用户名: 密码: 验证码:
诱导人骨髓间充质干细胞分化为视网膜色素上皮细胞治疗视网膜变性疾病的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     视网膜色素上皮(retinal pigment epithelial,RPE)细胞的变性、坏死和丢失可造成视网膜和脉络膜的损害,导致视网膜变性类疾病的发生和视力下降。目前尚无有效治疗RPE变性的方法。细胞移植是治疗RPE细胞变性的具有前景的方法,但是如何获得数量充足的、低免疫排斥和低成瘤风险的RPE细胞是目前细胞治疗RPE变性的所面临的主要问题。而在可用于视网膜变性疾病治疗的干细胞中,胚胎干细胞(embryonic stem cells,ESCs)因其全能分化特性(可分化为包括RPE在内的体内所有细胞类型)和无限增殖能力,被认为是可用于视网膜变性类疾病治疗的重要种子细胞。然而,ESCs来源的治疗细胞的免疫排斥和成瘤风险、以及不可控增殖、伦医学等问题限制了ESCs的临床转化。和ESCs相比,目前已在临床广泛应用的自体成体干细胞可避免免疫排斥和成瘤风险,且自体取材可规避伦理障碍。在本课题中,我们重点研究是否能将成体干细胞中的间充质干细胞(mesenchymal stem cells,MSCs)诱导分化为RPE样的细胞,并且具备天然RPE细胞的生理功能,并最终转化成为治疗视网膜变性类疾病的理想种子细胞。
     方法:
     1、hMSCs和猪RPE细胞的分离
     (1)原代分离和纯化获得hMSCs和猪RPE细胞,观察细胞形态;
     (2)hMSCs和猪RPE细胞标记检测、hMSCs成骨诱导分化钙结节茜素红染色、成软骨诱导分化甲苯胺蓝染色和成脂肪诱导分化油红-0染色鉴定hMSCs;免疫荧光鉴定猪RPE细胞。
     2、hMSCs和猪RPE的共培养及其向RPE细胞的分化
     (1)Transwell共培养法诱导hMSCs向RPE细胞分化;条件培养基法诱导hMSCs向RPE细胞分化;
     (2)hMSCs来源RPE细胞的鉴定
     细胞形态学观察、细胞内色素含量的定量分析、透射电镜检测、Real-time PCR、免疫荧光染色检测、吞噬实验和细胞断层扫描、Western Blot、验证MERTK蛋白在诱导细胞特异性吞噬功能中的作用和诱导细胞的神经营养因子分泌能力检测。
     3、hMSCs来源RPE细胞对急、慢性视网膜变性的修复作用
     (1)碘酸钠注射制备急性视网膜变性大鼠模型及鉴定:HE染色和F-ERG检测;
     (2)急性视网膜变性大鼠模型视网膜下腔移植分别于移植后4周、8周检测以下指标:细胞形态学观察、免疫荧光染色检测hESCs来源的RPE细胞、吞噬实验和细胞断层扫描、移植后免疫荧光染色检测、F-ERG和Western Blot。
     (3)选取21天龄的RCS白化大鼠进行视网膜下腔移植,分别于移植后4周、8周检测以下指标:外核层厚度的测量、移植后细胞的免疫荧光染色检测、F-ERG和Western Blot检测细胞在体的吞噬能力。
     结果:
     1、hMSCs的鉴定
     (1)hMSCs形态多为梭形成纤维细胞样外观,呈旋涡状排列;猪RPE细胞外形呈多边形,细胞内充满了棕黑色的色素颗粒;
     (2)hMSCs的表面标志CD73、CD90、CD105表达强阳性,而CD14、CD45、CD34阴性;茜素红染色后,细胞间出现致密的、圆形不透光团块状的红色结节;阿新蓝染色可见细胞外基质被染成蓝色,成条索状错综排列;油红-0染色细胞中含有被染成红色的脂肪颗粒;猪RPE细胞CRALBP、RPE65、ZO-1表达均为阳性。
     2、hMSCs向RPE细胞的分化
     (1)hMSCs共培养诱导后的RPE样细胞可观察到hMSCs中出现丰富的色素颗粒,含量接近于成体猪的RPE细胞,而采用条件培养基诱导法获得细胞色素含量较少;
     (2)共培养hMSCs-RPE细胞的色素含量与RPE细胞相比无统计学差异,条件培养基诱导hMSCs-RPE细胞内色素颗粒含量与共培养hMSCs-RPE细胞的色素含量相比具有统计学差异;
     (3)透射电镜观察见hMSCs-RPE细胞内可见成熟的色素颗粒,细胞顶端可见典型的微绒毛结构;
     (4)hMSCs-RPE细胞表达RPE细胞特异的基因MITF、OTX2、tyrosinase、RPE65、Bestrophine、PEDF、PMEL17、CRALBP、PAX6和诱导前相比都显著上调,且和原代分离的人RPE细胞的表达水平相类似;
     (5)hMSCs-RPE细胞可表达RPE细胞特异的蛋白CRALBP、RPE65和ZO-1;
     (6)FITC标记的POS和hMSCs-RPE细胞共孵育后,猪RPE细胞和诱导细胞内均可观察到绿色荧光,而未诱导的hMSCs内未见到绿色荧光;hMSCs-RPE细胞MERTK蛋白表达显著上调,αvβ5Integrin的表达也有所上调, MERTK抗体封闭掉该受体的功能后,吞噬POS的能力显著下降;
     (7)hMSCs-RPE细胞BDNF和GDNF的分泌量上调明显,但仍显著低于猪RPE细胞。
     3、hMSCs来源RPE细胞对急、慢性视网膜变性的修复作用
     (1)碘酸钠损伤模型的视网膜HE染色可见后极部RPE细胞几乎完全损毁,部分RPE细胞死亡后残留的色素团块残留于Bruch’s膜上,上方的感光细胞层呈波浪形;F-ERG显示A波和B波的幅值较正常大鼠均显著降低;
     (2)碘酸钠损伤的急性视网膜变性模型中,移植后4周、8周视网膜免疫荧光染色共聚焦扫描可见,hMSC来源的RPE细胞可表达mitochondrial和CRALBP;
     (3)碘酸钠损伤的急性视网膜变性模型中,移植后4周、8周F-ERG结果显示了hMSCs-RPE细胞移植后较伪手术组和移植未诱导分化的hMSC组,A波和B波的波幅明显升高,具有统计学意义;
     (4)碘酸钠损伤的急性视网膜变性模型中,移植后4周和8周视网膜总蛋白的Western Blot结果显示rhodopsin的表达量在移植hMSCs-RPE细胞组较伪手术组和移植hMSC组明显升高,具有统计学意义。
     (5)RCS慢性视网膜变性模型中,移植后4周和8周hMSCs-RPE细胞组较伪手术组和移植hMSC组大鼠视网膜外核层厚度明显增厚,具有统计学意义;
     (6)RCS慢性视网膜变性模型中,移植后4周和8周视网膜免疫荧光染色共聚焦扫描可见,hMSC来源的RPE细胞可表达mitochondrial和CRALBP,但在8周时间点移植细胞存活较4周明显减少;
     (7)RCS慢性视网膜变性模型中,移植后4周F-ERG结果显示hMSCs-RPE细胞组较伪手术组和移植hMSC组,A波和B波的波幅明显升高,,具有统计学意义;而在移植后8周,各组电生理均呈熄灭型,各组间幅值无统计学差异;
     (8)RCS慢性视网膜变性模型中,移植后4周、8周视网膜总蛋白的Western Blot结果显示,MERTK蛋白的表达在移植hMSC来源的RPE细胞组4周为阳性8周时呈阴性,伪手术4周、8周均为阴性;
     (9)RCS慢性视网膜变性模型中,移植后4周和8周视网膜免疫荧光染色共聚焦扫描可见,4周时RPE65阳性的移植细胞内存在rhodopsin阳性的感光细胞外节,而8周时未见RPE65阳性的移植细胞内存在rhodopsin阳性的感光细胞外节。
     结论:
     1、成功分离获得了hMSCs和猪RPE细胞,获得细胞的细胞形态和细胞表面标志符合hMSCs和猪RPE细胞的特性;
     2、通过Transwell构建hMSCs和RPE细胞的体外非接触共培养体系,诱导hMSCs向RPE细胞分化,诱导的RPE细胞的体外生物学特性和功能类似于原代分离的RPE细胞。
     3、碘酸钠尾静脉注射制造的急性视网膜变性大鼠模型,其视网膜组织和结构改变符合急性视网膜变性的改变;
     4、碘酸钠损伤的急性视网膜变性大鼠经移植hMSCs-RPE细胞后,对感光细胞具有更好的保护作用、对视功能有更好的维持作用;
     5、在RCS大鼠慢性视网膜变性模型中,移植hMSCs-RPE细胞后,具有吞噬感光细胞外节的能力;但在移植后8周存活细胞数量显著降低,少量细胞表达成熟RPE细胞的标记,未观察到移植细胞具有吞噬感光细胞外节的能力,对视功能的维持作用消失。
Background:
     The degeneration, necrosis and the final loss of RPE cells usually cause the damage ofphotoceptors and vision loss. Till now, there is no effective therapy to treat RPEdegeneration. The major issue in the cell therapy in the retina degeneration is how to getenough RPE cells because the cells are low immune rejection and tumorigenicity. Thedevelopment of stem cell technology provides a novel choice for the treatment of retinaldiseases. Especially, embryonic stem cells (ESCs) are considered to be important seed cellsfor the treatment of retinal degenerative diseases. However, ESCs usually have the risks ofimmune rejection and tumor formation. Compared with the clinical application of ESCs,the adult stem cells, autologous and non-ethical advantage, can avoid immune rejection andthe risk of tumor formation mesenchymal stem cells (MSCs) can be induced to differentiateinto RPE-like cells and may become the promising cells for the treatment of retinaldegenerative diseases. However, the biological characteristics and functions of the MSCsderived from RPE cells are still fully understood.
     Methods:
     1. Isolation and identification of hMSCs, porcine RPE cells
     1.1Isolation of hMSCs, porcine RPE cells
     1.2. FACS and identification of differention properties of hMSCs; Identification ofporcine RPE cells by immunofluorescence
     2.Inducing RPE differentiation of hMSCs
     2.1. co-culturing with RPE using transwell and RPE conditioned medium inducedhMSCs to differentiate to RPE like cells
     2.2. Identification of co-culture induced hMSCs to differentiate to RPE like cells:cellmorphology, intracellular pigment content quantitative analysis, transmission electronmicroscopy detection, Real-time PCR, immunofluorescence staining, phagocytosis and celltomography experiments, Western Blot, verify MERTK protein in inducing cell-specificphagocytosis role and induce cell secretion of neurotrophic factors testing.
     3.Transplantation of hMSC-RPE in acute and chronic retinal degeneration model
     3.1. Building sodium iodide treated acute retinal degeneration rat model; identificationof the model: HE staining and F-ERG testing.
     3.2. Subretinal transplatation of hMSC and hMSC derived RPE cell in the acutesubretinal transplantation: cell morphology, immunofluorescence staining hMSCs derivedRPE cells, phagocytic assay and immunofluorescence staining, F-ERG and Western Blotafter transplantation.
     3.3. subretinal transplantation in RCS rats model: measuring the thickness of the outernuclear layer, immunofluorescence staining, F-ERG and phagocytosis assay aftertransplantation.
     Results:
     1. Isolation and identification of hMSCs, porcine RPE cells
     1.1. hMSCs morphology formed mostly spindle fibroblast-like appearance andvortex-like arrangement. Porcine RPE cells are polygonal in shape, and filled withbrown-black pigment granules.
     1.2. Flow cytometry analysis revealed that hMSCs were strongly positive for CD73,CD90and CD105, but negative for CD14, CD45and CD34. After osteogenic induction,hMSCs stained by alizarin red exhibited matrix mineralization formation after21-days inculture. hMSCs were also able to differentiate towards an adipose phenotype after culturingfor21days with adipogenic medium. In addition, the cells could also be induced to be achondrogenic phenotype after four weeks in culture following the formation of ahigh-density pellet and a serum-free chondrogenic medium with TGF-β3, positive alcianblue staining. Porcine RPE cells were positive staining for CRALBP, RPE65, ZO-1.
     2. Inducing RPE differentiation of hMSCs
     2.1. hMSCs derived RPE-like cells can be observed some pigment granulesintracellular, the content of melanin pigment is closer to the adult porcine RPE cells, some of which origins from the pigment granules secreted into the extracellular RPE cells wereinduced phagocytosis into the cell.
     2.2. The pigment content is of no significant difference between hMSCs derivedRPE-like cells induced by co-culture and native RPE cells. The pigment content is ofsignificant difference between hMSCs derived RPE-like cells induced conditioned mediumand native RPE cells.
     2.3. Electron microscopy also revealed the presence of mature pigment granules andfurthermore, microvilli was clearly present in hMSC-derived RPE cells after14-dayco-culture
     2.4. Various RPE-specific markers in hMSC-derived RPE-like cells were determined.These genes were significantly up-regulated; MITF, OTX2, tyrosinase, bestrophin,PMEL17, RPE65, PEDF,PAX6and CRALBP after being co-cultured with adult pig RPEcells for14days compared with control hMSCs without co-culture induction. Furthermore,the expression levels of the above genes in hMSCs-derived RPE were comparable to thosein freshly isolated adult RPE.
     2.5. An immunofluorescence assay was used to assess the expression of typical RPEmarker proteins in order to confirm that the increased gene expression led to changes inprotein levels; these included CRALBP, RPE65and ZO-1.
     2.6. Green fluorescence was observed in both adult pig RPE cells and hMSCs-derivedRPE cells after24h in culture suggesting these cells had acquired the ability to phagocytoseextracellular elements of the POS. Green fluorescence was not observed in the non-inducedhMSCs. After14-day co-culture, the expression of MERTK in induced hMSCs wassignificantly enhanced as compared with hMSCs without co-culture induction. Meanwhile,the expression of αVβ5Integrin was also enhanced slightly. hMSCs-derived RPE cellsexposed to MERTK antibodies showed a significant reduction in the number of POSingested over a5h period compared to control cells.
     2.7. The results from the ELISA assay showed that there was significant enhancementof BDNF and GDNF in hMSC-derived RPE, relative to hMSCs without co-cultureinduction. However, these values were significantly less than the values seen for the porcineRPE samples.
     3. Transplantation of hMSC-RPE in acute and chronic retinal degeneration model
     3.1. Hematoxylin and eosin staining of retinal section from NaIO3injected rat showsthat compared to the confluent RPE monolayer in the uninjured eyes, the NaIO3-treatedeyes demonstrate a paucity of RPE cells with only very occasional rounded RPE cellsremained on the underlying Bruch’ s membrane. Compared with normal rats the sodiumiodate rats display significantly lower F-ERG in A wave and B wave amplitude.
     3.2. Confocal images showed that hMSC-RPE cells could express mitochondrial andCRALBP after transplantation tested by immunofluorescence staining.
     3.3. F-ERG results show that there was signifincantly increased in A wave and B-waveamplitude after transplantation of hMSC-RPE cells compared with hMSC transplantationand sham operation.
     3.4. After transplantation in the model of acute retinal degeneration, Western Blotshowed that rhodopsin expression was higher in hMSC-RPE cell transplanted rats thanhMSC cell transplanted rats.
     3.5. RCS rat retinal outer nuclear layer thickness was significantly thicker after hMSCs-RPE cells transplantation.
     3.6. Confocal images showed that hMSCs-RPE cells could express mitochondrial andCRALBP after transplantation tested by immunofluorescence staining.
     3.7. F-ERG results show that there was signifincantly increased in A wave and B-waveamplitude4weeks after transplantation hMSCs-RPE cells in RCS rats model.
     3.8. Western Blot results show MERTK expression in the retina after transplantaionwere positive in4weeks after transplantaion hMSC-RPE cells and negative in4weeks aftertransplantaion hMSC-RPE cells and both sham operation.
     3.9. Confocal images showed that rhodopsin positive POS could be found in PRE65positive transplanted cells4weeks after transplantation, but could not be found8weeksafter transplantation
     Conclusion:
     1. We successfully obtained hMSCs and pig RPE cells. The morphology andphenotype of these two cells are consistent with hMSCs and porcine RPE cellscharacteristic.
     2. We used transwell system to establish hMSCs and RPE cells non-contact co-culturesystem in vitro to induce differentiation of hMSCs to RPE cells. The induced cells showedbiological properties and functions similar to native RPE cells.
     3. In the intravenous injection of sodium iodate rat model of acute retinal degeneration,the changes of organization and structure are consistent with acute retinal degenerationchanges.
     4. The rats with acute retinal degeneration induced by sodium iodate injury weretransplanted by RPE cells derived from hMSCs had potent protective effects on visualfunction and maintenance.
     5. In the RCS rat model of chronic retinal degeneration, followed by transplantation ofRPE cells derived from hMSCs, the rats had phagocytic ability of photoreceptor outersegment. However, after8weeks of transplantation, the number of viable cells wassignificantly decreased, and only a small amount of cells expressed markers of RPE cellsmature. In addition, we did not observe the transplanted cells with phagocytic ability ofphotoreceptor outer segments as well as the maintenance of visual function.
引文
1Strauss O. The retinal pigment epithelium in visual function. Physiol Rev.2005.85(3):845-81.
    Marchese C, Felici A, Visco V, et al. Fibroblast growth factor10induces proliferation and differentiation of humanprimary cultured keratinocytes. J Invest Dermatol.2001.116(4):623-8.
    Petrukhin K, Koisti MJ, Bakall B, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet.1998.19(3):241-7.
    Marlhens F, Bareil C, Griffoin JM, et al. Mutations in RPE65cause Leber's congenital amaurosis. Nat Genet.1997.17(2):139-41.
    Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65gene in patients withautosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc Natl Acad Sci U S A.1998.95(6):3088-93.
    Delcourt C, Lacroux A, Carriere I. The three-year incidence of age-related macular degeneration: the "Pathologies
    Oculaires Liees a l'Age"(POLA) prospective study. Am J Ophthalmol.2005.140(5):924-6.
    Klein R, Klein BE, Knudtson MD. Frailty and age-related macular degeneration: the Beaver Dam Eye Study. Am JOphthalmol.2005.140(1):129-31.
    Leske MC, Wu SY, Hennis A, et al. Nine-year incidence of age-related macular degeneration in the Barbados EyeStudies. Ophthalmology.2006.113(1):29-35.
    Jones BW, Watt CB, Frederick JM, et al. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol.20003.464(1):1-16.
    da CL, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog RetinEye Res.2007.26(6):598-635.
    1Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitroaccording to a hierarchical model. J Cell Sci.2000.113(Pt7):1161-6.
    2Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells.2002.20(3):205-14.
    3Bhagavati S, Xu W. Isolation and enrichment of skeletal muscle progenitor cells from mouse bone marrow. BiochemBiophys Res Commun.2004.318(1):119-24.
    4Kamanga-Sollo E, Pampusch MS, White ME, Dayton WR. Role of insulin-like growth factor binding protein (IGFBP)-3in TGF-beta-and GDF-8(myostatin)-induced suppression of proliferation in porcine embryonic myogenic cell cultures. JCell Physiol.2003.197(2):225-31.
    5刘厚奇.人干细胞的分化研究及临床应用探索.第二军医大学学报.2003.(09):929-932.
    6Lavker RM, Tseng SC, Sun TT. Corneal epithelial stem cells at the limbus: looking at some old problems from a newangle. Exp Eye Res.2004.78(3):433-46.
    7Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp Eye Res.2004.78(3):573-8.
    8Kaplan HJ, Tezel TH, Del PLV. Retinal pigment epithelial transplantation in age-related macular degeneration. Retina.1998.18(2):99-102.
    9Abe T, Yoshida M, Tomita H, et al. Auto iris pigment epithelial cell transplantation in patients with age-related maculardegeneration: short-term results. Tohoku J Exp Med.2000.191(1):7-20.
    Aoki H, Hara A, Nakagawa S, et al. Embryonic stem cells that differentiate into RPE cell precursors in vitro developinto RPE cell monolayers in vivo. Exp Eye Res.2006.82(2):265-74.
    1Phillips SJ, Sadda SR, Tso MO, Humayan MS, de Juan E Jr, Binder S. Autologous transplantation of retinal pigmentepithelium after mechanical debridement of Bruch's membrane. Curr Eye Res.2003.26(2):81-8.
    2Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA. Impaired RPE survival on aged submacular humanBruch's membrane. Exp Eye Res.2005.80(2):235-48.
    3Van Meurs JC, ter AE, Hofland LJ, et al. Autologous peripheral retinal pigment epithelium translocation in patients withsubfoveal neovascular membranes. Br J Ophthalmol.2004.88(1):110-3
    4Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigment epithelial cells differentiatedfrom primate embryonic stem cells. Invest Ophthalmol Vis Sci.2004.45(3):1020-5.
    5Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigmentepithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells.2004.6(3):217-45.
    66Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophicRCS rats. Cloning Stem Cells.2006.8(3):189-99.
    7Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science.1998.282(5391):1145-7.
    8Haruta M. Embryonic stem cells: potential source for ocular repair. Semin Ophthalmol.2005.20(1):17-23.
    9Aoki H, Hara A, Nakagawa S, et al. Embryonic stem cells that differentiate into RPE cell precursors in vitro developinto RPE cell monolayers in vivo. Exp Eye Res.2006.82(2):265-74.
    10Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigment epithelial cells differentiatedfrom primate embryonic stem cells. Invest Ophthalmol Vis Sci.2004.45(3):1020-5.
    11Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinalpigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells.2004.6(3):217-45.
    Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophicRCS rats. Cloning Stem Cells.2006.8(3):189-99.
    13Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis,expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    14Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinalpigment epithelium cells. CELL STEM CELL.2009.5(4):396-408.
    15Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature.2011.472(7341):51-6.
    Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs.CELL STEM CELL.2012.10(6):771-85.
    1Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminaryreport. Lancet.2012.379(9817):713-20.
    2Ben-David U, Kopper O, Benvenisty N. Expanding the boundaries of embryonic stem cells. CELL STEM CELL.2012.10(6):666-77.
    3Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum. RegenMed.2009.4(3):423-33.
    4McGill TJ, Cottam B, Lu B, et al. Transplantation of human central nervous system stem cells-neuroprotection in retinal
    5degeneration. Eur J Neurosci.2012.35(3):468-77.Lund RD, Wang S, Lu B, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in arodent model of retinal disease. Stem Cells.2007.25(3):602-11.
    6Li Y, Reca RG, Atmaca-Sonmez P, et al. Retinal pigment epithelium damage enhances expression of chemoattractantsand migration of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci.2006.47(4):1646-52.
    7Atmaca-Sonmez P, Li Y, Yamauchi Y, et al. Systemically transferred hematopoietic stem cells home to the subretinalspace and express RPE-65in a mouse model of retinal pigment epithelium damage. Exp Eye Res.2006.83(5):1295-302.
    8Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science.1998.282(5391):1145-7.
    Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol.2002.12(9):432-8.
    10Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate intoneurons. J Neurosci Res.2000.61(4):364-70.
    11Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science.1999.284(5411):143-7.
    12Spees JL, Olson SD, Ylostalo J, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epitheliumby human adult stem cells from bone marrow stroma. Proc Natl Acad Sci U S A.2003.100(5):2397-402.
    Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis,expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61
    1Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell.2004.116(6):769-78.
    2Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature.2001.414(6859):98-104.
    3Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature.2002.417(6884):39-44.
    4Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate intoneurons. J Neurosci Res.2000.61(4):364-70.
    5Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent progenitor cells can be isolated frompostnatal murine bone marrow, muscle, and brain. Exp Hematol.2002.30(8):896-904.
    6Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM. Neuroectodermal differentiation from mousemultipotent adult progenitor cells. Proc Natl Acad Sci U S A.2003.100Suppl1:11854-60.
    7Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophicRCS rats. Cloning Stem Cells.2006.8(3):189-99.
    8Vossmerbaeumer U, Ohnesorge S, Kuehl S, et al. Retinal pigment epithelial phenotype induced in human adiposetissue-derived mesenchymal stromal cells. Cytotherapy.2009.11(2):177-88.
    9Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromal cells differentiate into pigmentepithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    10Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V. Endogenous bone marrow derived cellsexpress retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Invest Ophthalmol Vis Sci.2007.48(9):4321-7.
    11Hou L, Cao H, Wang D, et al. Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro.Int J Hematol.2003.78(3):256-61.
    12Majumdar MK, Wang E, Morris EA. BMP-2and BMP-9promotes chondrogenic differentiation of humanmultipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol.2001.189(3):275-84.
    13Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro chondrogenesis of bone marrow-derivedmesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng.2003.9(4):679-88.
    Liu DN, Yin ZQ, Wu N, Wang YH, Chen LF. Rat bone marrow stromal cells express retinal phenotypic markersfollowing different induction protocols. Ophthalmic Res.2009.41(4):186-93.
    1Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromal cells differentiate into pigmentepithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    2Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V. Endogenous bone marrow derived cellsexpress retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Invest Ophthalmol Vis Sci.2007.48(9):4321-7.
    3Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells.2002.20(3):205-14.
    4Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature.2001.414(6859):98-104.
    5Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature.2002.417(6884):39-44.
    Liu DN, Yin ZQ, Wu N, Wang YH, Chen LF. Rat bone marrow stromal cells express retinal phenotypic markersfollowing different induction protocols. Ophthalmic Res.2009.41(4):186-93.
    1Chiou SH, Kao CL, Peng CH, et al. A novel in vitro retinal differentiation model by co-culturing adulthuman bone marrow stem cells with retinal pigmented epithelium cells. Biochem Biophys Res Commun.2005.326(3):578-85.
    1Chiou SH, Kao CL, Peng CH, et al. A novel in vitro retinal differentiation model by co-culturing adult human bonemarrow stem cells with retinal pigmented epithelium cells. Biochem Biophys Res Commun.2005.326(3):578-85.
    Vossmerbaeumer U, Ohnesorge S, Kuehl S, et al. Retinal pigment epithelial phenotype induced in human adiposetissue-derived mesenchymal stromal cells. Cytotherapy.2009.11(2):177-88.
    1Vossmerbaeumer U, Ohnesorge S, Kuehl S, et al. Retinal pigment epithelial phenotype induced in human adiposetissue-derived mesenchymal stromal cells. Cytotherapy.2009.11(2):177-88.
    1Carr AJ, Vugler A, Lawrence J, et al. Molecular characterization and functional analysis of phagocytosis by humanembryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis.2009.15:283-95.
    1Awad HA, Butler DL, Boivin GP, et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng.1999.5(3):267-77.
    2Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from humanmarrow. Bone.1992.13(1):81-8.
    3Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science.1999.284(5411):143-7.
    4Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol.2000.28(8):875-84.
    1Lodie TA, Blickarz CE, Devarakonda TJ, et al. Systematic analysis of reportedly distinct populations of multipotentbone marrow-derived stem cells reveals a lack of distinction. Tissue Eng.2002.8(5):739-51.
    2Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonlyused strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem.1999.72(4):570-85.
    3Nash MS, Osborne NN. Pertussis toxin-sensitive melatonin receptors negatively coupled to adenylate cyclase associatedwith cultured human and rat retinal pigment epithelial cells. Invest Ophthalmol Vis Sci.1995.36(1):95-102.
    4Hu DN, McCormick SA, Ritch R, Pelton-Henrion K. Studies of human uveal melanocytes in vitro: isolation, purificationand cultivation of human uveal melanocytes. Invest Ophthalmol Vis Sci.1993.34(7):2210-9.
    Huang L, Xu Y, Yu W, et al. Effect of Robo1on retinal pigment epithelial cells and experimental proliferativevitreoretinopathy. Invest Ophthalmol Vis Sci.2010.51(6):3193-204.
    1Hong Y, Xu GX. Proteome changes during bone mesenchymal stem cell differentiation into photoreceptor-like cells invitro. Int J Ophthalmol.2011.4(5):466-73.
    2Chiou SH, Kao CL, Peng CH, et al. A novel in vitro retinal differentiation model by co-culturing adult human bonemarrow stem cells with retinal pigmented epithelium cells. Biochem Biophys Res Commun.2005.326(3):578-85.
    3Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE. Chondrogenic differentiation ofhuman bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells.2007.25(11):2786-96.
    4Klassen H, Sakaguchi DS, Young MJ. Stem cells and retinal repair. Prog Retin Eye Res.2004.23(2):149-81.
    5Liu DN, Yin ZQ, Wu N, Wang YH, Chen LF. Rat bone marrow stromal cells express retinal phenotypic markersfollowing different induction protocols. Ophthalmic Res.2009.41(4):186-93.
    6Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromal cells differentiate into pigmentepithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    7Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V. Endogenous bone marrow derived cellsexpress retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Invest Ophthalmol Vis Sci.2007.48(9):4321-7.
    1Marchese C, Felici A, Visco V, et al. Fibroblast growth factor10induces proliferation and differentiation of humanprimary cultured keratinocytes. J Invest Dermatol.2001.116(4):623-8.
    2Liu DN, Yin ZQ, Wu N, Wang YH, Chen LF. Rat bone marrow stromal cells express retinal phenotypic markersfollowing different induction protocols. Ophthalmic Res.2009.41(4):186-93.
    Schqwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminaryreport. Lancet.2012.379(9817):713-20.
    1Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science.1998.282(5391):1145-7.
    2Haruta M. Embryonic stem cells: potential source for ocular repair. Semin Ophthalmol.2005.20(1):17-23.
    3Aoki H, Hara A, Nakagawa S, et al. Embryonic stem cells that differentiate into RPE cell precursors in vitro developinto RPE cell monolayers in vivo. Exp Eye Res.2006.82(2):265-74.
    4Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigment epithelial cells differentiatedfrom primate embryonic stem cells. Invest Ophthalmol Vis Sci.2004.45(3):1020-5.
    5Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigmentepithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells.2004.6(3):217-45.
    6Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophicRCS rats. Cloning Stem Cells.2006.8(3):189-99.
    7Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis,expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    8Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinalpigment epithelium cells. CELL STEM CELL.2009.5(4):396-408.
    9Ben-David U, Kopper O, Benvenisty N. Expanding the boundaries of embryonic stem cells. CELL STEM CELL.2012.10(6):666-77.
    10Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromal cells differentiate into pigmentepithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    11Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V. Endogenous bone marrow derived cellsexpress retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Invest Ophthalmol Vis Sci.2007.48(9):4321-7.
    1Enzmann V, Row BW, Yamauchi Y, et al. Behavioral and anatomical abnormalities in a sodium iodate-induced modelof retinal pigment epithelium degeneration. Exp Eye Res,2006,82(3):441-8.
    Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res.2003.22(5):607-55.
    1Tao Z, Dai J, He J, Li C, Li Y, Yin ZQ. The influence of NaIO(3)-induced retinal degeneration on intra-retinal layer andthe changes of expression profile/morphology of DA-ACs and mRGCS. Mol Neurobiol.2013.47(1):241-60.
    1Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminaryreport. Lancet.2012.379(9817):713-20.
    McGill TJ, Cottam B, Lu B, et al. Transplantation of human central nervous system stem cells-neuroprotection in retinaldegeneration. Eur J Neurosci.2012.35(3):468-77.
    1Franco LM, Zulliger R, Wolf-Schnurrbusch UE, et al. Decreased visual function after patchy loss of retinal pigmentepithelium induced by low-dose sodium iodate. Invest Ophthalmol Vis Sci.2009.50(8):4004-10.
    Korte GE, Gerszberg T, Pua F, Henkind P. Choriocapillaris atrophy after experimental destruction of the retinal pigmentepithelium in the rat. A study in thin sections and vascular casts. Acta Anat (Basel).1986.127(3):171-5.
    1Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol.2005.23(6):699-708.
    Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromal cells differentiate into pigmentepithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    1Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene,cause retinitis pigmentosa. Nat Genet.2000.26(3):270-1.
    2DOWLING JE, SIDMAN RL. Inherited retinal dystrophy in the rat. J Cell Biol.1962.14:73-109.
    3Bourne MC, Campbell DA, Tansley K. HEREDITARY DEGENERATION OF THE RAT RETINA. Br J Ophthalmol.1938.22(10):613-23.
    4Bennett J. Gene therapy for retinitis pigmentosa. Curr Opin Mol Ther.2000.2(4):420-5.
    5Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet.2001.28(1):92-5.
    6LaVail MM. Legacy of the RCS rat: impact of a seminal study on retinal cell biology and retinal degenerative diseases.Prog Brain Res.2001.131:617-27.
    7Vollrath D, Feng W, Duncan JL, et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral genetransfer of Mertk. Proc Natl Acad Sci U S A.2001.98(22):12584-9.
    Loewenstein JI, Montezuma SR, Rizzo JF3rd. Outer retinal degeneration: an electronic retinal prosthesis as a treatmentstrategy. Arch Ophthalmol.2004.122(4):587-96.
    1Deng WT, Dinculescu A, Li Q, et al. Tyrosine-mutant AAV8delivery of human MERTK provides long-term retinalpreservation in RCS rats. Invest Ophthalmol Vis Sci,2012,53(4):1895-904.
    1Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science.1998.282(5391):1145-7.
    2Singhal S, Bhatia B, Jayaram H, et al. Human Muller glia with stem cell characteristics differentiate into retinal ganglioncell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation. Stem Cells Transl Med.2012.1(3):188-99.
    3Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem)cell-free therapy. Front Physiol.2012.3:359.
    4Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature.2002.416(6880):545-8.
    1Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigment epithelial cells differentiatedfrom primate embryonic stem cells. Invest Ophthalmol Vis Sci.2004.45(3):1020-5.
    2Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigmentepithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells.2004.6(3):217-45.
    3Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic4R,8CS rats. Cloning Stem Cells.2006.8(3):189-99.Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis,expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    5Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and inducedpluripotent stem cells. Proc Natl Acad Sci U S A.2009.106(39):16698-703.
    6Ikeda H, Osakada F, Watanabe K, et al. Generation of Rx+/Pax6+neural retinal precursors from embryonic stem cells.Proc Natl Acad Sci U S A.2005.102(32):11331-6.
    7Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinalpigment epithelium cells. CELL STEM CELL.2009.5(4):396-408.
    1Zhu D, Deng X, Spee C, et al. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes
    2r,e6tinal progenitor cell survival. Invest Ophthalmol Vis Sci.2011.52(3):1573-85.Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis,expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    3Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinalpigment epithelium cells. CELL STEM CELL.2009.5(4):396-408.
    4Carr AJ, Vugler AA, Hikita ST, et al. Protective effects of human iPS-derived retinal pigment epithelium celltransplantation in the retinal dystrophic rat. PLOS ONE.2009.4(12): e8152.
    5Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophicRCS rats. Cloning Stem Cells.2006.8(3):189-99.
    7Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinicalmodels of macular degeneration. Stem Cells.2009.27(9):2126-35.
    8Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U. Neurally selected embryonic stem cells induce tumorformation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci.2004.45(12):4251-5.
    9Salero E, Blenkinsop TA, Corneo B, et al. Adult human RPE can be activated into a multipotent stem cell that producesmesenchymal derivatives. CELL STEM CELL.2012.10(1):88-95.
    Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminaryreport. Lancet.2012.379(9817):713-20.
    1Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures bydefined factors. Cell.2006.126(4):663-76.
    2Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stemcells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser BPhys Biol Sci.2009.85(8):348-62.
    3Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of
    4human cells with synthetic modified mRNA. CELL STEM CELL.2010.7(5):618-30.Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery ofreprogramming proteins. CELL STEM CELL.2009.4(6):472-6.
    5Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells.Science.2007.318(5858):1917-20.
    6Carr AJ, Vugler AA, Hikita ST, et al. Protective effects of human iPS-derived retinal pigment epithelium celltransplantation in the retinal dystrophic rat. PLOS ONE.2009.4(12): e8152.
    7Buchholz DE, Hikita ST, Rowland TJ, et al. Derivation of functional retinal pigmented epithelium from induced
    8pluripotent stem cells. Stem Cells.2009.27(10):2427-34.Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse and human induced pluripotent stemcells. Neurosci Lett.2009.458(3):126-31.
    9Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and inducedpluripotent stem cells. Proc Natl Acad Sci U S A.2009.106(39):16698-703.
    10Buchholz DE, Hikita ST, Rowland TJ, et al. Derivation of functional retinal pigmented epithelium from inducedpluripotent stem cells. Stem Cells.2009.27(10):2427-34.
    11Liao JL, Yu J, Huang K, et al. Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPEcells. Hum Mol Genet.2010.19(21):4229-38.
    Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells bysmall-molecule induction. J Cell Sci.2009.122(Pt17):3169-79.
    1Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cellsfacilitate a customized approach to retinal disease treatment. Stem Cells.2011.29(8):1206-18.
    2Doi A, Park IH, Wen B, et al. Differential methylation of tissue-and cancer-specific CpG island shores distinguisheshuman induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet.2009.41(12):1350-3.
    3Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature.2011.4471(7336):63-7.Kokkinaki M, Sahibzada N, Golestaneh N. Human induced pluripotent stem-derived retinal pigment epithelium (RPE)cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and geneexpression pattern similar to native RPE. Stem Cells.2011.29(5):825-35.
    5Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature.2011.474(7350):212-5.
    6Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from inducedpluripotent or embryonic stem cells. Nature.2013.494(7435):100-4.
    7Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derivedfrom syngeneic induced pluripotent stem cells. CELL STEM CELL.2013.12(4):407-12.
    Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-based banking of human pluripotentstem cells for transplantation: potential and limitations. Stem Cells Dev.2012.21(13):2364-73.
    1Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum. RegenMed.2009.4(3):423-33.
    2McGill TJ, Cottam B, Lu B, et al. Transplantation of human central nervous system stem cells-neuroprotection inretinal degeneration. Eur J Neurosci.2012.35(3):468-77.
    3Lund RD, Wang S, Lu B, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in arodent model of retinal disease. Stem Cells.2007.25(3):602-11.
    4Li Y, Reca RG, Atmaca-Sonmez P, et al. Retinal pigment epithelium damage enhances expression of chemoattractantsand migration of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci.2006.47(4):1646-52.
    Atmaca-Sonmez P, Li Y, Yamauchi Y, et al. Systemically transferred hematopoietic stem cells home to the subretinalspace and express RPE-65in a mouse model of retinal pigment epithelium damage. Exp Eye Res.2006.83(5):1295-302.
    1Otani A, Dorrell MI, Kinder K, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derivedlineage-negative hematopoietic stem cells. J Clin Invest.2004.114(6):765-74.
    2Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derivedmononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina.2011.31(6):1207-14.
    3Park SS, Caballero S, Bauer G, et al. Long-term effects of intravitreal injection of GMP-grade bone-marrow-derivedCD34+cells in NOD-SCID mice with acute ischemia-reperfusion injury. Invest Ophthalmol Vis Sci.2012.53(2):986-94.
    4Arnhold S, Absenger Y, Klein H, Addicks K, Schraermeyer U. Transplantation of bone marrow-derived mesenchymalstem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Arch Clin ExpOphthalmol.2007.245(3):414-22.
    Lu B, Wang S, Girman S, McGill T, Ragaglia V, Lund R. Human adult bone marrow-derived somatic cells rescue visionin a rodent model of retinal degeneration. Exp Eye Res.2010.91(3):449-55.
    12Strauss O. The retinal pigment epithelium in visual function. Physiol Rev.2005.85(3):845-81.Owen CG, Jarrar Z, Wormald R, Cook DG, Fletcher AE, Rudnicka AR. The estimated prevalence and incidence of latestage age related macular degeneration in the UK. Br J Ophthalmol.2012.96(5):752-6.
    3Friedman DS, O'Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. ArchOphthalmol.2004.122(4):564-72.
    4Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med.2008.358(24):2606-17.
    5Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related maculardegeneration. Science.2005.308(5720):419-21.
    6Churchill AJ, Carter JG, Lovell HC, et al. VEGF polymorphisms are associated with neovascular age-related maculardegeneration. Hum Mol Genet.2006.15(19):2955-61.
    7Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med.2008.358(24):2606-17.
    1Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med.2010.10(9):2802-23.De Jong PT. Age-related macular degeneration. N Engl J Med.2006.355(14):1474-85.
    3Walia S, Fishman GA. Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet.2009.30(2):63-8.
    4Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated inrecessive Stargardt macular dystrophy. Nat Genet.1997.15(3):236-46.
    5Zhang K, Kniazeva M, Han M, et al. A5-bp deletion in ELOVL4is associated with two related forms of autosomaldominant macular dystrophy. Nat Genet.2001.27(1):89-93.
    6Yang Z, Chen Y, Lillo C, et al. Mutant prominin1found in patients with macular degeneration disrupts photoreceptordisk morphogenesis in mice. J Clin Invest.2008.118(8):2908-16.
    7Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet.2006.368(9549):1795-809.
    1Hamel CP, Jenkins NA, Gilbert DJ, Copeland NG, Redmond TM. The gene for the retinal pigment epithelium-specificprotein RPE65is localized to human1p31and mouse3. Genomics.1994.20(3):509-12.
    2Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene,cause retinitis pigmentosa. Nat Genet.2000.26(3):270-1.
    3Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ. Ranibizumab and bevacizumab for neovascularage-related macular degeneration. N Engl J Med.2011.364(20):1897-908.
    4Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med.2006.355(14):1419-31.
    5Eandi CM, Giansanti F, Virgili G. Macular translocation for neovascular age-related macular degeneration. CochraneDatabase Syst Rev.2008.(4): CD006928.
    6Binder S, Stanzel BV, Krebs I, Glittenberg C. Transplantation of the RPE in AMD. Prog Retin Eye Res.2007.26(5):516-54.
    Tsukahara I, Ninomiya S, Castellarin A, Yagi F, Sugino IK, Zarbin MA. Early attachment of uncultured retinal pigmentepithelium from aged donors onto Bruch's membrane explants. Exp Eye Res.2002.74(2):255-66.
    1Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis,expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    2Tezel TH, Del PLV, Kaplan HJ. Reengineering of aged Bruch's membrane to enhance retinal pigment epitheliumrepopulation. Invest Ophthalmol Vis Sci.2004.45(9):3337-48.
    3Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminaryreport. Lancet.2012.379(9817):713-20.
    Carr AJ, Smart MJ, Ramsden CM, Powner MB, da CL, Coffey PJ. Development of human embryonic stem celltherapies for age-related macular degeneration. Trends Neurosci.2013.36(7):385-95.
    1Medeiros NE, Curcio CA. Preservation of ganglion cell layer neurons in age-related macular degeneration. InvestOphthalmol Vis Sci.2001.42(3):795-803.
    2Humayun MS, de Juan E Jr, del CM, et al. Human neural retinal transplantation. Invest Ophthalmol Vis Sci.2000.41(10):3100-6.
    3MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation of photoreceptor precursors. Nature.2006.444(7116):203-7.
    4Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation of photoreceptors. Nature.2012.485(7396):99-103.
    5Radtke ND, Aramant RB, Seiler MJ, Petry HM, Pidwell D. Vision change after sheet transplant of fetal retina with
    6retinal pigment epithelium to a patient with retinitis pigmentosa. Arch Ophthalmol.2004.122(8):1159-65Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stemcells. Proc Natl Acad Sci U S A.2006.103(34):12769-74.
    7Banin E, Obolensky A, Idelson M, et al. Retinal incorporation and differentiation of neural precursors derived fromhuman embryonic stem cells. Stem Cells.2006.24(2):246-57.
    8Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells bysmall-molecule induction. J Cell Sci.2009.122(Pt17):3169-79.
    9Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells1f0acilitate a customized approach to retinal disease treatment. Stem Cells.2011.29(8):1206-18.Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M. Efficient stage-specific differentiation of humanpluripotent stem cells toward retinal photoreceptor cells. Stem Cells.2012.30(4):673-86.
    11Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse and human induced pluripotent stemcells. Neurosci Lett.2009.458(3):126-31.
    12Garita-Hernandez M, Diaz-Corrales F, Lukovic D, et al. Hypoxia increases the yield of photoreceptors differentiatingfrom mouse embryonic stem cells and improves the modeling of retinogenesis in vitro. Stem Cells.2013.31(5):966-78.
    13MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation of photoreceptor precursors. Nature.2006.444(7116):203-7.
    Zhu D, Deng X, Spee C, et al. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotesretinal progenitor cell survival. Invest Ophthalmol Vis Sci.2011.52(3):1573-85.
    1Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature.2011.472(7341):51-6.
    Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs.CELL STEM CELL.2012.10(6):771-85.
    1. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev.2005.85(3):845-81.
    2. Marchese C, Felici A, Visco V, et al. Fibroblast growth factor10induces proliferationand differentiation of human primary cultured keratinocytes. J Invest Dermatol.2001.116(4):623-8.
    3. Petrukhin K, Koisti MJ, Bakall B, et al. Identification of the gene responsible for Bestmacular dystrophy. Nat Genet.1998.19(3):241-7.
    4. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K.Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2),localizes to the basolateral plasma membrane of the retinal pigment epithelium. ProcNatl Acad Sci U S A.2000.97(23):12758-63.
    5. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. Insights into thefunction of Rim protein in photoreceptors and etiology of Stargardt's disease from thephenotype in abcr knockout mice. Cell.1999.98(1):13-23.
    6. Marlhens F, Bareil C, Griffoin JM, et al. Mutations in RPE65cause Leber's congenitalamaurosis. Nat Genet.1997.17(2):139-41.
    7. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations inthe RPE65gene in patients with autosomal recessive retinitis pigmentosa or lebercongenital amaurosis. Proc Natl Acad Sci U S A.1998.95(6):3088-93.
    8. Delcourt C, Lacroux A, Carriere I. The three-year incidence of age-related maculardegeneration: the "Pathologies Oculaires Liees a l'Age"(POLA) prospective study. AmJ Ophthalmol.2005.140(5):924-6.
    9. Klein R, Klein BE, Knudtson MD. Frailty and age-related macular degeneration: theBeaver Dam Eye Study. Am J Ophthalmol.2005.140(1):129-31.
    10. Leske MC, Wu SY, Hennis A, et al. Nine-year incidence of age-related maculardegeneration in the Barbados Eye Studies. Ophthalmology.2006.113(1):29-35.
    11. Jones BW, Watt CB, Frederick JM, et al. Retinal remodeling triggered byphotoreceptor degenerations. J Comp Neurol.2003.464(1):1-16.
    12. da CL, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its rolein retinal disease. Prog Retin Eye Res.2007.26(6):598-635.
    13. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from humanbone marrow differentiate in vitro according to a hierarchical model. J Cell Sci.2000.113(Pt7):1161-6.
    14. Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. StemCells.2002.20(3):205-14.
    15. Bhagavati S, Xu W. Isolation and enrichment of skeletal muscle progenitor cells frommouse bone marrow. Biochem Biophys Res Commun.2004.318(1):119-24.
    16. Kamanga-Sollo E, Pampusch MS, White ME, Dayton WR. Role of insulin-like growthfactor binding protein (IGFBP)-3in TGF-beta-and GDF-8(myostatin)-inducedsuppression of proliferation in porcine embryonic myogenic cell cultures. J Cell Physiol.
    2003.197(2):225-31.
    17.刘厚奇.人干细胞的分化研究及临床应用探索.第二军医大学学报.2003.(09):929-932.
    18. Lavker RM, Tseng SC, Sun TT. Corneal epithelial stem cells at the limbus: looking atsome old problems from a new angle. Exp Eye Res.2004.78(3):433-46.
    19. Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp EyeRes.2004.78(3):573-8.
    20. Kaplan HJ, Tezel TH, Del PLV. Retinal pigment epithelial transplantation inage-related macular degeneration. Retina.1998.18(2):99-102.
    21. Abe T, Yoshida M, Tomita H, et al. Auto iris pigment epithelial cell transplantation inpatients with age-related macular degeneration: short-term results. Tohoku J Exp Med.
    2000.191(1):7-20.
    22. Aoki H, Hara A, Nakagawa S, et al. Embryonic stem cells that differentiate into RPEcell precursors in vitro develop into RPE cell monolayers in vivo. Exp Eye Res.2006.82(2):265-74.
    23. Phillips SJ, Sadda SR, Tso MO, Humayan MS, de Juan E Jr, Binder S. Autologoustransplantation of retinal pigment epithelium after mechanical debridement of Bruch'smembrane. Curr Eye Res.2003.26(2):81-8.
    24. Van Meurs JC, ter AE, Hofland LJ, et al. Autologous peripheral retinal pigmentepithelium translocation in patients with subfoveal neovascular membranes. Br JOphthalmol.2004.88(1):110-3.
    25. Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA. Impaired RPE survivalon aged submacular human Bruch's membrane. Exp Eye Res.2005.80(2):235-48.
    26. Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigmentepithelial cells differentiated from primate embryonic stem cells. Invest OphthalmolVis Sci.2004.45(3):1020-5.
    27. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation andcomparative assessment of retinal pigment epithelium from human embryonic stemcells using transcriptomics. Cloning Stem Cells.2004.6(3):217-45.
    28. Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cellsrescue visual function in dystrophic RCS rats. Cloning Stem Cells.2006.8(3):189-99.
    29. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derivedfrom human blastocysts. Science.1998.282(5391):1145-7.
    30. Haruta M. Embryonic stem cells: potential source for ocular repair. Semin Ophthalmol.2005.20(1):17-23.
    31. Aoki H, Hara A, Nakagawa S, et al. Embryonic stem cells that differentiate into RPEcell precursors in vitro develop into RPE cell monolayers in vivo. Exp Eye Res.2006.82(2):265-74.
    32. Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigmentepithelial cells differentiated from primate embryonic stem cells. Invest OphthalmolVis Sci.2004.45(3):1020-5.
    33. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation andcomparative assessment of retinal pigment epithelium from human embryonic stemcells using transcriptomics. Cloning Stem Cells.2004.6(3):217-45.
    34. Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cellsrescue visual function in dystrophic RCS rats. Cloning Stem Cells.2006.8(3):189-99.
    35. Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derivedRPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    36. Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonicstem cells into functional retinal pigment epithelium cells. CELL STEM CELL.2009.5(4):396-408.
    37. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis inthree-dimensional culture. Nature.2011.472(7341):51-6.
    38. Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratifiedneural retina from human ESCs. CELL STEM CELL.2012.10(6):771-85.
    39. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for maculardegeneration: a preliminary report. Lancet.2012.379(9817):713-20.
    40. Ben-David U, Kopper O, Benvenisty N. Expanding the boundaries of embryonic stemcells. CELL STEM CELL.2012.10(6):666-77.
    41. Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on thedevelopmental continuum. Regen Med.2009.4(3):423-33.
    42. McGill TJ, Cottam B, Lu B, et al. Transplantation of human central nervous systemstem cells-neuroprotection in retinal degeneration. Eur J Neurosci.2012.35(3):468-77.
    43. Lund RD, Wang S, Lu B, et al. Cells isolated from umbilical cord tissue rescuephotoreceptors and visual functions in a rodent model of retinal disease. Stem Cells.2007.25(3):602-11.
    44. Li Y, Reca RG, Atmaca-Sonmez P, et al. Retinal pigment epithelium damage enhancesexpression of chemoattractants and migration of bone marrow-derived stem cells.Invest Ophthalmol Vis Sci.2006.47(4):1646-52.
    45. Atmaca-Sonmez P, Li Y, Yamauchi Y, et al. Systemically transferred hematopoieticstem cells home to the subretinal space and express RPE-65in a mouse model of retinalpigment epithelium damage. Exp Eye Res.2006.83(5):1295-302.
    46. Otani A, Dorrell MI, Kinder K, et al. Rescue of retinal degeneration by intravitreallyinjected adult bone marrow-derived lineage-negative hematopoietic stem cells. J ClinInvest.2004.114(6):765-74.
    47. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection ofautologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: aphase I trial. Retina.2011.31(6):1207-14.
    48. Park SS, Caballero S, Bauer G, et al. Long-term effects of intravitreal injection ofGMP-grade bone-marrow-derived CD34+cells in NOD-SCID mice with acuteischemia-reperfusion injury. Invest Ophthalmol Vis Sci.2012.53(2):986-94.
    49. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derivedfrom human blastocysts. Science.1998.282(5391):1145-7.
    50. Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonicstem cells. Trends Cell Biol.2002.12(9):432-8.
    51. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrowstromal cells differentiate into neurons. J Neurosci Res.2000.61(4):364-70.
    52. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult humanmesenchymal stem cells. Science.1999.284(5411):143-7.
    53. Spees JL, Olson SD, Ylostalo J, et al. Differentiation, cell fusion, and nuclear fusionduring ex vivo repair of epithelium by human adult stem cells from bone marrowstroma. Proc Natl Acad Sci U S A.2003.100(5):2397-402.
    54. Bhagavati S, Xu W. Isolation and enrichment of skeletal muscle progenitor cells frommouse bone marrow. Biochem Biophys Res Commun.2004.318(1):119-24.
    55. Hermann A, Gastl R, Liebau S, et al. Efficient generation of neural stem cell-like cellsfrom adult human bone marrow stromal cells. J Cell Sci.2004.117(Pt19):4411-22.
    56. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cellsderived from adult marrow. Nature.2002.418(6893):41-9.
    57. Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. StemCells.2002.20(3):205-14.
    58. Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derivedRPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    59. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and theirniche. Cell.2004.116(6):769-78.
    60. Chiou SH, Kao CL, Peng CH, et al. A novel in vitro retinal differentiation model byco-culturing adult human bone marrow stem cells with retinal pigmented epitheliumcells. Biochem Biophys Res Commun.2005.326(3):578-85.
    61. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature.2001.414(6859):98-104.
    62. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stemcells. Nature.2002.417(6884):39-44.
    63. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrowstromal cells differentiate into neurons. J Neurosci Res.2000.61(4):364-70.
    64. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotentprogenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain.Exp Hematol.2002.30(8):896-904.
    65. Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM.Neuroectodermal differentiation from mouse multipotent adult progenitor cells. ProcNatl Acad Sci U S A.2003.100Suppl1:11854-60.
    66. Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cellsrescue visual function in dystrophic RCS rats. Cloning Stem Cells.2006.8(3):189-99.
    67. Vossmerbaeumer U, Ohnesorge S, Kuehl S, et al. Retinal pigment epithelial phenotypeinduced in human adipose tissue-derived mesenchymal stromal cells. Cytotherapy.2009.11(2):177-88.
    68. Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromalcells differentiate into pigment epithelial cells and induce rescue effects in RCS rats.Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    69. Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V. Endogenousbone marrow derived cells express retinal pigment epithelium cell markers and migrateto focal areas of RPE damage. Invest Ophthalmol Vis Sci.2007.48(9):4321-7.
    70. Hou L, Cao H, Wang D, et al. Induction of umbilical cord blood mesenchymal stemcells into neuron-like cells in vitro. Int J Hematol.2003.78(3):256-61.
    71. Majumdar MK, Wang E, Morris EA. BMP-2and BMP-9promotes chondrogenicdifferentiation of human multipotential mesenchymal cells and overcomes theinhibitory effect of IL-1. J Cell Physiol.2001.189(3):275-84.
    72. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitrochondrogenesis of bone marrow-derived mesenchymal stem cells in aphotopolymerizing hydrogel. Tissue Eng.2003.9(4):679-88.
    73. Liu DN, Yin ZQ, Wu N, Wang YH, Chen LF. Rat bone marrow stromal cells expressretinal phenotypic markers following different induction protocols. Ophthalmic Res.2009.41(4):186-93.
    74. Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromalcells differentiate into pigment epithelial cells and induce rescue effects in RCS rats.Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    75. Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V. Endogenousbone marrow derived cells express retinal pigment epithelium cell markers and migrateto focal areas of RPE damage. Invest Ophthalmol Vis Sci.2007.48(9):4321-7.
    76. Chiou SH, Kao CL, Peng CH, et al. A novel in vitro retinal differentiation model byco-culturing adult human bone marrow stem cells with retinal pigmented epitheliumcells. Biochem Biophys Res Commun.2005.326(3):578-85.
    77. Carr AJ, Vugler A, Lawrence J, et al. Molecular characterization and functionalanalysis of phagocytosis by human embryonic stem cell-derived RPE cells using anovel human retinal assay. Mol Vis.2009.15:283-95.
    78. Awad HA, Butler DL, Boivin GP, et al. Autologous mesenchymal stem cell-mediatedrepair of tendon. Tissue Eng.1999.5(3):267-77.
    79. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells withosteogenic potential from human marrow. Bone.1992.13(1):81-8.
    80. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult humanmesenchymal stem cells. Science.1999.284(5411):143-7.
    81. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses.Exp Hematol.2000.28(8):875-84.
    82. Lodie TA, Blickarz CE, Devarakonda TJ, et al. Systematic analysis of reportedlydistinct populations of multipotent bone marrow-derived stem cells reveals a lack ofdistinction. Tissue Eng.2002.8(5):739-51.
    83. Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells fromthe bone marrow of commonly used strains of inbred mice: variations in yield, growth,and differentiation. J Cell Biochem.1999.72(4):570-85.
    84. Nash MS, Osborne NN. Pertussis toxin-sensitive melatonin receptors negativelycoupled to adenylate cyclase associated with cultured human and rat retinal pigmentepithelial cells. Invest Ophthalmol Vis Sci.1995.36(1):95-102.
    85. Hu DN, McCormick SA, Ritch R, Pelton-Henrion K. Studies of human uvealmelanocytes in vitro: isolation, purification and cultivation of human uveal melanocytes.Invest Ophthalmol Vis Sci.1993.34(7):2210-9.
    86. Huang L, Xu Y, Yu W, et al. Effect of Robo1on retinal pigment epithelial cells andexperimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci.2010.51(6):3193-204.
    87. Hong Y, Xu GX. Proteome changes during bone mesenchymal stem cell differentiationinto photoreceptor-like cells in vitro. Int J Ophthalmol.2011.4(5):466-73.
    88. Chiou SH, Kao CL, Peng CH, et al. A novel in vitro retinal differentiation model byco-culturing adult human bone marrow stem cells with retinal pigmented epitheliumcells. Biochem Biophys Res Commun.2005.326(3):578-85.
    89. Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE.Chondrogenic differentiation of human bone marrow stem cells in transwell cultures:generation of scaffold-free cartilage. Stem Cells.2007.25(11):2786-96.
    90. Hong Y, Xu GX. Proteome changes during bone mesenchymal stem cell differentiationinto photoreceptor-like cells in vitro. Int J Ophthalmol.2011.4(5):466-73.
    91. Klassen H, Sakaguchi DS, Young MJ. Stem cells and retinal repair. Prog Retin Eye Res.2004.23(2):149-81.
    92. Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromalcells differentiate into pigment epithelial cells and induce rescue effects in RCS rats.Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    93. Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V. Endogenousbone marrow derived cells express retinal pigment epithelium cell markers and migrateto focal areas of RPE damage. Invest Ophthalmol Vis Sci.2007.48(9):4321-7.
    94. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for maculardegeneration: a preliminary report. Lancet.2012.379(9817):713-20.
    95. Enzmann V, Row BW, Yamauchi Y, et al. Behavioral and anatomical abnormalities ina sodium iodate-induced model of retinal pigment epithelium degeneration. Exp EyeRes,2006,82(3):441-8.
    96. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration.Prog Retin Eye Res.2003.22(5):607-55.
    97. Tao Z, Dai J, He J, Li C, Li Y, Yin ZQ. The influence of NaIO(3)-induced retinaldegeneration on intra-retinal layer and the changes of expression profile/morphologyof DA-ACs and mRGCS. Mol Neurobiol.2013.47(1):241-60.
    98. Franco LM, Zulliger R, Wolf-Schnurrbusch UE, et al. Decreased visual function afterpatchy loss of retinal pigment epithelium induced by low-dose sodium iodate. InvestOphthalmol Vis Sci.2009.50(8):4004-10.
    99. Korte GE, Gerszberg T, Pua F, Henkind P. Choriocapillaris atrophy after experimentaldestruction of the retinal pigment epithelium in the rat. A study in thin sections andvascular casts. Acta Anat (Basel).1986.127(3):171-5.
    100.Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stemcells. Nat Biotechnol.2005.23(6):699-708.
    101.Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromalcells differentiate into pigment epithelial cells and induce rescue effects in RCS rats.Invest Ophthalmol Vis Sci.2006.47(9):4121-9.
    102.Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of theRCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet.2000.26(3):270-1.
    103.DOWLING JE, SIDMAN RL. Inherited retinal dystrophy in the rat. J Cell Biol.1962.14:73-109.
    104.Bourne MC, Campbell DA, Tansley K. HEREDITARY DEGENERATION OF THERAT RETINA. Br J Ophthalmol.1938.22(10):613-23.
    105.Bennett J. Gene therapy for retinitis pigmentosa. Curr Opin Mol Ther.2000.2(4):420-5.
    106.Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine modelof childhood blindness. Nat Genet.2001.28(1):92-5.
    107.LaVail MM. Legacy of the RCS rat: impact of a seminal study on retinal cell biologyand retinal degenerative diseases. Prog Brain Res.2001.131:617-27.
    108.Vollrath D, Feng W, Duncan JL, et al. Correction of the retinal dystrophy phenotype ofthe RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci U S A.2001.98(22):12584-9.
    109.Loewenstein JI, Montezuma SR, Rizzo JF3rd. Outer retinal degeneration: an electronicretinal prosthesis as a treatment strategy. Arch Ophthalmol.2004.122(4):587-96.
    110.Deng WT, Dinculescu A, Li Q, et al. Tyrosine-mutant AAV8delivery of humanMERTK provides long-term retinal preservation in RCS rats. Invest Ophthalmol VisSci,2012,53(4):1895-904.
    1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derivedfrom human blastocysts. Science.1998.282(5391):1145-7.
    2. Singhal S, Bhatia B, Jayaram H, et al. Human Muller glia with stem cell characteristicsdifferentiate into retinal ganglion cell (RGC) precursors in vitro and partially restoreRGC function in vivo following transplantation. Stem Cells Transl Med.2012.1(3):188-99.
    3. Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles providenovel opportunities in (stem) cell-free therapy. Front Physiol.2012.3:359.
    4. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion.Nature.2002.416(6880):545-8.
    5. Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigmentepithelial cells differentiated from primate embryonic stem cells. Invest OphthalmolVis Sci.2004.45(3):1020-5.
    6. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation andcomparative assessment of retinal pigment epithelium from human embryonic stemcells using transcriptomics. Cloning Stem Cells.2004.6(3):217-45.
    7. Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cellsrescue visual function in dystrophic RCS rats. Cloning Stem Cells.2006.8(3):189-99.
    8. Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derivedRPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    9. Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development withhuman embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A.2009.106(39):16698-703.
    10. Ikeda H, Osakada F, Watanabe K, et al. Generation of Rx+/Pax6+neural retinalprecursors from embryonic stem cells. Proc Natl Acad Sci U S A.2005.102(32):11331-6.
    11. Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonicstem cells into functional retinal pigment epithelium cells. CELL STEM CELL.2009.5(4):396-408.
    12. Zhu D, Deng X, Spee C, et al. Polarized secretion of PEDF from human embryonicstem cell-derived RPE promotes retinal progenitor cell survival. Invest Ophthalmol VisSci.2011.52(3):1573-85.
    13. Carr AJ, Vugler AA, Hikita ST, et al. Protective effects of human iPS-derived retinalpigment epithelium cell transplantation in the retinal dystrophic rat. PLOS ONE.2009.4(12): e8152.
    14. Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from humanembryonic stem cells in preclinical models of macular degeneration. Stem Cells.2009.27(9):2126-35.
    15. Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U. Neurally selectedembryonic stem cells induce tumor formation after long-term survival followingengraftment into the subretinal space. Invest Ophthalmol Vis Sci.2004.45(12):4251-5.
    16. Salero E, Blenkinsop TA, Corneo B, et al. Adult human RPE can be activated into amultipotent stem cell that produces mesenchymal derivatives. CELL STEM CELL.
    2012.10(1):88-95.
    17. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for maculardegeneration: a preliminary report. Lancet.2012.379(9817):713-20.
    18. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonicand adult fibroblast cultures by defined factors. Cell.2006.126(4):663-76.
    19. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction oftransgene-free human pluripotent stem cells using a vector based on Sendai virus, anRNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys BiolSci.2009.85(8):348-62.
    20. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotencyand directed differentiation of human cells with synthetic modified mRNA. CELLSTEM CELL.2010.7(5):618-30.
    21. Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells bydirect delivery of reprogramming proteins. CELL STEM CELL.2009.4(6):472-6.
    22. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derivedfrom human somatic cells. Science.2007.318(5858):1917-20.
    23. Buchholz DE, Hikita ST, Rowland TJ, et al. Derivation of functional retinal pigmentedepithelium from induced pluripotent stem cells. Stem Cells.2009.27(10):2427-34.
    24. Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse andhuman induced pluripotent stem cells. Neurosci Lett.2009.458(3):126-31.
    25. Buchholz DE, Hikita ST, Rowland TJ, et al. Derivation of functional retinal pigmentedepithelium from induced pluripotent stem cells. Stem Cells.2009.27(10):2427-34.
    26. Liao JL, Yu J, Huang K, et al. Molecular signature of primary retinal pigmentepithelium and stem-cell-derived RPE cells. Hum Mol Genet.2010.19(21):4229-38.
    27. Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from humanpluripotent stem cells by small-molecule induction. J Cell Sci.2009.122(Pt17):3169-79.
    28. Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived fromhuman pluripotent stem cells facilitate a customized approach to retinal diseasetreatment. Stem Cells.2011.29(8):1206-18.
    29. Doi A, Park IH, Wen B, et al. Differential methylation of tissue-and cancer-specificCpG island shores distinguishes human induced pluripotent stem cells, embryonic stemcells and fibroblasts. Nat Genet.2009.41(12):1350-3.
    30. Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotentstem cells. Nature.2011.471(7336):63-7.
    31. Kokkinaki M, Sahibzada N, Golestaneh N. Human induced pluripotent stem-derivedretinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential,polarized vascular endothelial growth factor secretion, and gene expression patternsimilar to native RPE. Stem Cells.2011.29(5):825-35.
    32. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells.Nature.2011.474(7350):212-5.
    33. Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiatedcells derived from induced pluripotent or embryonic stem cells. Nature.2013.494(7435):100-4.
    34. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immuneresponse to differentiated cells derived from syngeneic induced pluripotent stem cells.CELL STEM CELL.2013.12(4):407-12.
    35. Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-basedbanking of human pluripotent stem cells for transplantation: potential and limitations.Stem Cells Dev.2012.21(13):2364-73.
    36. Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on thedevelopmental continuum. Regen Med.2009.4(3):423-33.
    37. McGill TJ, Cottam B, Lu B, et al. Transplantation of human central nervous systemstem cells-neuroprotection in retinal degeneration. Eur J Neurosci.2012.35(3):468-77.
    38. Lund RD, Wang S, Lu B, et al. Cells isolated from umbilical cord tissue rescuephotoreceptors and visual functions in a rodent model of retinal disease. Stem Cells.2007.25(3):602-11.
    39. Li Y, Reca RG, Atmaca-Sonmez P, et al. Retinal pigment epithelium damage enhancesexpression of chemoattractants and migration of bone marrow-derived stem cells.Invest Ophthalmol Vis Sci.2006.47(4):1646-52.
    40. Atmaca-Sonmez P, Li Y, Yamauchi Y, et al. Systemically transferred hematopoieticstem cells home to the subretinal space and express RPE-65in a mouse model of retinalpigment epithelium damage. Exp Eye Res.2006.83(5):1295-302.
    41. Otani A, Dorrell MI, Kinder K, et al. Rescue of retinal degeneration by intravitreallyinjected adult bone marrow-derived lineage-negative hematopoietic stem cells. J ClinInvest.2004.114(6):765-74.
    42. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection ofautologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: aphase I trial. Retina.2011.31(6):1207-14.
    43. Park SS, Caballero S, Bauer G, et al. Long-term effects of intravitreal injection ofGMP-grade bone-marrow-derived CD34+cells in NOD-SCID mice with acuteischemia-reperfusion injury. Invest Ophthalmol Vis Sci.2012.53(2):986-94.
    44. Arnhold S, Absenger Y, Klein H, Addicks K, Schraermeyer U. Transplantation of bonemarrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophicretina of the rhodopsin knockout mouse. Graefes Arch Clin Exp Ophthalmol.2007.245(3):414-22.
    45. Lu B, Wang S, Girman S, McGill T, Ragaglia V, Lund R. Human adult bonemarrow-derived somatic cells rescue vision in a rodent model of retinal degeneration.Exp Eye Res.2010.91(3):449-55.
    46. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev.2005.85(3):845-81.
    47. Owen CG, Jarrar Z, Wormald R, Cook DG, Fletcher AE, Rudnicka AR. The estimatedprevalence and incidence of late stage age related macular degeneration in the UK. Br JOphthalmol.2012.96(5):752-6.
    48. Friedman DS, O'Colmain BJ, Munoz B, et al. Prevalence of age-related maculardegeneration in the United States. Arch Ophthalmol.2004.122(4):564-72.
    49. Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med.2008.358(24):2606-17.
    50. Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases therisk of age-related macular degeneration. Science.2005.308(5720):419-21.
    51. Churchill AJ, Carter JG, Lovell HC, et al. VEGF polymorphisms are associated withneovascular age-related macular degeneration. Hum Mol Genet.2006.15(19):2955-61.
    52. Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease.Curr Mol Med.2010.10(9):802-23.
    53. De Jong PT. Age-related macular degeneration. N Engl J Med.2006.355(14):1474-85.
    54. Walia S, Fishman GA. Natural history of phenotypic changes in Stargardt maculardystrophy. Ophthalmic Genet.2009.30(2):63-8.
    55. Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-bindingtransporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. NatGenet.1997.15(3):236-46.
    56. Zhang K, Kniazeva M, Han M, et al. A5-bp deletion in ELOVL4is associated withtwo related forms of autosomal dominant macular dystrophy. Nat Genet.2001.27(1):89-93.
    57. Yang Z, Chen Y, Lillo C, et al. Mutant prominin1found in patients with maculardegeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest.2008.118(8):2908-16.
    58. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet.2006.368(9549):1795-809.
    59. Hamel CP, Jenkins NA, Gilbert DJ, Copeland NG, Redmond TM. The gene for theretinal pigment epithelium-specific protein RPE65is localized to human1p31andmouse3. Genomics.1994.20(3):509-12.
    60. Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of theRCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet.2000.26(3):270-1.
    61. Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ. Ranibizumab andbevacizumab for neovascular age-related macular degeneration. N Engl J Med.2011.364(20):1897-908.
    62. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-relatedmacular degeneration. N Engl J Med.2006.355(14):1419-31.
    63. Eandi CM, Giansanti F, Virgili G. Macular translocation for neovascular age-relatedmacular degeneration. Cochrane Database Syst Rev.2008.(4): CD006928.
    64. Binder S, Stanzel BV, Krebs I, Glittenberg C. Transplantation of the RPE in AMD.Prog Retin Eye Res.2007.26(5):516-54.
    65. Da CL, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its rolein retinal disease. Prog Retin Eye Res.2007.26(6):598-635.
    66. Chen FK, Uppal GS, MacLaren RE, et al. Long-term visual and microperimetryoutcomes following autologous retinal pigment epithelium choroid graft forneovascular age-related macular degeneration. Clin Experiment Ophthalmol.2009.37(3):275-85.
    67. Van Zeeburg EJ, Maaijwee KJ, Missotten TO, Heimann H, van Meurs JC. A freeretinal pigment epithelium-choroid graft in patients with exudative age-related maculardegeneration: results up to7years. Am J Ophthalmol.2012.153(1):120-7.e2.
    68. Tsukahara I, Ninomiya S, Castellarin A, Yagi F, Sugino IK, Zarbin MA. Earlyattachment of uncultured retinal pigment epithelium from aged donors onto Bruch'smembrane explants. Exp Eye Res.2002.74(2):255-66.
    69. Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derivedRPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol.2008.214(2):347-61.
    70. Tezel TH, Del PLV, Kaplan HJ. Reengineering of aged Bruch's membrane to enhanceretinal pigment epithelium repopulation. Invest Ophthalmol Vis Sci.2004.45(9):3337-48.
    71. Carr AJ, Smart MJ, Ramsden CM, Powner MB, da CL, Coffey PJ. Development ofhuman embryonic stem cell therapies for age-related macular degeneration. TrendsNeurosci.2013.36(7):385-95.
    72. Medeiros NE, Curcio CA. Preservation of ganglion cell layer neurons in age-relatedmacular degeneration. Invest Ophthalmol Vis Sci.2001.42(3):795-803.
    73. Humayun MS, de Juan E Jr, del CM, et al. Human neural retinal transplantation. InvestOphthalmol Vis Sci.2000.41(10):3100-6.
    74. MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation ofphotoreceptor precursors. Nature.2006.444(7116):203-7.
    75. Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation ofphotoreceptors. Nature.2012.485(7396):99-103.
    76. Radtke ND, Aramant RB, Seiler MJ, Petry HM, Pidwell D. Vision change after sheettransplant of fetal retina with retinal pigment epithelium to a patient with retinitispigmentosa. Arch Ophthalmol.2004.122(8):1159-65.
    77. Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitorcells from human embryonic stem cells. Proc Natl Acad Sci U S A.2006.103(34):12769-74.
    78. Banin E, Obolensky A, Idelson M, et al. Retinal incorporation and differentiation ofneural precursors derived from human embryonic stem cells. Stem Cells.2006.24(2):246-57.
    79. Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M. Efficientstage-specific differentiation of human pluripotent stem cells toward retinalphotoreceptor cells. Stem Cells.2012.30(4):673-86.
    80. Garita-Hernandez M, Diaz-Corrales F, Lukovic D, et al. Hypoxia increases the yield ofphotoreceptors differentiating from mouse embryonic stem cells and improves themodeling of retinogenesis in vitro. Stem Cells.2013.31(5):966-78.
    81. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis inthree-dimensional culture. Nature.2011.472(7341):51-6.
    82. Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratifiedneural retina from human ESCs. CELL STEM CELL.2012.10(6):771-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700