用户名: 密码: 验证码:
托拉斯假单胞杆菌侵染平菇传播途径及其弱毒菌株诱导抗病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
托拉斯假单胞杆菌(Pseudomonastolaasii)是平菇(Pleurotusostreatus)细菌性褐斑病的病原菌,还可引起双孢菇(Agaricusbisporus)、香菇(Lentinulaedodes)、金针菇(Flammulinavelutipes)和杏鲍菇(Pleurotuseryngi)等的褐斑病,由该病原菌引起的细菌性褐斑病在世界大面积发生,造成了巨大的经济损失。本论文以托拉斯假单胞杆菌为研究对象,从病原菌的侵染来源、传播途径、弱毒灭活菌诱导平菇抗病性及其机理等方面进行研究,为安全高效防治平菇细菌性褐斑病提供理论基础。
     1.建立了托拉斯假单胞杆菌选择培养基与实时荧光定量PCR检测技术。一种为选择性培养基检测技术,对托拉斯假单胞杆菌有良好的特异性,分离模拟带菌土样的托拉斯假单胞杆菌回收率可以达到70%,可用于病原菌侵染来源及传播途径的追踪检测;一种为实时荧光定量PCR(Real-timePCR)检测技术,采用托拉斯假单胞杆菌毒素基因的特异性引物对Pt-1A/Pt-1D1,建立了良好的检测技术体系,对托拉斯假单胞杆菌的检测范围为102~109cfu/mL,经过选择性培养基富集后,灵敏度进一步提高了100倍。2.确定土壤和培养料是托拉斯假单胞杆菌的侵染来源,水、平菇孢子和菇蝇为其传播途径。
     利用选择性培养基技术检测确定托拉斯假单胞杆菌可在土壤中存活及越冬,多年连作栽培棚内0-10cm土层中带菌量可达900cfu/g;培养料带菌引发平菇细菌性褐斑病病指可达74.07;保湿过程中飞溅的水经过发病子实体后带菌量可达2×103cfu/mL;平菇孢子携带托拉斯假单胞杆菌在水平距离可弹射300cm;每只菇蝇携带的托拉斯假单胞杆菌可达3×103cfu。3.首次研究发现托拉斯假单胞杆菌弱毒菌株可诱导平菇产生系统抗病性。从363株细菌菌
     株中分离筛选得到一株弱毒无致病力菌株,鉴定为托拉斯假单胞杆菌(Pseudomonastolaasii)。经多次验证,托拉斯假单胞杆菌弱毒灭活菌对平菇细菌性褐斑病具有良好的诱抗效果,最佳诱导浓度为3×108cfu/mL,最佳诱导间隔期为24h,最佳诱导次数为3次,诱导抗病效果最高可达80.10%。4.研究发现托拉斯假单胞杆菌弱毒灭活菌诱导平菇后可抑制致病菌的繁殖,产生生理抗性
     及抗病基因的过量表达,使平菇产生系统抗病性。第一,托拉斯假单胞杆菌弱毒灭活菌诱导平菇后可抑制致病菌的繁殖。利用荧光显微观察与
     荧光定量PCR检测技术发现,托拉斯假单胞杆菌强致病菌在未诱导的平菇表层上,接种至48h可达107cfu/mm~2,而托拉斯假单胞杆菌弱毒灭活菌株诱导平菇后,表层致病菌数量先下降后上升,60h最终数量未超过103cfu/mm~2。第二,托拉斯假单胞杆菌弱毒灭活菌可诱导平菇产生生理抗性。平菇在托拉斯假单胞杆菌弱
     毒灭活菌诱导作用下,酪氨酸酶、漆酶和β-N-乙酰胞壁质酶活性0-24h之间显著升高,总酚和醌类物质含量明显增加,使得平菇达到一种“应激过敏状态”,为托拉斯假单胞杆菌强致病菌的侵染提前达到防御状态,阻止致病菌的入侵。第三,托拉斯假单胞杆菌弱毒灭活菌可诱导平菇抗病基因的表达。利用同源克隆技术获得平
     菇HOG(Highosmolarityglycerol)基因cDNA序列,荧光定量PCR技术研究其表达量变化,结果发现平菇在托拉斯假单胞杆菌弱毒灭活菌诱导作用下,HOG基因0-48h之间过量表达,24h达到最大值(为对照的1.2倍)。HOG基因过量表达与抗病性增加表现趋势一致,说明HOG基因与平菇诱导抗病性相关。
     本研究首次对弱致病菌诱导平菇抗病性及其机理进行了研究,发现托拉斯假单胞杆菌弱毒灭活菌株作为生物激发子可以诱导平菇产生系统抗病性,抑制病原菌的增殖,产生生理抗性及防卫基因表达。该研究结果,一方面在理论上初步探索了弱致病菌诱导食用菌抗病的机理,另一方面,为食用菌病害生物防治提供了新思路,为食用菌生防制剂的开发提供了新依据。
Pseudomonas tolaasii is the pathogen of brown blotch disease of Pleurotus ostreatus, which can also cause brown blotch disease of Agaricus bisporus, Lentinula edodes, Flammulina velutipes, and Pleurotus eryngi. Brown blotch disease of Pleurotus ostreatus occurs in a large area of the world, resulting in huge economic losses. In this paper P. tolaasii is chosen as the research object, to investigate pathogen infection source, transmission, and induced resistant effect and mechanism of P. ostreatus by inactivated attenuated P. tolaasi. This research can offer a theoretical basis for safe and efficient prevention of brown blotch disease on P. ostreatus.
     1. The selective medium and Real-time fluorescence quantitative Polymerase Chain Reaction (RT-PCR) of P. tolaasii were established. The selective medium had the best specificity for P. tolaasii. The recovery rate can reach to70%, isolating P. tolaasii from simulated contaminated soil samples. Thus, the selective medium can be used for detection of infection source, transmission of P. tolaasii in mushroom farms. Meanwhile, a good RT-PCR detection system for P. tolaasii was established by using Tolaasin gene-specific primers (Pt-lA/Pt-1D1). The RT-PCR detection range of P. tolaasii was102~109cfu/mL, and the sensitivity was100times higher after selective medium enrichment.
     2. The results of sources and transmission of P. tolaasii showed that soil and compost were the main pathogens sources, and the pathogens can be transmitted via water, Pleurotus ostreatus spore, and Phorid Flies. The detection result showed that P. tolaasii can survive many years in soil by using selective medium, and the number of P. tolaasii can reach to900cfu/g in0-10cm soil of monocropping mushroom farms; The disease index of compost with P. tolaasii resulting in brown blotch disease reached to74.07; The number of P. tolaasii in the water after passing diseased sporocarp to adjacent sporocarp in the moisturizing process can reach to2×103cfu/mL, which could result in brown blotch disease; Pleurotus ostreatus spore was one of the routes of transmission, and catapulted300cm carrying P. tolaasii spreading to neighboring sporocarp only in the horizontal distance; The number of P. tolaasii of a Phorid Flies carrying was up to3×103cfu in mushroom farm.
     3. Systemic acquired resistance of P. ostreatus induced by attenuated P. tolaasii was reported for the first time in our paper. An attenuated bacterial strain without pathogenicity was discovered from363bacteria strains on the sporocarp, which was then identified as Pseudomonas tolaasii. The inactivated attenuated P. tolaasii have a good acquired resistance for P. ostreatus in several tests, and the best induction concentration, induction interval, and induction times for resistance of P. ostreatus by inactivated attenuated P. tolaasii were3×108cfu/mL,24h, and3times, respectively, and control efficiency was up to80.10%under this condition.
     4. Pleurotus ostreatus after induced by inactivated attenuated P. tolaasii, can suppress pathogen reproduction, produce physiological resistance and overexpress resistance gene, which resulting in systemic acquired resistance in P. ostreatus.
     First, P. ostreatus induced by inactivated attenuated P. tolaasii can suppress pathogen reproduction. Using both fluorescence microscopy and RT-PCR technology, we found the density of P. tolaasii pathogen on control P. ostreatus surface was up to107cfu/mm2after48hours of inoculation, while the pathogen density on induced P. ostreatu firstly decreased, and then increased between0-36h with the final less than103cfu/mm2until60h.
     Second, P. ostreatus induced by inactivated attenuated P. tolaasii can produce physiological resistance. After induced by inactivated attenuated P. tolaasii, the activity of P. ostreatus tyrosinase, laccase and β-N-acetylmuramidase were significantly higher within24h, and total phenols and quinones content increased dramatically, which result in producing a "stress allergic state", suppressing P. tolaasii in the earlier infection stage.
     Third, P. ostreatus induced by inactivated attenuated P. tolaasii can induce overexpression of defense genes. cDNA sequence of Pleurotus ostreatus HOG (High osmolarity glycerol) gene was obtained using the homology cloning technology. RT-PCR analysis of the P. ostreatus HOG gene after induced by inactivated attenuated P. tolaasii showed that, HOG gene was overexpressed within48h, and reached its maximum value (1.2times control) at24h. HOG gene overexpression and resistance increasing showed the same trend, which illustrated the relationship between HOG gene and Pleurotus ostreatus acquired resistance.
     This study investigated the attenuated pathogen inducing resistance effect and mechanism of P. ostreatus acquired resistance for the first time in the paper. The inactivated attenuated P. tolaasii as the biological elicitor induced P. ostreatus to produce systemic acquired resistance, to suppress pathogen reproduction, to produce physiological resistance and to overexpress resistance gene. The study performed a preliminary exploration on the disease-resistant mechanism of edible mushroom induced by attenuated pathogen in theory, on the other hand, provided a new idea on edible mushroom biological control, and an evidence for development of edible mushroom biocontrol agent.
引文
1.程力惠,黄晓文,核桃楸树皮中胡桃醌提取方法及其工艺研究.亚热带植物科学,2010,39(4):33-35.
    2.东秀珠,蔡妙英,常见细菌系统鉴定手册.北京:科学出版社,2001,353-355.
    3.方中达,植病研究方法.北京:北京农业出版社,1998,156-389.
    4.郭以河,张闽峰,孟加榕,不同固定方法对胸水细胞块组织形态及免疫细胞化学的影响.现代肿瘤医学,2010,18(10):1925-1927.
    5.龚哓卫,丝裂原活化蛋白激酶(MAPK)生物学功能的结构基础.中国生物化学与分子生物学报,2003,19(1):5-5.
    6.洪剑明,邱泽生,柴晓清,植物的诱导抗病性.植物学通报,1997,14(2):23-29.
    7.纪秀娥,史留功,水杨酸对3种平菇菌株菌丝生长的影响.安徽农业科学,2009,37(2):569-610.
    8.焦振泉,郭云昌,裴晓燕,刘秀梅,食源性致病菌检测方法研究进展.中国食品卫生杂志,2007,19(1):58-62.
    9.金丹,李宝聚,石延霞,一种平菇褐斑病病原菌的鉴定.食用菌学报,2009,16(1):89-91.
    10.李琼,孔宝华,范静华,蔡红,傅杨,陈海如,应用TaqMan探针实时荧光定量PCR技术早期检测稻瘟病.植物病理学报,2011,41(2):118-123.
    11.刘海英,范永山,许建国,壳聚糖多对平菇褐斑病菌的抑制作用.食用菌,2008,6:55-58.
    12.律凤霞,郑明顺,龚振杰,滑菇栽培过程中主要病虫害的生物防治.中国林副特产,2007,4(89):68-69.
    13.罗宽,王庄,利用拮抗的Pseudomonas spp.和无致病力的P.solanocearum防治青枯病的研究.植物病理学报,1983,13(1):51-55.
    14.孟鹤,金茂勇,肖橘清,张宝珠,明军,袁素霞,刘春,张宁,安祖花细菌性疫病的Nested-PCR检测.园艺学报,2011,38(10):2017-2022.
    15.邱广艳,刘海光,邢路军,张新艳,平菇假单胞菌腐烂病防治研究.北方园艺,2011(15):212-214.
    16.饶毅萍,李开伟,余桂洲,张冰娜,陈树燕,郭妙霞,水杨酸对平菇菌丝体抗逆生长的影响.广东农业科学,2010,8:56-57.
    17.任璐,刘慧平,韩巨才,番茄早疫病菌Hog1MAPK同源基因AsHog1的表达特性及其与抗药性的关联性.菌物学报,2010,29(4):542-547.
    18.申进文,吴婷婷,庄利,平菇栽培过程中胞外酶活性变化.食用菌学报,2010,17(2):56-59.
    19.万鲁长,黄春燕,曹德强,糙皮侧耳褐腐病和褐斑病致病机理研究初报.食用菌学报,2001,8(2):34-38.
    20.汪虹,鲍大鹏,陈明杰,陈辉,林楠,茅文俊,草菇丝裂原活化蛋白质激酶编码基因VV-MAPK 的克隆和序列分析.菌物学报,2010,29(2):310-313.
    21.文景芝,李兆林,周艳玲,大豆疫霉根腐病传播途径研究.大豆科学,2000,8:223-228.
    22.徐擎,胡景江,薛盼盼,外源低聚糖、水杨酸诱导杨树抗病生理机制的研究.西北林学院学报2011,26(2):119-123.
    23.徐岩岩,陈璐,李金萍,谢学文,石延霞,李宝聚,平菇细菌性褐斑病病原菌RT-PCR检测方法的建立及其应用.园艺学报,2013,40(1):170-182.
    24.余迪求,岑川,李宝健,植物系统获得的抗病性和信号传导.植物学报,1999,41(2):115-124.
    25.张瑞颖,胡丹丹,左雪梅,王贺祥,姜瑞波,平菇和双孢蘑菇细菌性褐斑病研究进展.植物保护学报,2007,34:449-554.
    26.张瑞颖,左雪梅,姜瑞波,平菇褐斑病病原菌的分离与鉴定.中国食用菌,2007,26(5):58-60.
    27.张淑红,吴清平,张菊梅,显色培养基在几种食源性致病菌快速检测中的应用.微生物学通报,2006,33(6):108-111.
    28.张穗,赵清华,唐文华,井冈霉素A对水稻抗性相关酶活性的影响.植物保护学报,2003,30(2):177-180.
    29.张元恩,植物诱导抗病性研究进展.生物防治通报,1987,3(2):88-90.
    30.赵日丰,刘彦,吴连举,郭靖,西洋参疫病菌的水滴飞溅传播规律.植物保护学报,1997,24(1):55-58.
    31.周建树,方新,孟庆国,赵洁,陈超,高温季节平菇细菌性病害的发生及其防治.中国蔬菜,2005,4:57.
    32. Adam A.L., Kohut G., Hornok L., Fphogl, a HOG-type MAP kinase gene, is involved in multistress response in Fusarium proliferatum. Journal of Basic Microbiology,2008,48:151-159.
    33. Aguilera J.S., Vargas R., Prieto J. A., The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Molecular Microbiology,2005,56:228-239.
    34. Asher R.A., Production of bacteriolytic enzymes and degradation of bacteria by filamentous fungi, Journal of General Microbiology,1986,132:2353-2358.
    35. Bahn Y.S., Kojima K., Cox G.M., Heitman J., A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Molecular Biology of the Cell.2006,17:3122-3135.
    36. Bahn Y.S., Geunes-Boyer S., Heitman J., Ssk2mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hogl signaling pathway in Cryptococcus neoformans. Eukaryot Cell,2007,6:2278-2289.
    37. Bassarello C., Lazzaroni S., Bifulco G., Tolaasins A E, five new lipodep sipep tides produced by Pseudomonas tolaasii. Journal of Natural Products,2004,67(5):811-816.
    38. Berman K., McKay J., Avery L., Cobb M., Isolation and characterization of pmk-(1-3):three p38homologs in Caenorhabditis elegans. Molecular Cell Biology Research Communications,2001,4: 337-344.
    39. Bessette A.E., Distribution of brown blotch bacteria in wild and cultivated species of basidiomycetes. Applied and Environmental Microbiology,1984,48(4):878-801.
    40. Bessette A.E., Kerrigan R.W., Jordan D.C.,1985. Yellow blotch of Pleurotus ostreatus. Applied and Envionmental Microbiology,50(6):1535-1537.
    41. Bohloolb. B., Schmidet L., Persistence and competition aspects of Rhizobium japonicum observed in soil by immunofluorescence microscopy. Soil Science Society of America Prdceedings,1973,37:561-564
    42. Boisnard S., Ruprich-Robert G, Florent M., Silva B.D., Florence chapeland-leclerc, and nicolas Papon. insight into the role of HOG pathway components Ssk2p, Pbs2p, and Hoglp in the opportunistic Yeast Candida lusitaniae. Eukaryotic Cell,2008,2179-2183.
    43. Brewater J.L., Valoir T., Dwyer N.D., Winter E., Gustin M.C., An osmosensingsignal transduction pathway in yeast. Science,1993,259:1760-1763.
    44. Brodey C.L., Rainey P. B., Tester M., Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodep sipep tide toxin. Molecular Plant-Microbe Interactions,1991,4(4):407-411.
    45. Burke D., Hamerlynck E., Hahn D., Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology,2003,69:1157-1164.
    46. Chapeland-Leclerc F., and Papon N., Insight into the role of HOG pathway components Ssk2p, Pbs2p, and Hoglp in the opportunistic yeast candida lusitaniae. Eukaryotic Cell,2008,2179-2183.
    47. Chun S.C., Ahnl Y.N., Khan S.M., Chung I.M., Won H.Y., Jhune C.S., Park Y.J., The microbial population in the air of cultivation facility of oyster mushrooms. The Journal of Microbiology,2012,50(6):1053-1057.
    48. Cook R.J., Rovira A.D., The role of bacteria in the biological control of Gaeumannomyces graminisby suppressive soils. Soil Biology&Biochemistry,1976,8:267-273.
    49. Cottyn B., Baeyen S., Development of a real-time PCR assay for Pseudomonas cichorii, the causal agent of midrib rot in greenhouse-grown lettuce, and its detection in irrigating water. Plant Pathology,2011,60:453-461.
    50. Cruickshank I.A.M., Phytoalexins. Annual Review of Phytopathology,1963,1:351-374.
    51. Dawoud M.E.A, Eweis M., Phytochemical control of edible mushrooms pathogenic bacteria. Journal of Agricultural and Food Environmental,2006,4:321-324.
    52. Delgado-Jarana J., Sousa S., Gonzalez F., Manuel Rey., Llobell A., ThHogl controls the hyperosmotic stress response in Trichodermaharzianum. Microbiology,2006,152:1687-1700.
    53. Dezfooli N.A., Hasanzadeh N., Rezaee M.B., Ghasemi A., Antibacterial activity and chemical compositions of Chamaemelum nobile essential oil/extracts against Psedomonas tolaasii, the causative agent of mushroom brown blotch. Annals of Biological Research,2012,3(6):2602-2608.
    54. Dixon K.P., Xu J.R., Smirnoff N., Talbot N.J., Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. The Plant cell,1999,11:2045-2058.
    55. Durner J., Salicylic acid disease resistance in plants. Trends in Plant Science,1997,2(7):266-274.
    56. Edmunds J.W., Mahadevan L.C., MAP kinases as structural adaptors and enzymatic activators in transcription complexes. Journal of Cell Science,2004,117:3715-3723.
    57. Eikemo H., Stensvand A., Tronsmo A.M., Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Disease,2003,87(4):340-345.
    58. Fermor T.R., Bacteriolysis by Agaricus bisporus, Journal of General Microbiology,1991,137:15-22.
    59. Fermor T.R., Grantz W.D., Degradation of fungal and actinomycete mycelia by Agaricus bisporus. Journal of General Microbiology,1989,131:1729-1734.
    60. Fermor T.R., Henry M.B., Fenlon J.S., Development and application of a biocontrol system for bacterial blotch of the cultivated mushroom. Crop Protection,1991,10(4):271-278.
    61. Fermor T.R., Wood D.A., Bacterial blotch disease of the cultivated mushroom Agaricus bisporus: screening, isolation and characterization of bacteria antagonistic to the pathogen (Pseudomonas tolaasii). Journal of Applied Bacteriology,1988,65(3):179-187.
    62. Fermor T.R., Wood D.A., Degradation of bacteria by Agaricus bisporus and other fungi. Journal of General Microbiology,1981,126:377-387.
    63. Fett W.F., Wells J.M., Cescutti P., Wijey C., Identication of exopolysaccharides produced by fluorescent pseudomonads associated with commercial mushroom (Agaricus bisporus) production. Applied and Environmental Microbiology,1995,61:513-517.
    64. Gaffney T., Friedrich L., Vernooij B., Requirement of salicylic acid for the induction of systemic acquired resistance. Science,1993,261:754-756.
    65. Gaffney T., Requird of salicylic acid for the induction of systemic acquired resistance. Science,1993,261:754-756.
    66. Gandy D.G., A technique for screening bacteria causing brown blotch of cultivated mushrooms. Glasshouse Crops Research Institute,1968,150-154.
    67. Geels F.P., Pseudomonas tolaasii control by kasugamycin in cultivated mushrooms (Agaricus bisporus). Journal of Applied Bacteriology,1995,79(1):38-42.
    68. Goor M., Vantomme R., Swings J., Phenotypic and genotypic diversity of Pseudomonas tolaasii and white line reacting organisms isolated from cultivated mushrooms. Journal of General Microbiology,1986,132:2249-2264.
    69. Gorlach J., Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell,1996,8:629-643.
    70. Gould W.D., New Selective media for enumeration and recovery of Fluorescent Pseudomonads from various habitat. Applied and Environmental Microbiology.1985,49(1):128-32.
    71. Grantz W.D., Rhodes L.L., Prosser B.A., Asher R.A., Production of bacteriolytic enzymes and degradation of bacteria by Filamentous fungi. Journal of General Microbiology,1986,132:2353-2358.
    72. Grantz W.D.,Fermor T.R., Wood D.A., Production of bacteriolytic enzymes and degradation of bacterial cell Walls During Growth of Agaricus bispovus on Bacillus subtilis. Journal of General Microbiology,1984,130:761-769.
    73. Grewal S.I.S., Han B., Johnstone K., Identication and characterization of a locus which regulates multiple functions in Pseudomonas tolaasii, the cause of brown blotch disease of Agaricus bisporus. Journal of Bacteriology,1995,177:4658-4668.
    74. Han B., Pain A., Johnstone K., Spontaneous duplication of a661bp element within a two-component sensor regulator gene causes phenotypic switching in colonies of Pseudomonas tolaasii, cause of brown blotch disease of mushrooms. Molecular Microbiology,1997,25(2):211-218.
    75. Han B., Pain A, Smith J., Grewal S., Johnstone K., Regulation of phenotypic variation and toxin synthesis in Pseudomonas tolaasii, Plant pathology,1995,25:105-106.
    76. Han H.S., Jhune C.S., Cheong J.C., Oh J.A., Kong W.S., Cha J. S., Lee C.J., Occurrence of black rot of cultivated mushrooms (Flammulina velutipes) caused by Pseudomonas tolaasii in Korea. European Journal of Plant Pathology,2012,133:527-535.
    77. Hietala A.M., Eikenes M., Kvaalen H., Solheim H., Fossdal C.G., Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Applied and Environmental Microbiology.2003,69(6):4413-4420.
    78. Himansu S., Pain A., Johnstone K., Analysis of the role of recA in phenotypic switching of Pseudomonas tolaasii. Journal of Bacteriology,2000,182(22):6532-6535.
    79. Hohmann S., Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews,2002,66:300.
    80. Hutchison M.L., Johnstone K. Evidence for the involvement of the surface active properties of the extracellular toxin Tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiological and Molecular Plant Pathology,1993,42(5):373-384.
    81. Ichikawa K., Kawasaki S., Tanaka C., Induced resistance against Fusarium diseases of Cymbidium species by weakly virulent strain HPF-1(Fusarium sp.). Journal General Plant Pathology,2003,69:400-405.
    82. Jolivet S., Arpin N., Wichers H.J., Agaricus bisporus browning:a review. Mycological Research,1998,102(12):1459-1483.
    83. Jonak C., Okresz L., Begre L., Hirt H., Complexity, cross talk and integration of plant MAP kinase signaling. Current Opinion in Plant Biology,2002,5:415-424
    84. Jose C.S., Monge R.A., Perez-Diaz R., Pla J., Nombela C., The mitogen-activated protein kinase homolog HOG1gene control glycerol accumulation in the pathogenic fungus Candida albicans. Journal of Bacteriology,1996,178(19):5850-5852
    85. Suyama K., Negishi H.,Wakimoto S., Selective Medium for Isolation of Pseudomonas tolaasii, the causal bacterium of bacterial blotch of cultivated mushrooms. Journal of Agricultural Science,2000,44(4):295-301.
    86. Kernaghan G., Reeleder R.D., Hoke S.M.T., Quantification of Pythium populations in ginseng soils by culture dependent and real-time PCR methods. Applied soil ecology,2008.40:447-455.
    87. Khoodoo M.H.R., Sahin F., Jaufeerally-Fakim Y. Sensitive detection of Xanthomonas axonopodis pv. dieffenbachiae on Anthurium andreanum by immunocapture-PCR(IC-PCR) using primers designed from sequence charaterized amplified regions of the blight pathogen. Plant Pathology,2005,112:377-390.
    88. Kojima K., Takano Y., Yoshimi A., Tanaka C., Kikuchi T., Okuno T., Fungicide activity through activation of a fungal signaling pathway. Molecular Microbiology,2004,53(6):1785-1796.
    89. Ku C.J., Concepts and directions of induced systemic resistance in plants and its application. European Journal of Plant Pathology,2001,107:7-12.
    90. Largeteau M.L., Savoie J.M., Microbially induced diseases of Agaricus bisporus:biochemical mechanisms and impact on commercial mushroom production. Applied Microbiology and Biotechnology,2010,86:63-73
    91. Lee H.I., Cha J.S., Cloning of a DNA fragment specific to Pseudomonas tolaasii causing bacterial brown blotch disease of oyster mushroom (Pleurotus ostreatus). Korean Journal of Plant Pathology,1998,14:177-183.
    92. Lee H.I., Jeong K.S., Cha J.S., PCR assays for specific and sensitive detection of Pseudomonas tolaasii, the cause of brown blotch disease of mushrooms. Letters in Applied Microbiology,2002,35:276-2801.
    93. Lee S., Hirt H., Lee Y., Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant Journal,2001,26(5):479-486.
    94. Lee S.B., Taylor J.W., Isolate of DNA from fungal mycelia and single spore. Innis MA, Gelfand D.H., Sninsky T.J., White T.J., PCR protocols:a guide to methods and applications. New York: Academic Press,1990,282-287.
    95. Leeuwen J.V., Harry J., Tyrosinase activity and isoform composition in separate tissues during development of Agaricus bisporus fruit bodies. Mycological Research,1999,103(4):413-418.
    96. Lev S., Sharon A., Hadar R., A mitogen-aetivated protein kinase of the corn leaf Pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and Pathogenieity:Diverse roles for mitogen-activated protein kinase homologues infoliar Pathogens. Proceeding National Academy of Sciences., USA,1999,96:13542-13547.
    97. Li D., Rogers L., and Kolattukudy P.E., Cloning and expression of cDNA encoding a Mitogen-activated Protein kinase from a Phytopathogenic filannentous fungus. Gene,1997,195: 161-166.
    98. Li N.Y., Cai W.M., Jin Q.L., Qin QP., Ran F.L., Molecular cloning and expression of polyphenoloxidase genes from the mushroom, Agaricus bisporus. Agricultural Sciences in China,2011,10(2):185-194.
    99. Liu Y.H., Zhang S.Q., Klessig D.F. Molecular cloning and characterization of a Tobacco MAP Kinase Kinase that interacts with SIPK. Research Note.2000,13(1):118-124.
    100. Lu J.M., Saccharomyces cereisiae histidine phosphotransferase Ypdlp shuttles between the nucleus and cytoplasm for SLN1-depenent phosphorylation of Sslp and Skn7p. Eukaryot Cell,2003,2:1304
    101. Malamy J., Carr J.P., Klessing D.F., Salicylic acid, a likely endogenous signal in the MAPK group Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends in Plant Science,2002,7:301-308.
    102. Mamoun M., Moquet F., Savoie J.M., Devesse C., Ramos-Guedes-Lafargue M., Olivier J.M., Arpin N., Agaricus bisporus susceptibility to bacterial blotch in relation to environment: biochemical studies Original Research Article. FEMS Microbiology Letters,1999,181(1):131-136
    103. Mayorga M.E., and Gold S.E., A MAPkinase encoded by the ubc3gene of ustilago maydis is required for filamentous growth and full virulenee. Molecular microbiology,1999,34:485-497.
    104. Muller P., Aiehinger C., Fedbrugge M., The Mapkinase KPP2regulates mating and Pathogenic development in Ustilago maydis. Molecular microbiology,1999,34:1007-1017.
    105. Munsch P., Alatossava T., The white-line-in-agar test is not specific for the two cultivated mushroom associated pseudomonads, Pseudomonas tolaasu and Pseudomonas "reactanss". Microbiological Research,2002,157:7-11.
    106. MAPK Group, Ichimura K., Shinozaki K., Tena G., Sheen J., Henry Y., Champion A., Kreis M., Zhang S.Q., Hirt H., Wilson C., Heberle-Bors E., Ellis B.E., Morris P.C., Innes R.W., Ecker J.R., Scheel D., Klessig D.F., Machida Y., Mundy J., Ohashi Y., Walker J.C., Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends in Plant Science,2002,7(7):301-308.
    107. Matsuki T., Watanaae K., Fujimoto J., Quantitative PCR with16S rRNA gene targeted speciese Specific primers for analysis of human intestinal bifidobacteria. Applied and Environmental Microbiology,2004,70(1):167~173.
    108. Moquet F., Desmerger C., Mamoun M., Maria R.G.L., Olivier J.M., A quantitative trait locus of Agaricus bisporus resistance to Pseudomonas tolaasu is closely linked to natural cap color fungal. Genetics and Biology,1999,28:34-42.
    109. Moquet F., Mamoun M., Olivier J.M., Pseudomonas tolaasii and Tolaasin:comparison of symptom induction on a wide range of Agaricus bisporus strains. FEMS Microbiology Letters,1996.142(1):99-103.
    110. Munsch P., Alatossava T., Marttinen N., Pseudomonas costantinii spl novl, another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in Finland. International Journal of Systematic and Evolutionary Microbiology,2002,52(6):1973-1983.
    111. Munsch P., Alatossava T., Several pseudomonads, associated with the cultivated mushrooms Agaricus bisporusor Pleurotus sp., are hemolytic. Microbiological Research,2002,157:311-315
    112. Murata H., Characteristics of stress response in a mushroom-pathogenic bacterium, Pseudomonas tolaasii, during the interaction with Pleurotus ostreatus and carbon/nitrogen starvation in vitro. Mycoscience,1999,40(1):81-85.
    113. Murata H., Tsukamoto T., Shirata A., rtpA, a gene encoding a bacterial two component sensor kinase, determines pathogenic traits of Pseudomonas tolaasii, the causal agent of brown blotch disease of a cultivated mushroom, Pleurotus ostreatus. Mycoscience,1998,39(3):261-271.
    114. Nair N.J., Fahy P.C., Toxin production by Pseudomonas tolaasii Paine. Australian Journal of Biological Sciences,1973,26(2):509-512.
    115. Ndir N.J, Fahy P.C. Bacteria Antagonistic to Pseudomonas tolaasii and their control of brown blotch of the cultivated mushroom Agaricus bisporus. Journal of Applied Bacteriology,1972,35:439-442.
    116. Nguyen H.T.D., Yoon S., Kim M.H., Kim Y.K., Yoon M.Y., Cho Y.H., Lim Y, Shin S.H., Kim D.E., Characterization of bacteriophage Pto-bp6g, a novel phage that lyses Pseudomonas tolaasii causing brown blotch disease in mushrooms. Journal of Microbiological Methods,2012,91:514-519.
    117. Nutkins J.C., Mortishire-Smith R.J., Packman L.C., Structure determination of Tolaasin, an extracellular lipodep sipep tide produced by the mushroom pathogen Pseudomonas tolaasii Paine. Journal of the American Chemical Society,1991,113(7):2621-2627.
    118. O'Rourke S.M., Yeast go the whole HOG for the hyperosmotic response. Trends Genet,2002,18(8):405-12.
    119. Pennincpx I., Pethogen-induced systemic activation of a plant defensin in arabidopsis follows a salicylic acid-independent pathway. Plant Cell,1996,8:2309-2323.
    120. Pierson E.A., Weller D.M., Use of mixture of fluorescent pseudomonas to suppress take-all and imp-rove the grow th of wheat. Phytopathology,1994,84:940-947.
    121. Pitzschke A., Schikora A., Hirt H., MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology,2009,12(4):421-426.
    122. Porter S.W., Whe-pager project:a new initiative in estimating global building inventory and seismic vulnerability. Eukaryot Cell,2003,2:27
    123. Rainey P.B., Brodey C.L., Johnstone K., Biological properties and spectrum of activity of Tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiological and Molecular Plant Pathology,1991,39:57-70.
    124. Rainey P.B., Brodey C.L., Johnstone K., Biology of Pseudomonas tolaasii, cause of brown blotch disease of the cultivated mushroom. Advances in Plant Pathology,1992,8:95-117.
    125. Rainey P.B., Brodey C.L., Johnstone K., Identification of a gene cluster encoding three high-molecular-weight p roteins, which is required for synthesis of Tolaasin by the mushroom pathogen Pseudomonas tolaasii. Molecular Microbiology,1993,8(4):643-652.
    126. Ramezani-Rad M., Method to Engineer MAPK Signaling responses using synthetic scaffold interactions and scaffold-mediated feedback loops. Current Hypertension Reports,2003,43:161
    127. Rasini I., Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:439-463.
    128. Rodriguez Estrada A E., Royse D.J. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresource Technology.2007,98:1898-1906.
    129. Romeis T., Piedras P., Zhang S., Rapid Avr9and CF-9dependent activat ion of MAP kinases in tobacco cell cultures and leaves:conver gence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell,1999,11:273-287.
    130. Ross A., Systemic effects of local lesion formation. In:virus of plants. Beemster A, Dykstras, eds. North Holland:Amsterdam.1966,127-150.
    131. Ruiz-Roldn M.C., Maier F.J., Sehfer W., PTKI, a mitogen-aetivated-Protein kinase gene, is required for conidiation, appressorium forrnation, and Pathogenieity for Pyrenophora teres on barley. Molecular plant-microbe interactions,2001,14:116-125.
    132. Russo A., Filippi C., Tombolini R., Toffanin A., Bedini S., Agnolucci M., Nuti M., Interaction between gfp-tagged Pseudomonas tolaasii P12and Pleurotus eryngii. Microbiology Reseacher,2003,158:265-270.
    133. Sahin N., Antimicrobial activity of Streptomyces species against mushroom blotch disease pathogen. Journal of Basic Microbiology.2005,45(1):64-71.
    134. Samra Z., Heifetz M., Talmor J., Evaluation of use of a new chrompgenic agar, in detection of urinary tract pathogens. Journal of Clinical Microbiology,1998,36(4):990-994.
    135. Saiben-Nagy E., Manczinger L., Nagy A., Characterization of pseudomonads isolated from decaying sporocarps of oyster mushroom. Microbiological Research.2010,166(4):255-267.
    136. Sajben-Nagy E., Maroti G, Kredics L., Horva B., Parduce A., Vagvolgy C., Manczinger L.. Isolation of new Pseudomonas tolaasii bacteriophages andgenomic investigation of the lytic phage BF7, FEMS Microbiol Letters,2012,332:162-169
    137. Sands D.C., Isolation of Fluorescent Pseudomonads with a Selective Medium. Applied Microbiology.1970,20(3):513-514.
    138. Schroeder K.L., Okubara P.A., Tambong J.T., Levesque C.A., Paulitz T.C., Identification and quantification of pathogenic Pythium spp. from soils in Eastern Washington using Real-Time polymerase chain reaction. Ecology and Epidemiology,2006,96(6):637-647.
    139. Silvar C., Duncan J.M., Cooke D.E.L., Development of specific PCR primers for identification and detection of Phytophthora capsici Leon. European Journal of Plant Pathology,2005,112:43-52.
    140. Singh P., Langowski H.C., Wani A.A., Saengerlaub S., Recent advances in extending the shelf life of fresh Agaricus mushrooms:a review. Journal of the Science of Food and Agriculture,2010,90:1393-1402.
    141. Soler-rivas C., Arpin N., Olivier J. M., Wichers H. J. The effects of Tolaasin, the toxin produced by Pseudomonas tolaasii on tyrosinase activities and the induction of browning in Agaricus bisporus fruiting bodies. Physiological and Molecular Plant Pathology,1999,55:21-28.
    142. Soler-Rivas C., Arpin N., Olivier J.M, Wichers, H.J., Activation of tyrosinase in Agaricus bisporus strains following infection by Pseudomonas tolaasii or treatment with a Tolaasin containing preparation. Mycological Research,1997.101(3):375-382
    143. Soler-Rivas C., Arpin N., Olivier J.M, Wichers, H.J., Discoloration and tyrosinase activity in Agaricus bisporus fruit bodies infected with various pathogens. Mycological Research,2000,104(3):351-356.
    144. Soler-Rivas C., Arpin N., Olivier J.M., WLIP a lipodepsipeptide of Pseudomonas"reactans",as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus. Journal of Applied Microbiology,1999,86(4):635-641.
    145. Soler-Rivas C., Joliet S., Arpin N., Olivier J.M., Wichers H.J., Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiological Reviews,1999,23:591-614.
    146. Soler-Rivas C., Moller A.C., Arpin N., Olivier J.M, Wichers, H.J., Induction of a tyrosinase mRNA in Agaricus bisporus upon treatment with a Tolaasin preparation from Pseudomonas tolaasii. Physiological and Molecular Plant Pathology,2001,58(2):95-99.
    147. Takekawa M., Tatebayashi K., Itoh F., Smad-dependent GADD45beta expression mediates delayed activation of p38MAP kinase by TGF-beta. Embo Journal,2002,21(23):6473-6482
    148. Takekawa M., Posas F., Saito H., A human homolog of the yeast Ssk2/Ssk22MAP kinase kinase kinase, MTK1, mediates stress induced activation of the p38and JNK path ways. Embo Journal,1997,16(6):4973-4982.
    149. Tolaas A G. A bacterial disease of cultivated mushroom. Phytopathology,1915,5:51-54.
    150. Tsukamoto T., Murata H., Shirata A., Identification of non-pseudomonad bacteria from fruit bodies of wild Agaricales fungi that detoxify Tolaasin produced by Pseudomonas tolaasii. Bioscience, Biotechnology, and Biochemistry,2002,66(10):2201-2208.
    151. Tsukamoto T., Shirata A., Murata H., Isolation of a gram-positive bacterium effective in supp-ression of brown blotch disease of cultivated mushrooms, Pleurotus ostreatus and Agaricus bisporus, caused by Pseudomonas tolaasii. Mycoscience,1998,39(3):273-278.
    152. Tsuneda A., Suyama K., Murakami S., Ohira A., Occurrence of Pseudomonas tolaasii on fruiting bodies of Lentimula edodesformed Quercus logs. Mycoscience,1995,36:283-288.
    153. Uknes S. Acquired resistance in arabidopsis.Plant Cell,1992,4:645-656.
    154. Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hiravam T., Shinozaki K. A transmembrane hybridtype histidine kinase in Arabidopsis founctions as an osmosensor. The Plant Cell,1999,11:1743-1754.
    155. Ventia M.C., Miles R.J., Priee R.G., A novel chromogenic ester agar medium for detection of salmonellae. Applied and Environental Microbiology,1999,65(2):807-812.
    156. Vivekananthan R., Ravi M., Ramanathan A., Samiyappan R., Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology,2004,20:235-244,
    157. Wells J M., Sapers G.M., Fett W.F., Butterfield L.E., Jones J.B., Bouzar H., Miller F.C, Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P.'reactans'and P.'gingeri. Phytopathology,1996,86:1098-1104.
    158. Wilkens L., Tchinda J., Burkhardt D., Significant hybridization differences in comparative genomic hybridization due to nucleotides used for DNA labelling and to DNA chosen for cohybridization. Pathobiology,2003,4:204-208.
    159. Wong W.C., Preece T.F., Identification of Pseudomonas tolaasii:the white line in agar and mushroom tissue block rapid pitting tests, Journal of Applied bacteriology,1979,47:401-407.
    160. Wong W.C, Preece T.F., Pseudomonas tolaasii cultivated mushroom(Agaricus bisporus) crops. Effects of sodium hypochlorite on the bacterium and on blotch disease severity. Journal of Applied Bacteriology,1985A,59(3):259~671.
    161. Wong W.C., Preece T. F., Pseudomonas tolaasii in Mushroom Crops:A note on primary and secondary sources of the bacterium on a commercial farm in England. Journal of Applied Microbiology.1985B,58(3):269-273.
    162. Wu R.W., Palmer B., Cole A., Phenotypic variation and survival of genetically marked Pseudomonas tolaasii in mushroom compost Canadian Journal of Microbiology. Proquest Agriculture Journals,1998,44(4):373.
    163. Zarkower. P.A., Wuest P.J., Royse D.J., Myers b., Phenotypic traits of fluorescent pseudomonads causing bacterial blotch of Agaricus bisporus mushrooms and other mushroom-derived fluorescent pseudomonads. Canadian Journal of Microbiology,1984,30:360-367.
    164. Zhang S.Q., Klessig D.F., MAPK cascades in plant defense signaling. Trends in Plant Science,2001,6:11.
    165. Zhang S.Q., Klessig D.F., Salicylic Acid Activates a48-kD MAP Kinase in Tobacco. The Plant Cell,1997,9:809-824
    166. Zhang Y., Lamm R., Pillonel C., Lam S., Xu J.R., Osmoregulation and fungicide resistance:the Neurospora crassaos-2gene encodes a HOG1mitogen-activated protein kinase homologue. Applied and Environmental Microbiology,2002,68(2):532-538.
    167. Zhang Z.G., Li Y. Q., Fan H., Wang Y.C., Zheng X.B., Molecular detection of Phytophthora capsici in infected plant tissues, soil and water. Plant Pathology,2006,55:770-775.
    168. Zhao T., Feng J., Sechler A., Randhawa P., Li J., Schaad N.W., An improved assay for detection of Acidovorax citrulli in watermelon and melon seed. Seed Science and Technology,2009,37(2): 337-349.
    169. Zheng L., CamPbell M., Murphy J., The BMPlgene is essential for pathogenieity in the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions,2000,13:724-732.
    170. Zwerger K., Hirt H., Recent advances in plant MAP kinase signaling. Journal of Biological Chemistry,2001,382:1123-1131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700