Intelligent Laboratory Systems, 2004,70(1):75-82
    [291]Faber K, Kowalski B R. Net analyte signal calculation in multivariate calibration. Analytical Chemistry,1997,69(8):1620-1626
    [292]Gimenez D, Sarabia L, Ortiz M C. The maintenance of a PARAFAC calibration and the second-order property:Application to the determination of ciprofloxacin in presence of enrofloxacin by excitation-emission fluorescence. Analytica Chimica Acta,2005,544(1-2):327-336
    [293]Rinnan A, Riu J, Bro R. Multi-way prediction in the presence of uncalibrated interferents. Journal of Chemometrics,2007,21(1-2):76-86
    [294]Biswas P K, Pramanik S K, Mitra S R, et al. Persistence of napropamide in/on tea under north-east Indian climatic condition. Bulletin Environmental Contamination Toxicology,2007,79(5):566-569
    [295]Murillo Pulgarin J A, Garcia Bermejo L F. Determination of napropamide in technical formulations, soil and vegetable samples by sensitised fluorescence: validation of the method. Analytica Chimica Acta,2003,491(1):37-45
    [296]Cui J, Zhang R, Wu G L, et al. Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Archives of Environmental Contamination Toxicology,2010,59(1):100-108
    [297]Liu W L. Determination of napropamide by spectrofluorimetry. Chinese Journal of Pesticides,2006,45(1):40-42
    [298]Jiang L, Huang J, Liang L, et al. Mobility of prometryne in soil as affected by dissolved organic matter. Journal of Agricultural and Food Chemistry,2008, 56(24):11933-11940
    [299]Mohammadi A, Ameli A, Alizadeh N. Headspace solid-phase microextraction using a dodecylsulfate-doped polypyrrole film coupled to ion mobility spectrometry for the simultaneous determination of atrazine and ametryn in soil and water samples. Talanta,2009,78(3):1107-1114
    [300]Chuang J C, Van Emon J M, Jones R, et al. Development and application of immunoaffinity column chromatography for atrazine in complex sample media, Analytica Chimica Acta,2007,583(1):32-39
    [301]Maleki N, Absalan G, Safavi A, et al. Ultra trace adsorptive stripping voltammetric determination of atrazine in soil and water using mercury film electrode. Analytica Chimica Acta,2007,581(1):37-41
    [302]Koohpaei A R, Shahtaheri S J, Ganjali M R, et al. Application of multivariate analysis to the screening of molecularly imprinted polymers (MIPs) for ametryn. Talanta,2008,75(4):978-986
    [303]Koohpaei A R, Shahtaheri S J, Ganjali M R, et al. Optimization of solid-phase extraction using developed modern sorbent for trace determination of ametryn in environmental matrices. Journal of Hazardous Materials.2009,170(2-3): 1247-1255
    [304]Zhou J H, Chen J D, Cheng Y H, et al. Determination of prometryne in water and soil by HPLC-UV using cloud-point extraction. Talanta,2009,79(2): 189-193
    [305]Cheng J H, Liu M, Zhang X Y, et al. Determination of triazine herbicides in sheep liver by microwave-assisted extraction and high performance liquid chromatography. Analytica Chimica Acta,2007,590(1):34-39
    [306]Zhao R S, Yuan J P, Jiang T, et al. Application of bamboo charcoal as solid-phase extraction adsorbent for the determination of atraizine and simazine in the environmental water samples by high-performance liquid chromatography-ultraviolet detector. Talanta,2008,76(4):956-959
    [307]Baranowska I, Barchanska H, Abuknesha R A, et al. ELISA and HPLC methods for atrazine and simazine deteremination in trophic chains samples. Ecotoxicology and Environmental Safety,2008,70(2):341-348
    [308]Djozan D, Mahkam M, Ebrahimi B. Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer Application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion. Journal of Chromatography A,2009,1216(12): 2211-2219
    [309]Dean J R, Wade G, Barnabas I J. Determination of triazine herbicides in environmental samples. Journal of Chromatography A,1996,733(1-2): 295-335
    [310]Wiberg K, Jacobsson S P. Parallel factor analysis of HPLC-DAD data for binary mixtures of lidocaine and prilocaine with different levels of chromatographic separation. Analytica Chimica Acta,2004,514(2):203-209
    [311]Ouyang L Q, Wu H L, Nie J F, et al. Simultaneous determination of psoralen and isopsoralen in plasma and Chinese medicine Xian Ling Gu Bao capsule by using HPLC-DAD coupled with alternating trilinear decomposition algorithm. Analytica Chimica Acta,2009,650(2):160-166
    [312]Zhang Y, Wu H L, Xia A L, et al. Trilinear decomposition method applied to removal of three-dimensional background drift in comprehensive two-dimensional separation data. Journal of Chromatography A,2007,1167(2): 178-183
    [313]Hierlemann A, Gutierrez-Osuna R. Higher-order chemical sensing. Chemical Reviews,2008,108(2):563-613
    [314]Bushey M M, Jorgenson J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. Analytical Chemistry,1990,62(2):161-167
    [315]Holland L A, Jorgenson J W. Separation of nanoliter samples of biological amines by a comprehensive two-dimensional microcolumn liquid chromatography system. Analytical Chemistry,1995,67(18):3275-3283
    [316]Gorecki T, Harynuk J, Panic O. The evolution of comprehensive two-dimensional gas chromatography (GC×GC). Journal of Separation Science, 2004,27(5-6):359-379
    [317]Xie L L, Marriott P J, Adams M. Chemometric analysis of comprehensive two-dimensional gas chromatography data using cryogenic modulation. Analytica Chimica Acta,2003,500(1-2):211-222
    [318]Quigley W C, Fraga C G, Synovec R E. Comprehensive LC × GC for enhanced headspace analysis. Journal of Microcolumn Separations,2000,12(3): 160-166
    [319]de Koning J A, Janssen H G, Deursen M V, et al. Automated on-line comprehensive two-dimensional LC × GC and LC × GC-ToF MS:Instrument design and application to edible oil and fat analysis. Journal of Separation Science,2004,27(5-6):397-409
    [320]Michels D A, Hu S, Dambrowitz K A, et al. Capillary sieving electrophoresis-micellar electrokinetic chromatography fully automated two-dimensional capillary electrophoresis analysis of Deinococcus radiodurans protein homogenate. Electrophoresis,2004,25(18-19):3098-3105
    [321]Liu H C, Yang C, Yang Q, et al. On-line combination of capillary isoelectric focusing and capillary non-gel sieving electrophoresis using a hollow-fiber membrane interface:a novel two-dimensional separation system for proteins. Journal of Chromatography B,2005,817(1):119-126
    [322]Bushey M M, Jorgenson J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography/capillary zone electrophoresis. Analytical Chemistry,1990,62(10):978-984
    [323]Zhang J, Hu H, Gao M, et al. Comprehensive two-dimensional chromatography and capillary electrophoresis coupled with tandem time-of-flight mass spectrometry for high-speed proteome analysis. Electrophoresis,2004,25(14):2374-2383
    [324]Olivieri A C, Escandar G M, Munoz de la Pena A. Second-order and higher-order multivariate calibration methods applied to non-multilinear data using different algorithms. Trends in Analytical Chemistry,2011,30(4): 607-617.
    [325]Ortiz M C, Sarabia L. Quantitative determination in chromatographic analysis based on n-way calibration strategies. Journal of Chromatography A,2007, 1158(1-2):94-110
    [326]Stoll D R, Li X P, Wang X L, et al. Comprehensive two-dimensional liquid chromatography. Journal of Chromatography A,2007,1168(1-2):3-43
    [327]Kiers H A L, ten Berge J M F, Bro R. PARAFAC2—part Ⅰ. A direct fitting algorithm for the PARAFAC2 model, Journal of Chemometrics,1999,13(3-4): 275-294
    [328]夏阿林.高维化学计量学方法的若干基础性研究以及在药物分析中的应用:[湖南大学博士学位论文].长沙:湖南大学化学化工学院,2007,11-14
    [329]Wu H L, Yu R Q, Oguma K. Trilinear component analysis in modern anlytical chemistry. Analytical Science,2001,17:i483-i486
    [330]Kim Y C, Jordan J A, Nahorniak M L, et al. Photocatalytic Degradation-Excitation-Emission Matrix Fluorescence for Increasing the Selectivity of Polycyclic Aromatic Hydrocarbon Analyses. Analytical Chemistry,2005,77(23):7679-7686

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700