用户名: 密码: 验证码:
分级竹帘人造板的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的竹篾(竹帘)人造板加工企业多将性质变异较大的竹篾混合利用,但是这往往难以做到材料的高效利用。本研究的主要目的是通过竹篾分级、不同等级竹帘层压板的力学性质研究和分级竹帘人造板抗弯弹性模量的模拟预测研究,初步获得竹篾的分级方法、分级竹帘层压板的重要力学性质、抗弯用竹帘人造板板坯结构设计的模拟方法,为竹篾的分级利用建立基础。为实现该目的,本文选择我国蓄积量最大的毛竹(Phyllostachys pubescens)为试验材料,主要做了以下三项工作:不同部位竹材物理力学性质测试分析以及竹篾分级方法的制定;分级竹帘层压板的部分重要力学性质研究;分级竹帘人造板(竹帘层压板和竹帘胶合板)的抗弯弹性模量的模拟预测及其验证。
     首先将毛竹轴向分段、径向分层取样系统测试了不同部位毛竹的基本性质(包括基本密度、气干密度、弦向干缩率、顺纹抗拉弹性模量和顺纹抗拉强度等),主要结果有:不同部位毛竹的基本密度的平均值在0.487-0.904g/cm~3之间,气干密度的平均值在0.637-1.142g/cm~3之间;不同部位毛竹的弦向气干干缩率的平均值在2.00-4.97%之间,弦向全干干缩率的平均值在4.82-8.60%之间。不同部位毛竹的顺纹抗拉弹性模量的平均值在8.49-32.49GPa之间,顺纹抗拉强度平均值在112.89-331.49MPa之间。毛竹的气干密度、基本密度、弦向干缩率、顺纹抗拉弹性模量和顺纹抗拉强度从竹青向竹黄方向变异很大,呈逐渐降低的趋势。
     在不同部位竹材性质测试的基础上,分析了竹材、木材物理力学性质的差异,建立了毛竹的物理力学性质与密度之间关系的拟合方程,并针对将竹壁分成6层等厚竹篾工艺生产的竹篾,根据竹材的抗拉弹性模量分别制定了分4级、3级和2级等3种力学分级方法。
     借鉴竹帘胶合板的成熟生产工艺,在实验室里制成了不同等级的竹帘层压板,分别研究了其抗弯和抗压等力学性质,结果表明等级间的力学性质差异很大:最高等级层压板的抗弯弹性模量的平均值20.786GPa,是最低等级6.931 GPa的3倍;最高等级层压板的抗弯强度的平均值205.264MPa是最低等级98.443 MPa的2倍;最高等级层压板的抗弯比例极限的平均值127.09MPa,是最低等级59.70 MPa的2倍;最高等级层压板的抗压强度的平均值94.425MPa,是最低等级52.124 MPa的2倍。由于不同等级竹帘层压板的力学性质差异大,因此竹篾分级有利于适材适用,具有很大的必要性。
    
    摘要
     老化处理后IVZ级竹帘层压板的厚度平均值增加比率最低(4%),I级
    和111级竹帘层压板的厚度增加率较高,分别为11%和12%。利用老化处理
    前的初始厚度计算力学性质,I级、m级、VIZ级竹帘层压板的抗弯强度保
    留率分别为107%、72%和63%(都在50%以上);抗弯弹性模量的保留率
    都在100%以上。利用老化处理后的实际尺寸计算力学性质,I级、111级、
    VIZ级竹帘层压板的抗弯强度保留率分别为88%、53%和58%;I级、IIJ
    级、巩2级竹帘层压板的抗弯弹性模量保留率分别为82%、69%和90%;
    工级、IJl级、讥2级竹帘层压板的顺纹抗压强度保留率都很高,分别为84
    %、82%和80%。从以上的数据比较可以看出:竹蔑分级之后,带有少量
    竹青的工级竹蔑和带有少量竹黄的VIZ级竹蔑各自压成的竹帘层压板并未比
    111级竹帘层压板的耐老化性能差。相反,I级竹帘层压板的抗弯强度保留率
    在3种层压板中是最高的,抗弯弹性模量的保留率在111级和竹2级之间;
    VIZ级竹帘层压板的抗弯强度保留率与111级竹帘层压板的相当,而弹性模量
    的保留率最高,厚度变化率最小。
     在21%破坏荷载的应力水平,通过对H级、且一1级两个等级的低含水率
     (MC:5一7%)的竹帘层压板的抗弯蠕变比较研究,初步得出如下结论:用
    幂律方程来拟合竹帘层压板的蠕变因子和时间的关系,效果很好,判定系数
    RZ都在0.89以上。除了在层压板边缘所取试样(B4)之外,两个等级的竹
    帘层压板试样经过相同的蠕变时间之后其蠕变因子差异都很小。而且,两个
    等级的竹帘层压板的抗弯蠕变性能都比较好:5个试样的蠕变因子的平均值,
    经过60天之后为0.16,估计经过1年之后为住26,估计经过10年之后为
    0.49,估计经过50年之后为0.75。即使对于5个试样中蠕变性能最差的B4
    而一言,其蠕变变形也很小,经过60天之后其蠕变因子为0.24,经过90天之
    后为0.27,估计经过10年之后其蠕变因子为0.79,估计经过 50年之后为
    1.27。但是,估计值的准确性尚需进一步验证。
     最后,本文将Monte一c盯lo技术、梁的抗弯理论和层积品的截面转换的
    简化分析方法结合起来,对一种分级竹帘人造板的抗弯弹性模量进行了模拟
    预测,并对其在两种受力情况下(应力与表层纹理方向平行、应力与表层纹
    理方向垂直)的抗弯弹性模量的模拟预测结果进行了试验验证,结果表明模
    拟预测的抗弯弹性模量的平均值与实测结果差异都很小(误差在5%以下),
    这初步表明利用Monte一carlo技术和层积品的截面转换的简化分析方法结合
    起来模拟预测分级竹帘人造板的抗弯弹性模量是可行的。该模拟技术将为新
    的竹帘人造板的研制提供一种可供借鉴和参考的板坯结构设计的方法,有利
    于节约新的竹帘人造板设计开发的成本和时间,对分级竹帘人造板的发展、
    
    摘要
    竹材的?
Though the great variation of the physical and mechanical properties of the Moso bamboo (Phyllostachys pubescens Mazel) is known, the bamboo strips are mixed together in manufacturing the bamboo strip composite in many bamboo factories. Mixing method is convenient but hard to accomplish the optimization use of the bamboo material. The major purpose of this research is to accomplish the optimization use of the bamboo material through bamboo strip grading and scientifically designing of the bamboo curtain composite. The following jobs have been done in order to realize this purpose: testing and analyzing the physical and mechanical properties of bamboo material at different location, and seeking for reasonable bamboo strip (bamboo curtain) grading rules; testing and analyzing some mechanical properties of parallel Moso bamboo curtain laminated panels; simulating the bamboo curtain composite to predict the MOE.The basic properties (including basic and air-dried density, the shrinkage rate, the tensile strength and the tensile modulus of elasticity parallel to grain) of Moso bamboo at different locations were studied. The results show that the tensile modulus of elasticity parallel to grain declined most rapidly form the outer to the inner part of the bamboo wall, that compared with the softwood the tensile strength of inner and outer part of bamboo is higher, and the tensile modulus of elasticity parallel to grain of inner part is lower. So it is suitable to grade the bamboo strips according to the tensile modulus of elasticity parallel to grain. For the craft of cutting the bamboo wall into 6 strips with the same thickness, the grading system of 4. 3 and 2 grades are established respectively.The parallel bamboo curtain laminated panels of different grades were manufactured in the laboratory using the mature production technology of bamboo curtain plywood, and the bending and compression properties have been studied respectively. The results show that the properties of different grades of parallel bamboo curtain panels differ greatly: the MOE of the highest grade laminated panel is about the 3 times that of the minimum grade; the bending
    
    strength, the proportional limit of bending, the compressive strength parallel to grain of the highest grade laminated panel are approximately 2 times those of the minimum grade. The gap in the mechanical properties (especially MOE) of different grades of parallel bamboo curtain laminated panel is big. Therefore, the construction of bamboo strip grading system is necessary and helpful for bamboo utilization properly and efficiently.The accelerated ageing tests of the parallel bamboo curtain laminated panels of grade I ,III and IV 2 were carried out in accordance to ASTM D1037-96a. The test results indicated that the ageing resistance of the panel manufactured with the bamboo strips of grade I (with a little bamboo epidermis which wettability is bad) and panels manufactured with the bamboo strips of grade IV2 (with a little bamboo pith which wettability is bad) is not bad.The bending creep factor of the parallel bamboo curtain laminated panels of grade II and IV 1 were studied in accordance to ENV1156. The main conclusion is as the following: bamboo panels absorbed and desorbed moisture slowly; there is little difference in creep factor between the two grades of parallel bamboo curtain laminated panels (MC: 5-7%)at a stress level of 21% Fmax. In addition, power law functions can well define the relation between the creep factor and the creep time.Compared with wood as well as some structural composite lumber, the MOE and MOR and compression strength of the high-grade parallel curtain laminated panel is higher; the strength of the low-grade panels is medium but the MOE is lower. How to use the low-grade bamboo strips reasonably is a problem to be solved. If the structure of the bamboo curtain composite was designed scientifically and each grade of the bamboo strips was used efficiently, the quality of the product would be promoted. With Monte-carlo technology, the bending theory of the bea
引文
1.江泽慧.中国林业工程.济南出版社.2002.
    2.江泽慧.中国现代林业.中国林业出版社.2000.
    3.江泽慧主编(2002).世界竹藤.辽宁科学技术出版社。
    4.江泽慧,王朝晖,费本华.竹材利用标准及其国际标准化的需要.木材工业.2002,16(6):3-6.
    5.张齐生(2001).中国的竹材人造板工业.中国热带地区竹藤发展.中国林业出版社,74-81.
    6.王朝晖(2001).竹材材性变异规律与加工利用研究.北京:中国林业科学研究院博士学位论文。
    7.冼杏娟,冼定国,叶颖薇(1995).竹纤维增强树脂复合材料及其微观形貌.北京:科学出版社。
    8.于文吉,江泽慧,叶克林(2002).竹材特性研究及其进展.世界林业研究,15(2):50-55.
    9.温太辉等(1955).浙江产竹类纤维长度之测定.林业科学,(1).
    10.李正理,靳紫宸,腰希申(1960).几种国产竹材的比较解剖砚察.植物学报(3).
    11. Grosser D and W Liese.(1971). On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci.Technol, 5:290~312.
    12.葛罗逊,里斯(1982).关于亚洲竹类的解剖及其微管束.竹子研究汇刊,1(1):105-130.
    13. Parameswaran, N. and Liese, W. (1977) . Occurrence of warts in bamboo species. Wood Science and Technology 11 : 313-318.
    14. Parameswaran, N. and Liese, W. (1980). Ultrastructuml aspects of bamboo cells. Cell. Chem.Technology 14:587-609.
    15. Parameswaran, N. and Liese, W. (1981). The fine structure of bamboo. Bamboo Production and Utilization. 178-183. In: Proc. ⅩⅦ IUFRO Congress Group 5.3. Ed. T. Higuchi.Kyoto, Japan.
    16. W.Liese,Hamburg,FRG(1987).Research on Bamboo.Wood Sci. Technol. 21: 189-209.
    17.腰希申,梁景森,马乃训等(1993).中国主要竹材微观构造.大连出版社。
    18.周芳纯(1998).竹材的构造.竹类研究.南京林业大学竹类研究编委会:83~101.
    19.李源哲,张寿槐,白同仁(1986).中国七种竹材的物理力学性质.中国林业科学研究院木材工业研究所研究报告,木工,4号(总18号)。
    20.周芳纯(1998).竹材培育和利用.竹类研究.南京林业大学竹类研究编委会:195~211
    21. Mansur Ahmad (2000) .ANALYSIS OF CALCUTTA BAMBOO FOR STRUCTURAL COMPOSITE MATERIALS. Dissertation for the degree of DOCTOR OF PHILOSOPHY In Wood Science and Forest Products. August 11 Blacksburg, Virginia.
    22
    
    22. Peralta P N, Lee A W C(1995). Unsteady-state diffusion of moisture in giant timber bamboo. Wood and Fiber Science, 27(4): 421~427.
    23. Walter Liese(1991). Progress in Bamboo Research. J. Amer. Bamboo Soc. Vol. 8 No. 1&2: 151-167.
    24.张宏健,杜凡.张福兴(1999).云南4种典型材用丛生竹的宏观解剖结构与主要物理力学性质的关系.林业科学,35(4):66~70.
    25.于文吉(2001).竹材表面性能及力学性能变异规律的研究.北京:中国林业科学研究院博士论文。
    26.杨云芳,刘志坤(1996).毛竹材抗拉弹性模量及抗拉强度.浙江林学院学报13(1):21~27.
    27.周芳纯,张春霞(1991).竹材力学性质测定报告.竹类研究,10(1):7~12.
    28.陈士英,龙玲,张宜生(1999).竹材刨花板蠕变性能的研究.木材工业13(5):3~6.
    29.周芳纯(1991).竹材的化学性质和燃烧热值.竹类研究,(1):58~71.
    30. W. Liese(1985)Anatomy and Properties of Bamboo. Proceedings. Int. Workshop. ect, 6-14. Page: 196-208.
    31.王文久,辉朝茂,刘翠等(1999).云南14种主要材用竹化学成分研究.竹子研究汇刊,18(2):74~7.
    32.张齐生,关明杰,纪文兰(2002).毛竹材质生成过程中化学成分的变化.南京林业大学学报(自然科学版),26(2):7~10.
    33. Jinxing Lin, Xinqiang He, Yuxi Hua, etl(2002) Lignification and lignin heterogeneity for various age classes of bamboo. Physiologia Plantarum. 114: 296-302.
    34.马灵飞(1991).竹材的pH值利缓冲容量.竹子研究汇刊,10(2):1~7.
    35. P. M. Ganapathy Zhu Huanming S. Zoolagud etc.; Bamboo Panel Boards—-a State of the Art Review; 1999 INBAR Technical Report No12.
    36.赵仁杰,邓介凡(1991).竹帘胶合板的研制.林产工业:22-24.
    37.赵仁杰,刘德桃,张建辉(2003).中国竹帘胶合板模板的科技创新历程,世界竹藤通讯,1(4):1-4.
    38.韩健,郭泽球(1999).竹胶合板生产工艺.中国林业出版社。
    39.赵仁杰(2003).竹帘胶合板的科技创新与发展方向.人造板通讯,(5):1-4.
    40.叶良明,姜志安,叶建华(1994).竹材层压胶合板的结构优化.浙江林学院学报,11(2):129~132.
    
    41.张齐生,孙丰文,王建和(1995).竹材碎料复合板的结构和工艺的研究.林业科学,31(6):536~542.
    42.叶良明,全永明(1999).杉木厚度变化对竹杉复合板性能的影响.林业科技开发,3:24~26.
    43.F.F.P.科尔曼,E.W.库恩齐,A.J.施塔姆(1984).木材学与木材工艺学原理—人造板.中国利用出版社。
    44. Bodig Jozsef, Jayne Benjamin A(1982). Mechanics of Wood and Wood Composites. New York: Van Nostrand Reinhold Company Inc.
    45.张齐生,孙丰文.竹木复合结构是科学合理利用竹材资源的有效途径.林产工业,1995,22(6):4~6.
    46.张齐生,朱一辛,蒋身学等(1997).结构用竹木复合空心板的初步研究.林产工业,24(3):6~9.
    47.孙丰文(1999).竹材碎料复合板的结构设计与弯曲性能预测理论.南京林业大学学报,23(3):45~50.
    48.王戈(2003).毛竹/杉木层积人造板及其性能.中国林业科学研究院博士学位论文。
    49.建筑结构设计手册丛书编委会(1993).木结构设计手册.中国建筑工业出版社。
    50.申宗圻主编(1982).木材学.中国林业出版社:231-233.
    51.David S.Gromala(1996).荷载和抗力系数设计方法-工程木结构设计手册,美国林业和纸业协会
    52.许斌,蒋身学(2000).竹木复合层积材横纹静摩擦系数的研究.林业科技开发,14(6):22-23.
    53.王思群,华毓坤,董士琴(1991).竹木复合定向刨花板强度性能的研究.木材工业,5(3):6-10.工业,22(6):4~6.
    54.钱俊,叶良明,金永明(1999).速生杉木与竹黄篾复合板的研究.建筑人造板.(2):35-37.
    55.江泽慧,王戈,费本华,于文吉.竹木复合材料的研究及发展.林业科学研究,2002,15(6):712-718.
    56.吴章康,张宏健,黄素永等(2000).竹木复合中密度纤维板工艺条件的研究.木材工业,14(3):7-10.
    57.国家技术监督局(1995).中华人民共和国国家标准,GB/T15780-95,竹材物理力学性能试验方法.中国标准出版社。
    58.许凤和编著(1987).高分子材料力学试验.科学出版社。
    59.Stephen W.Tsai(著者),陈绍杰(译校者)(1988).复合材料设计.《飞机设计》编辑部编辑出版。
    
    60.江泽慧,彭镇华(2001).世界主要材种木材科学特性.科学出版社。
    61. Kollmann, F., Cote, W(1968). Principles of Wood Science and Technology, Ⅰ, Solid Wood. Springer-Verlay Berlin Heidelberg New York.
    62.成俊聊主编(1985).中国木材学.中国林业出版社。
    63. Kollmann, F., Cote, W(1968). Principles of Wood Science and Technology, I, Solid Wood. Springer-Verlay Berlin Heidelberg New York.
    64.渡边治人著.张勤丽,张齐生,张彬渊译(1986).木材应用基础.上海科学技术出版社。
    65. APA. the Engineered Wood Association(1997). Plywood Design Specification: 7.
    66.中华人民共和国林业行业标准(2000).竹篾积成胶合板物理力学性能测试方法,LY/T 1073-92.中华人民共和国林业部.中国标准出版社。
    67.中华人民共利国林业行业标准(2000).竹篾积成胶合板技术条件,LY/T 1072-92.中华人民共和国林业部.中国标准出版社。
    68.中华人民共和国林业行业标准(2000).混凝土模板用竹材胶合板,LY/T 1574-2000.国家林业局.中国标准出版社。
    69.中华人民共和国林业行业标准(2000).汽车车厢底板用竹篾胶合板,LY/T 1575-2000.国家林业局.中国标准出版社。
    70.中华人民共和国国家标准(1999).人造板及饰面人造板理化性能试验方法,GB/T17657—1999.国家质量技木监督局.中国标准出版社。
    71. American Society of Testing Materials(ASTM)(1997). Standard test methods for evaluating properties of wood-base fiber and particle panel Materials. Annual Book of ASTM Standards Des. D 1037-96a. Vol-4. 10. Philadelphia, PA. .
    72. Hesterman, N. D., and T. M. Gormon(1992). Mechanical properties of laminated veneer lumber made from interior Douglas-fir and lodgepole pine. Forest Prod. J. 42(11/12): 69-73.
    73. Kunesh. R. H.(1978). Micro=Lam: Structural laminated veneer lumber. Forest Prod. J. 28(7): 41-44.
    74. Stump, J. P., L. A. Smith, and R. L. Gray(1981). Laminated veneer lumber made from plantation-grown conifers.
    75.张齐生(1989).竹材胶合板的研究Ⅲ.竹材胶合板的物理和机械性能.南京林业大学学报,13(2):13-18。
    76.张齐生,孙丰文,李燕文(1997).竹木复合集装箱底板使用性能的研究——与阿必东胶合板底板的对比分析.南京林业大学学报,21(1):27-32。
    77. ANSI(1989). American national standard wood particleboard. ANSI/A208. 1-1989. American National Standard Institute. Published by National Particleboard Assoc., Gaithersburg, Md.
    78
    
    78. Okkonen. E. A., River, B. H(1996). Outdoor Aging of Wood-based Panels and Correlation with Laboratory Aging. Part2. Forest Prod. J. 46(3): 68-74.
    79. Lehmann. W. F(1977). Durability of composition board products. In. Proc. 11th Washington State Univ. Symp. on Particleboard. pp. 351-368.
    80.戴澄月,梁北红(1987).长期载荷下木材粘弹性质的研究.东北林业大学学报,15(5):1-7
    81.张斌等.小兴安岭几个主要树种的蠕变特性.东北林业大学学报,1988,16(5):71~ 78.
    82.李大纲,蒋本浩.温湿处理对杉木弯曲蠕变性能的影响.建筑人造板.1994.(1):-9-12
    83.卢宝贤,李静辉.几个主要树种的蠕变特性.力学与实践.]996,18(1):36-38
    84.李大纲.意杨木材弯曲蠕变特性的初步研究.四川农业大学学报,1998,16(1):99-101
    85.鹿振友,孙立谔.蠕变经历对落叶松材静强度影响.北京林业大学学报,1990,12(4):117-122
    86.Wang Fenghu(王逢瑚).The effect of Resin pH on the Creep Behavior of Cured Phenol Formaldehyde Resins:(学位论文),Harbin(哈尔滨):Northeast Forestry University,1990
    87.徐咏兰,华毓坤(2002).不同结构杨木单板层积材的蠕变和抗弯性能.木材工业,16(6):10-12。
    88.陈士英,龙玲,张宜生.竹材刨花板蠕变性能的研究木材工业(北京),1999,13(5):3~6
    89. EUROPEAN PRESTANDARD(1998). Wood-based panels-Determination of duration of load and creep factors, ENV 1156. EUROPEAN COMMITTEE FOR STANDARDIZATION.
    90.王逢瑚(1997).木质材料流变学.东北林业大学出版社。
    91. Pierce, C. B. et al(1985)Creep in Chipboard, Part 5: An Improved Model for Prediction of Creep Deflection, Wood Sci, Technol., 19: 83-91.
    92.史贵荣(1988).木材的粘弹性及其蠕变模型.北京林业大学学报,10(2):88-94。
    93. Dillard, D. A., and C. Hiel.(1985). Singularity problems of the power law for modeling creep compliance. Pages: 142-148 in Proceedings of the 1985 SEM Spring Conference on Experimental Mechanics. Society for Experimental Mechanics, Las Vegas.
    94. Clauser, W. S., "Creep of Small Wood Beams Under Constant Bending Load, " Forest Products Laboratory, Forest Service U. S. D. A., Report No. 2150, 1959.
    95. Fridley K J, Rosowsky D V. Effect of load pulse shape on predicted damage accumulation in wood. Wood. Sci. Technol. 1994, 28: 339-348
    96
    
    96. Gressel P. Prediction of long-term deformation behavior from short-term creep experiments. Holz Roh-werks. 1984, 42: 293-301
    97. Holzer. Siegfried M., Loferski, Joseph R., Dillard, David A. 1989: A REVIEW OF CREEP IN WOOD: CONCEPTS RELEVANT TO DEVELOP LONG-TERM BEHAVIOR PREDICTIONS FOR WOOD STRUCTURES. Wood and Fiber Science: Vol. 21, No. 4, pp. 376-392. Bazant. Z. P1985. Constitutive equation of wood at variable humidity and temperature. Wood Sci. Technol. 19: 159-177
    98. Gerhards, C. C. Bending creep and load duration of Douglas-fir 2 by 4s under constant load. " Wood and Fiber Science. 23(3), 384-409.
    99. Bodig J, Jayne B A. Mechanics of wood and wood composites. VAN NOSTRAND REIN HOLD COMPANY, 1982: 565
    100.刘君良.木材流变学研究综述.吉林林学院学报,1998.14(1):48-52。
    101. Armstrong L D, Christensen G N. Influence of moisture change on deformation of wood under stress. Nature, 1961, 196: 869
    102.曹金珍,赵广杰,龐振友(1998).木材的机械吸湿蠕变.期北京林业大学学报,20(5):94-100
    103. Hoyle. Robert J., Griffith, Michael C., Itani. Rafik Y. 1985: PRIMARY CREEP IN DOUGLAS-FIR BEAMS OF COMMERCIAL SIZE AND QUALITY. Wood and Fiber Science: Vol. 17, No. 3, pp. 300-314.
    104. Glulam Design Properties and Layup Combinations(2001), APA news Engineered Wood Systems.
    105. Hunt. M. O.; Suddarth, S. K(1974). Prediction of Elastic Constants of Particleboard. Forest Prod. J., 24(5), pp. 52-57.
    106. Erwin L. Schaffer, Catherine M. Marx, Donald A. Bender, etc.(1986). Strength Validation and Fire Endurance of Glued-Laminated Timber Beams. United States Agriculture Department of Forest Service. Forest Products Laboratory Research Paper. FPL 467.
    107. Lang, Elemer M., Wolcott, Michael P.(1996) A MODEL FOR VISCOELASTIC CONSOLIDATION OF WOOD-STRAND MATS. PART Ⅰ. STRUCTURAL CHARACTERIZATION OF THE MAT VIA MONTE CARLO SIMULATION. Wood and Fiber Science: Vol. 28, No. 1. pp. 100-109.
    108. Lang. Elemer M., Wolcott, Michael P.(1996): A MODEL FOR VISCOELASTIC CONSOLIDATION OF WOOD-STRAND MATS. PART Ⅱ: STATIC STRESS-STRAIN BEHAVIOR OF THE MAT. Wood and Fiber Science: Vol. 28, No. 3, pp. 369-379.
    
    109. Clouston, Peggi L., Lam, Frank(2000). Computational modeling of strand-based wood composites in compression. World Conference on Timber Engineering Whistler Resort, British Columbia, Canada.
    110. Foliente, Greg C., Singh, Mahendra P., Dolan, J. Daniel.(1996). RESPONSE ANALYSIS OF WOOD STRUCTURES UNDER NATURAL HAZARD DYNAMIC LOADS. Wood and Fiber Science: Vol. 28, No. 1, pp. 110-127.
    111. Rosowsky, David V., Fridley, Kenneth J., Hong, Pyoyoon.(1996) RELIABILITY-BASED SYSTEM FACTOR FOR SERVICEABILITY DESIGN OF WOOD FLOORS. Wood and Fiber Science: Vol. 28, No. 3, pp. 356-368.
    112. Xu, Wei, Suchsland, Otto.(1997). LINEAR EXPANSION OF WOOD COMPOSITES: A MODEL. Wood and Fiber Science: Vol. 29, No. 3, pp. 272-281. 16 Zombori, Balazs G. .
    113. Kamke. Frederick A., Watson, Layne T.(2001). SIMULATION OF THE MAT FORMATION PROCESS. Wood and Fiber Science: Vol. 33, No. 4, pp. 564-579. Congjin Lu; Paul R Steiner; Frank Lam(1998). Simulation study of wood-flake composite mat structures. Forest Products Journal; May; 48, 5; ABI/INFORM Global pg. .
    114.郧国忠(1987).蒙特卡罗方法及其在测绘科学中的应用.测绘学报,5:10-13.
    115.杜立新(1986).蒙特卡罗模拟-遗传育种研究中的一个新工具.遗传,8(6):21-24.
    116.朱本仁(1987).蒙特卡罗方法引论.山东大学出版社。
    117. Jasmina L. Vujic. Monte Carlo Sampling Methods. Nuclear Engineering Department University of California, Berkeley(网上资料)
    118.杜荣骞(2003).生物统计学(第二版).高等教育出版社。
    119.王培元(1987)白杨木材横纹压缩流变性能Ⅰ.粘弹性.林业科学,23(2):182-190.
    120.王培元(1987)白杨木材横纹压缩流变性能Ⅱ.塑性.林业科学,23(3):356-363.
    121. Zombori B. G.(2001). Modeling the Transient Effects during the Hot-Pressing of Wood-based Composites. Doctor Disertation submitted to the Faculty of the Virginia Polytechnic Institute and State University.
    122. Lenth, Christopher A., Kamke, Frederick A.(1996). INVESTIGATIONS OF FLAKEBOARD MAT CONSOLIDATION. PART Ⅰ. CHARACTERIZING THE CELLULAR STRUCTURE. Wood and Fiber Science: Vol. 28, No. 2, pp. 153-167.
    123. Lenth, Christopher A., Kamke, Frederick A.(1996). INVESTIGATIONS OF FLAKEBOARD MAT CONSOLIDATION. PART Ⅱ. MODELING MAT CONSOLIDATION USING THEORIES OF CELLULAR MATERIALS. Wood and Fiber Science: Vol. 28, No. 3, pp. 309-319.
    
    124.邵卓平(2004).竹材在压缩大变形下的力学行为Ⅱ.微观变形特征.木材工业,18(1):27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700