用户名: 密码: 验证码:
花生四烯酸细胞色素P450表氧化酶过表达通过上调心房利钠肽及利钠肽C-型受体调节自发性高血压大鼠血压
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的与意义
     高血压是严重危害我国人民健康的常见病和多发病,具有发病率高,致残率高,死亡率高的特点。高血压是一种遗传、环境等多因素参与的全身性疾病,其发病机制很复杂,但遗传因素起着十分重要的作用。药物治疗有一定的疗效,但需要终身服药,且由于多方面的原因患者常常难以坚持正规治疗;因此,寻求更为有效、经济、简单的治疗方法成为一项研究的重要课题。
     重组腺相关病毒载体(rAAV)系统由于能携带基因转染分裂期和非分裂期细胞(即具有广泛的转基因范围)、无副作用(无免疫源性)、感染效率高、能驱动基因在体内长期表达,为高血压病的基因治疗提供了新的手段。
     由花生四烯酸(arachidonic acid, AA)通过细胞色素P450(cytochrome P450,CYP)表氧化酶途径代谢产生。AA是人体内多种重要心血管活性物质的前体,主要是以酯化的形式存在于细胞膜的内表面,在脂解激素作用下可由磷脂酶A2水解释放至细胞浆内。对AA的研究已有多年,最为人们熟知的是环氧化酶和脂质氧化酶代谢途径,近年研究发现还可通过细胞色素P450途径代谢(即AA代谢的第三条途径),包括AA-CYP表氧化酶和ω-羟化酶,其中AA经表氧化酶代谢产生四种EETs (5,6-, 8,9-, 11,12-和14,15-EET),研究发现EETs可以通过激活钙离子敏感的钾通道,使平滑肌细胞处于超极化状态而扩张血管。CYP表氧化酶包括2C和2J两类,研究显示CYP表氧化酶在人类心脏和血管内皮细胞中有丰富表达。
     花生四烯酸CYP450表氧化酶及其代谢产物EETs在心血管系统的作用逐渐为人们所重视,在离体和体外实验中, EETs被证实在血管的扩张和高血压的调控方面有着重要的作用,然而在在体水平的研究还没有充分的依据。由此我们将在在体水平研究表氧化酶对SHR大鼠的血压调节作用。研究其能否阻断高血压的进展,其机制又是什么。表氧化酶基因过表达与其他血管活性物质之间又有何内在联系?本实验将从以下几个方面进行探讨:
     1通过重组腺相关病毒载体将CYP450表氧化酶2J2基因导入到自发性高血压大鼠体内,观察表氧化酶基因2J2在动物体内长期稳定的表达情况;
     2观察CYP450表氧化酶2J2基因的过表达对SHR血压的影响及机制;
     3观察CYP450表氧化酶2J2基因的过表达对SHR心功能和血管功能的影响及机制;
     4观察CYP450表氧化酶2J2基因的过表达对其他血管活性物质的影响。
     实验方法
     1.动物分组:雄性自发性高血压大鼠SHR20只,体重在220±10 g,三次尾动脉压测定均>160mmHg,随机分为5组,即Control组,GFP组,F87V组,2J2组,每组5只,分别予以病毒溶解液,rAAV-GFP, rAAV-F87V, rAAV-2J2,病毒尾静脉注射,病毒量为1×1012pfu/只;2.采用三质粒共转染法包装重组腺相关病毒;3. Elisa试剂盒检测尿中14,15-DHET的含量;4.应用western blot检测蛋白的表达;5.血液动力学检测:动物用2%戊巴比妥钠腹腔注射麻醉(1mL/kg),将Millar管经右侧颈动脉插管送入左心室,检测左心室的功能,数据由MPVS-300(Millar Pressure-Volume System,美国Millar Instrument PowerLab公司)系统采集并分析。5.血管张力测定采用多导生理记录仪记录;7.实时PCR检测心肌ANP及ANP-C型受体(NPR-C)mRNA的表达;8. ANP在心肌细胞的表达及分布情况采用免疫组化DAB染色法;9.原代心肌细胞培养采用胶原酶消化法。
     实验结果:
     1 CYP450表氧化酶2J2基因在SHR体内的表达情况
     14,15-DHET是14,15-EET的代谢产物,能反应EETs在体内的代谢水平,我们通过14-15-DHET的Elisa试剂盒检测尿中的14-15-DHET水平,发现在转表氧化酶基因2J2大鼠的14-15-DHET水平较对照组提高越11倍。应用Western blot的方法检测心肌组织中2J2表达水平,证实2J2在心肌中有表达。
     2 CYP450表氧化酶2J2基因对动脉压的影响
     在实验过程中对鼠尾动脉血压进行动态监测,发现从第2月开始,转染表氧化酶基因组血压在第2月时血压从初始血压173.0±2.8mmHg降至163.5±5.8mmHg,而对照组从初始血压174±3.9mmHg升至179.0±4.9mmHg,至6月时转2J2组血压维持在165.0±4.7 mmHg,而对照组继续升至195.2±20.8mmHg。在处死动物前,从颈动脉进行有创测压,发现转2J2组血压较对照组显著下降(191.0±25.1 mmHg vs. 226.8±25.8mmHg, p<0.01)。
     3 CYP450表氧化酶2J2基因心功能的影响
     我们对各组大鼠进行了心功能的测定,其结果显示,转染表氧化酶基因大鼠的心内最大收缩压(201.8±32.8 mmHg)与对照组(245.9±16.2 mmHg)相比较显著下降,收缩末压(End-systolic Pressure)从对照组的237.6±14.2 mmHg降至199.0±33.3mmHg,dp/dt max从17005.5±1850.8mmHg/s降至13223.4±1792.4 mmHg/s,dp/dt min的绝对值从对照组的16930.8±2080.0mmHg/s降至-12258.1±4155.6mmHg/s。这些指标显示心脏的收缩功能明显下降,但是,有趣的是转染表氧化酶基因大鼠的心搏出量(Stroke Volume)却没有因心肌收缩功能降低而下降,与对照组96.3±14.9 uL相比较,增加至137.9±20.9uL ;心输出量(CO)从对照组的19826.1±2906.0μL/min增加到26870.7±6431.2μL/min,而心率无显著变化。
     4 CYP450表氧化酶2J2基因对血管功能的影响
     血管弹性回缩率(Effective arterial elastance,Ea )是反应血管弹性的指标之一,转染表氧化酶基因组的Ea值较对照组显著降低,从2.6±0.2降低到1.5±0.37。我们还取大鼠胸主动脉环行血管收缩舒张实验,发现转染了表氧化酶2J2基因大鼠的动脉环对肾上腺素的收缩反应较对照组显著降低,并显著增强了血管对Ach的舒张反应。
     5对心房利钠肽ANP及其C-型受体的影响
     我们取转表氧化酶基因的组织,对心房利钠肽ANP及利钠肽C-型受体NPR-C、内皮素ET1及内皮素1-型受体EdnrA、肾上腺皮质素ADM及其受体ADMR的mRNA水平通过real-time PCR进行了定量检测,我们惊喜的发现,心脏ANP的mRNA表达水平与对照组相比较约有14倍的上调,其C型受体(NPR-C)在心、主动脉、肾脏和肺脏中亦明显上调,而ET1及受体EdnrA、ADM及其受体ADMR mRNA的水平无显著变化。在明确了表氧化酶在心肌mRNA表达上调后,我们对心肌组织中的ANP蛋白质水平用Western blot的方法进行了检测,发现心肌中ANP蛋白质表达亦随之上调。为了进一步明确ANP的表达在心肌组织中的分布情况,我们应用ANP的一抗作了心肌组织的免疫组化染色,发现转染表氧化酶基因大鼠心脏阳性细胞明显增多,并主要分布于心内膜下心肌组织。
     6外源性EETs对培养心肌细胞ANP的影响
     我们取乳鼠的心肌细胞作体外培养,予以外源性EETs进行干预,发现11,12-EET和14,15-EET能够显著刺激心肌细胞ANP mRNA和蛋白水平的上调,而且呈现剂量依赖性。
     结论
     本实验研究通过体内和体外实验,利用血压动力学和分子生物学技术,对表氧化酶及其代谢产物EETs在高血压方面的调节机制作了一系列的研究,得出了如下结论:
     1重组腺相关病毒能有效介导外源性基因在体内的长期稳定的表达,是实验研究中一个良好的基因导入载体,也是一种临床疾病基因治疗的理想手段;
     2表氧化酶及其代谢产物EETs能有效降低血压,遏制高血压病的进展,其机制如下:
     (1)表氧化酶及其代谢产物EETs对心肌的负性肌力调节作用可能是其降低高血压的重要机制之一,但这种对心肌的负性肌力调节并不以减少心脏的每搏量和心输出量为代价;
     (2)表氧化酶及其代谢产物EETs上调心脏ANP的合成,再通过ANP的生物活性来扩张血管,抑制心脏收缩力和利尿作用来调节血压,这可能是表氧化酶及其代谢产物EETs对血压进行调节的补充机制之一;
     (3)表氧化酶及其代谢产物EETs能有效降低血管对儿茶酚胺的反应性,并增强对舒血管物质的反应,从而有效舒张血管,参与了血压的调节;
     (4)表氧化酶基因的过表达能够显著增加中心大动脉的弹性和顺应性,增加了大血管对心脏射血的缓冲能力,有效降低收缩压。其机制可能与表氧化酶及其代谢产物EETs促进心脏ANP的分泌及上调主动脉和心脏的NPR-C,从而抑制纤维细胞增生,减轻血管硬化和心肌重构有关。
Background:
     Epoxyeicosatrienoic acids (EETs), which are cytochrome P450 (CYP) epoxygenase derived metabolites of arachidonic acid(AA), display many of the characteristics of endothelium-derived hyperpolarizing factor (EDHF) and cause hyper polarization of underlying vascular smooth muscle cells via activation of Ca2+ activated K+ channels. So EETs are thought to be potential candidates for EDHF. It was demonstrated that Arachidonic acid cytochrome P450 epoxygenase metabolites, EETs, have potent vasodilatory and diuretic feature, and therefore have hypotensive effect. No in vivo studies, however, were performed to support it. In the current study, we investigated this hypothesis via overexpressing CYP epoxygense genes in spontaneously hypertensive rats (SHR).
     Methods and Results:
     1) The recombinant adeno-associated virus vector (rAAV) was utilized to mediate long-term transfection of CYP2J2 genes in adult SHR, and animal systolic blood pressure was monitored using arterial caudilis indirect manometric method and main stable hydrolysis metabolic product of 14, 15-EET, 14, 15-DHET, in urine was measured to reflect the production of EETs. Results showed that at 2 months the urinary excretion of 14, 15-DHET increased by 11-folds in the rAAV-2J2 groups compared with rAAV-GFP-treated group. 2) The systolic blood pressure in rAAV-2J2-treated group decreased from 173.0±2.8mHg to 163.5±5.8mmHg ( p﹤0.01) at month 2, and it is 165.0±4.7 mmHg at month 6 after gene injection. In contract, in rAAV-GFP treated control animals, the systolic blood pressure was kept higher (from 174±3.9mmHg to 176.7±5.3mmHg) at month 2 and increased to 195.2±20.8mmHg at month 6 (~30mmHg higher than that in rAAV-2J2-treated group, p<0.001). 3) Before the rats were sacrificed at month 6, the blood pressure form carotid artery was detected with Pressure-Volume System. The artery blood pressure of 2J2-treated group was decreased to 191.0±25.1 mmHg (vs. 226.8±25.8mmHg, p<0.01). At the same time, the cardiac functions were measured. The results showed that maximum intra-cardiac pressure was 202.1±30.0 mmHg in 2J2-treated group, significantly lower than control (vs. 241.2±18.2 mmHg , p﹤0.01). The end-systolic pressure in treated group was 199.0±33.3mmHg, and that in the control group was 237.6±14.2 mmHg. Other valuable indexes for evaluating the myocardial contractility, dp/dt max and dp/dt min, were also measured. Both the dp/dt max and the absolute value of dp/dt min were decreased from 17005.5±1850.8mmHg/s and 16930.8±2080.0mmHg/s in control group to 16930.8±2080.0mmHg/s and 12258.1±4155.6mmHg/s in 2J2-treated group, respectively. However, the cardiac output (CO) in treatment animals was significantly higher than control (26870.76431.3μL/min vs. 19826.1±2906.0μL/min, p<0.05). 4) Recorded arterial elastance (Ea) index in the rAAV-2J2 agroup was 1.5±0.4 (vs.2.6±0.4, p﹤0.001), which demonstrated that the overexpression of the CYP2J2 gene attenuates the arterial sclerosis. The responsiveness to norepinephrine (NE) and acetylcholine (Ach) of the thoracic aorta rings was checked and it was demonstrated 2J2 gene could attenuate the reactivity of the rings to NE, and enhance the diastole respond to Ach. 5) Interestingly, we found the atrial natriuretic peptide (ANP) mRNA were up-regulated 14 folds in myocardium of the rAAV-2J2 group; furthermore, the C-type receptor’s (NPR-C) mRNA of ANP was increased in heart, aorta, kidney and lung tissues. However, the expression levels of some other vasoactive substances such as endothelin-1 and its receptors, adrenomedullin and its receptors have no change detectable. 6) Finally, we cultured the primary myocardium cell to study effect of EETs on ANP level, and we also found addition of exogenous EETs up-regulated the protein of ANP and had a dose-effect relationship.
     Conclusion:
     For first time our study indicates transfection of rAAV-mediated 2J2 genes could decrease the blood pressure and prevent development of hypertension in SHR. Its mechanisms are including: 1) CYP epoxygenase and its metabolites EETs mediate negative inotropic effect on the cardiac contractility., which is one of their mechanism on blood-pressure regulation. On the same time, the reduction in cardiac contractility didn’t cause to decrease in the cardiac output. In contrast, cardiac output was increased. The negative inotropic effect with increasing CO would be valuable for the 2J2-transgene application to clinic. 2) Except for the direct effects of their metabolites EETs on the myocardium and vessels, CYP2J2 may provide beneficial effects via up-regulating expression of ANP, which can depress the cardiac contractility and produce vasodilatation and natriuresis. The signal mechanism may also play an important role in regulation of blood pressure. 3) CYP2J2 gene could attenuate the reactivity of the rings to norepinephrine, and enhance the diastole respond to acetylcholine. The effect would benefit the regulation of CYP2J2 gene on blood pressure. 4) The overexpression of CYP2J2 gene can decline the Ea of the aorta and induce a larger increase in aorta compliance. The function of CYP2J2 gene’s attenuating the arterial sclerosis and improving its relaxation should partly attribute to ANP and NPR-C, which were up-regulated by CYP2J2 gene.
引文
1 Holla VR, Makita K, Zaphiropoulos PG, et al. The kidney cytochrome P-450 2C23 arachidonic acid epoxygenase is upregulated during dietary salt loading. J Clin Invest. 1999; 104: 751-760.
    2 Capdevila JH, Wei S, Yan J, et al. Cytochrome P-450 arachidonic acid epoxygenase. Regulatory control of the renal epoxygenase by dietary salt loading. J Biol Chem. 1992; 267: 21720-21726.
    3 Oyekan AO, Youseff T, Fulton D, et al. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J Clin Invest. 1999; 104:1131-1137.
    4 Makita K, Takahashi K, Karara A, et al. Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet. J Clin Invest. 1994; 94: 2414-2420.
    5 Sinal CJ, Miyata M, Tohkin M, et al. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem. 2000; 275: 40504-40510.
    6 Muller B. Pharmacology of thromboxane A2, prostacyclin and other eicosanoids in the cardiovascular system. Therapie. 1991;46:217-221
    7 Fisslthaler B, Popp R, Kiss L, et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature. 1999; 401: 493-497.
    8 Campbell W B, Gebremedhin D, Pratt P F, et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996; 78: 415-423.
    9 Quilley J, McGiff J C. Is EDHF an epoxyeicosatrienoic acid? Trends Pharmacol Sci. 2000; 21:121-124.
    10 Fisslthaler B, Popp R, Kiss L, et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature. 1999;401:493-497
    11 Campbell WB, Gebremedhin D, Pratt PF, et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996;78:415-423
    12 Quilley J, McGiff JC. Is EDHF an epoxyeicosatrienoic acid? Trends Pharmacol Sci. 2000;21:121-124
    13 Chen YJ, Jiang H, Quilley J. The nitric oxide- and prostaglandin-independent component of the renal vasodilator effect of thimerosal is mediated by epoxyeicosatrienoic acids. J Pharmacol Exp Ther. 2003;304:1292-1298
    14 Node K, Huo Y, Ruan X, et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999;285:1276-1279
    15 Alvarez DF, Gjerde EA, Townsley MI. Role of EETs in regulation of endothelial permeability in rat lung. Am J Physiol Lung Cell Mol Physiol. 2004;286:L445-451
    16 Akahane N, Ohba S, Suzuki J, et al. Antithrombotic activity of a symmetrical triglyceride with eicosapentaenoic acid and gamma-linolenic acid in guinea pig mesenteric microvasculature. Thromb Res. 1995;78:441-450
    17 Fleming I. Cytochrome p450 and vascular homeostasis. Circ Res. 2001;89:753-762
    18 Alkayed NJ, Narayanan J, Gebremedhin D, et al. Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. Stroke. 1996;27:971-979
    19 Holla VR, Makita K, Zaphiropoulos PG, et al. The kidney cytochrome P-450 2C23 arachidonic acid epoxygenase is upregulated during dietary salt loading. J Clin Invest. 1999;104:751-760
    20 Capdevila JH, Wei S, Yan J, et al. Cytochrome P-450 arachidonic acid epoxygenase. Regulatory control of the renal epoxygenase by dietary salt loading. J Biol Chem. 1992;267:21720-21726
    21 Oyekan AO, Youseff T, Fulton D, et al. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J Clin Invest. 1999;104:1131-1137
    22 Makita K, Takahashi K, Karara A, et al. Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet. J Clin Invest. 1994;94:2414-2420
    23 Sinal CJ, Miyata M, Tohkin M, et al. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem. 2000;275:40504-40510
    24 Lin WK, Falck JR, Wong PY. Effect of 14,15-epoxyeicosatrienoic acid infusion on blood pressure in normal and hypertensive rats. Biochem Biophys Res Commun. 1990 Mar 30;167(3):977-81.
    25 Catella F, Lawson J, Braden G, et al. Biosynthesis of P450 products of arachidonic acid in humans: increased formation in cardiovascular disease. Adv Prostaglandin Thromboxane Leukot Res. 1991;21A:193-196
    26 Oltman CL, Weintraub NL, VanRollins M, et al. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ Res. 1998;83:932-939
    27 Miura H, Gutterman DD. Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca2+-activated K+ channels. Circ Res. 1998;83:501-507
    28 Fisslthaler B, Popp R, Kiss L, et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature. 1999;401:493-497
    29 Graier WF, Simecek S, Sturek M. Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. J Physiol. 1995;482 ( Pt 2):259-274
    30 Hoebel BG, Kostner GM, Graier WF. Activation of microsomal cytochrome P450 mono-oxygenase by Ca2+ store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells. Br J Pharmacol. 1997;121:1579-1588
    31 Moffat MP, Ward CA, Bend JR, et al. Effects of epoxyeicosatrienoic acids on isolated hearts and ventricular myocytes. Am J Physiol. 1993;264:H1154-1160
    32 Wu S, Chen W, Murphy E, et al. Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. J Biol Chem. 1997;272:12551-12559
    33 Nishikimi T, Miura K, Minamino N, Takeuchi K, Takeda T. Role of endogenous atrial natriuretic peptide on systemic and renal hemodynamics in heart failure rats. Am J Physiol. 1994; 267:H182.
    34 Wada A, Tsutamoto T, Matsuda Y, Kinoshita M. Cardiorenal and neurohumoral effects of endogenous atrial natriuretic peptide in dogs with severe congestive heart failure using a specific antagonist for guanylate cyclase-coupled receptors. Circulation. 1994; 89: 2232– 40.
    1. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X.Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo.Gene Ther. 2003;10(26):2105-2111.
    2. Monahan PE and Samulski RJ. Adeno-associated virus vectors for gene therapy:more pros than cons? Molecular Medicine Today. 2000; 6:433-440.
    3. Rifkind AB, Lee C, Chang TK, et al. Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys. 1995;320:380-389
    4 Keeney DS, Skinner C, Wei S, et al. A keratinocyte-specific epoxygenase, CYP2B12, metabolizes arachidonic acid with unusual selectivity, producing a single major epoxyeicosatrienoic acid. J Biol Chem. 1998;273:9279-9284
    5 Zeldin DC, DuBois RN, Falck JR, et al. Molecular cloning, expression andcharacterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys. 1995;322:76-86
    6 Thompson CM, Capdevila JH, Strobel HW. Recombinant cytochrome P450 2D18 metabolism of dopamine and arachidonic acid. J Pharmacol Exp Ther. 2000;294:1120-1130
    7 Oleksiak MF, Wu S, Parker C, et al. Identification, functional characterization, and regulation of a new cytochrome P450 subfamily, the CYP2Ns. J Biol Chem. 2000;275:2312-2321
    8 Nguyen X, Wang MH, Reddy KM, et al. Kinetic profile of the rat CYP4A isoforms: arachidonic acid metabolism and isoform-specific inhibitors. Am J Physiol. 1999;276:R1691-1700
    9 Wu S, Moomaw CR, Tomer KB, et al. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem. 1996;271:3460-3468
    10 Capdevila JH, Karara A, Waxman DJ, et al. Cytochrome P-450 enzyme-specific control of the regio- and enantiofacial selectivity of the microsomal arachidonic acid epoxygenase. J Biol Chem. 1990;265:10865-10871
    11 Laethem RM, Laethem CL, Ding X, et al. P-450-dependent arachidonic acid metabolism in rabbit olfactory microsomes. J Pharmacol Exp Ther. 1992;262:433-438
    1. Fisslthaler B, Popp R, Kiss L, et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature. 1999; 401: 493-497.
    2. Campbell W B, Gebremedhin D, Pratt P F, et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996; 78: 415-423.
    3. Quilley J, McGiff J C. Is EDHF an epoxyeicosatrienoic acid? Trends Pharmacol Sci. 2000; 21:121-124.
    4. Holla VR, Makita K, Zaphiropoulos PG, et al. The kidney cytochrome P-450 2C23 arachidonic acid epoxygenase is upregulated during dietary salt loading. J Clin Invest. 1999; 104: 751-760.
    5. Capdevila JH, Wei S, Yan J, et al. Cytochrome P-450 arachidonic acid epoxygenase. Regulatory control of the renal epoxygenase by dietary salt loading. J Biol Chem. 1992; 267: 21720-21726.
    6. Oyekan AO, Youseff T, Fulton D, et al. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J Clin Invest. 1999; 104:1131-1137.
    7. Makita K, Takahashi K, Karara A, et al. Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet. J Clin Invest. 1994; 94: 2414-2420.
    8. Sinal CJ, Miyata M, Tohkin M, et al. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem. 2000; 275: 40504-40510.
    9. Wang H, Lin L, Jiang J, et al. Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways. J Pharmacol Exp Ther. 2003; 307: 753-764.
    10. Chen J, Capdevila J H, Zeldin D C, and Rosenberg RL.Inhibition of cardiac L-type calcium channels by epoxyeicosatrienoicacids. Mol Pharmacol. 1999; 55: 288–295.
    11. Giles W R and Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol.1988; 405: 123–145.
    12. Xiao-Li Wang, Tong Lu, Sheng Cao, Vijay H. Shah and Hon-Chi Lee Inhibition of ATP binding to the carboxyl terminus of Kir6.2 by epoxyeicosatrienoic acids. Biochimica et Biophysica Acta. 2006; 1761: 1041–1049.
    13. Tong Lu, Toshinori Hoshi, Neal L. Weintraub, Arthur A. Spector and Hon-Chi Lee Activation of ATP-sensitive K+ channels by epoxyeicosatrienoic acids in rat cardiacventricular myocytesJ. Physiol. 2001; 537: 811-827.
    14. R. Rastaldo, N. Paolocci, A. Chiribiri, C. Penna, D. Gattullo and P. Pagliaro mediate bradykinin-induced negative inotropic effect Cytochrome P-450 metabolite of arachidonic acidR. Am J Physiol Heart Circ Physiol. 2001; 280: 2823-2832.
    15. Wu S, Chen W, Murphy E, et al. Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. J Biol Chem. 1997; 272:12551-12559.
    16. Moffat MP, Ward CA, Bend JR, et al. Effects of epoxyeicosatrienoic acids on isolated hearts and ventricular myocytes. Am J Physiol. 1993; 264: H1154-1160.
    17. Needleman P, Blaine EH, Greenwald JE, Michener ML, Saper CB, Stockmann PT, Tolunay E. The biochemical pharmacologyof atria1 peptides. Annu Rev Pharmacol Toxicol. 1989; 29: 23-54.
    18. Ruskoaho H, Kinnunen P, Mdntymaa P, Uusimaa P, Taskinen T,Vuolteenaho O Lenndluoto J. Cellular signals regulating therelease of ANF. Can J Physiol Pharmacol. 1991; 69:1514-1524.
    19. Field LJ, Veress AT, Steinhelper ME, Cochrane K. Sonnenberg H.Kidney functionin ANF transgenic mice: effect of blood volume expansion. Am J Physiol. 1991; 260: R1.
    20. John SWM, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995; 267: 679– 81.
    21. Klinger JR, Warburton RR, Pietras LA, Swift R, John S, Hill NS. Exaggerated pulmonary hypertensive responses during chronic hypoxia in mice with gene-targeted reductions in atrial natriuretic peptide. Chest. 1998; 114: 79S– 80S.
    22. Zhao L, Long L, Morrell NW, Watkins MR. NPR-A deficient mice show increased susceptibility to hypoxia-induced pulmonary hypertension. Circulation.1999; 99: 605– 7.
    23. Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene deliveryattenuates hypertension, cardiac hypertrophy, and renal injury in saltsensitiverats. Hum Gene Ther. 1998; 9(10):1429–38.
    24. Nishikimi T, Miura K, Minamino N, Takeuchi K, Takeda T. Role of endogenous atrial natriuretic peptide on systemic and renal hemodynamics in heart failure rats. Am J Physiol. 1994; 267:H182.
    25. Wada A, Tsutamoto T, Matsuda Y, Kinoshita M. Cardiorenal and neurohumoral effects of endogenous atrial natriuretic peptide in dogs with severe congestive heart failure using a specific antagonist for guanylate cyclase-coupled receptors. Circulation. 1994; 89: 2232– 40.
    26. Nichols WW, Edwards DG. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy. J Cardiovasc Pharmacol Ther. 2001; Jan; 6(1):5-21.
    27. Berry CL, Greenwald SE. Effect of hypertension on the staticmechanical properties and chemical composition of the rat aorta. Cardiovasc Res. 1976; 10: 437-45111.
    28. Yoshimoto T, Naruse M, Naruse K, Arai K, Imaki T, Tanabe A, et al. Vascular action of circulating and local natriruetic peptidesystem is potentiated in obese/hyperglycemic and hypertensive rats. Endocrinology. 1996;137: 5552–7.
    29. Lee J, Kim S, Jung M, Oh Y, Kim SW. Altered expression ofvascular natriuretic peptide receptors in experimental hypertensiverats. Clin Exp Pharmacol Physiol. 2002;29: 299–303.
    30. DiFusco F & Anand-Srivstava MB. Enhanced expression of Gi proteinsin non-hypertrophic hearts from rats with hypertensioninducedby l-NAME treatment. J Hypertens. 2000; 18: 1081–90.
    31. Hashim S, Anand-Srivastava MB. Losartan-induced attenuation ofblood pressure in l-NAME hypertensive rats is associated withreversal of the enhanced expression of Gi_ proteins. J Hypertens. 2004; 22: 181–90.
    32. Naruse M, Yoshimoto T, Tanabe A, Naruse K. Pathophysiological significance of the natriuretic peptide system: receptor subtypeas another key factor. Nippon Kakurigaku Zasshi. 1998; 112: 132–54.
    33. Liu LM & Yoshimi T. the changes in natriuretic peptide receptors(NP-R) in the lung and kidney in DOCA-salt hypertensive rats. Nippon Naibunpi Gakkai Zashi. 1995; 71: 587–96.
    34. Madhu B & Anand-Srivastava. Natriuretic peptide receptor-C signaling and regulation. Peptides. 2005; 26: 1044–1059.
    35. Li Y, Hashim S, Anand-Srivastava M B. Intracellular peptides of natriuretic peptide receptor-C inhibits vascular hypertrophy via Gqalpha/MAP kinase signaling pathways. Cardiovasc Res. 2006 Dec 1; 72(3): 464-72.
    1. De Bold AJ, Borenstein HB, Veress AT, et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats [J ]. Life Sci, 1981, 28(1):89 - 94.
    2. Flynn TG, de Bold ML, de Bold AJ. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties [J ]. Biochem Biophys Res Commun, 1983, 117 (3):859 - 865.
    3. Kangawa K, Fukuda A, Kubota I, et al. Human atrial natriuretic polypeptides (hANP): purification, structure synthesis and biological activity [J ]. J Hypertens Suppl, 1984, 2(3): S321 - S323.
    4. Nemer M, Lavigne JP , Drouin J , et al. Expression of atrial natriuretic factor gene in heart ventricular tissue [ J ]. Peptides , 1986 , 7(6) :1147 - 1152.
    5. Sudoh T, Kangawa K, Minamino N, et al. A new natriuretic peptide in porcine brain [J ]. Nature, 1988, 332(6159):78- 81.
    6. Aburaya M, Minamino N, Hino J, et al. Distribution and molecular forms of brain natriuretic peptide in the central nervous system, heart and peripheral tissue of rat [J ]. Biochem Biophys Res Commun, 1989, 165(2):880 - 887.
    7. Ogawa Y, Nakao K, Mukoyama M, et al. Rat brain natriuretic peptide - tissue distribution and molecular form [J ]. Endocrinology, 1990, 126(4):2225 - 2227.
    8. Sudoh T, Minamino N, Kangawa K, et al. C - type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain [J ]. Biochem Biophys Res Commun, 1990, 168(2):863 - 870.
    9. Takei Y, Takahashi A , Watanabe TX, et al. A novel natriuretic peptide solated from leftl cardiac ventricles [J ] . FEBS Lett , 1991 , 282(2) :317 - 320.
    10. Schweitz H , Vigne P , Moinier D ,et al. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps) [J ]. J Biol Chem, 1992,267 (20):13928 - 13932.
    11. Schirger JA , Heublein DM, Chen HH , et al. Presence of Dendroaspis natriuretic peptide - like immunoreactivity in human plasma and its increase during human heart failure [J ] .Mayo Clin Proc , 1999 , 74(2) :126 - 130.
    12. LEV IN E R, GARDNER D G, SAMSON W K. Natriuretic peptides[ J ]. N Engl JMed, 1998, 339: 321– 328.
    13. R ICHARDS A M, LA INCHBURY J G, N ICHOLLS M G, et al. Dendroasp is natriuretic pep tide: endogenous or dubious[ J ]. Lancet, 2002, 359: 5– 6.
    14. SCHULZ2KNAPPE P, FORSSMANN K, HERBST F, et al. I- solation and structural analysis of urodilatin?, a new pep tide of the cardiodilatin-(ANP) -family, extracted from human urine [ J ]. KlinWochenschr, 1988, 66: 752– 759.
    15. R ITTER D, CHAO J , NEEDLEMAN P, et al. Localization, synthetic regulation, and biology of renal atriopep tin-like prohormone[ J ]. Am J Physiol, 1992, 263: 503 509.
    16. YILMAZM B, ERBAY A R, BALCIM, et al. Atrial natriuretic peptide predicts impaired atrial remodeling and occurrence of late postoperative atrial fibrillation after surgery for symptomatic aortic stenosis [ J ]. Cardiology, 2006, 105: 207- 212.
    17. De LEMOS J A, MCGU IRE D K, DRAZNERM H. B-type natriuretic peptide in cardiovascular disease [ J ]. Lancet, 2003, 362: 316– 322.
    18. MCCULLOUGH P A, OMLAND T, MA ISEL A S. B-type natriuretic pep tides: a diagnostic breakthrough for clinicians[ J ].Rev CardiovascMed, 2003, 4: 72– 80.
    19. VESELY D L. Natriuretic pep tides and acute renal failure [ J ]. Am J Physiol Renal Physiol, 2003, 285: F167 F177.
    20. MCCULLOUGH P A, SANDBERG K R. B-type natriuretic peptide and renal disease [ J ]. Heart Fail Rev, 2003, 8: 355- 358.
    21. MELANSON S E, LEWANDROWSKI E L. Laboratory testing for B-type natriuretic peptides (BNP and NT-proBNP) : clinical usefulness, utilization, and impact on hospital operations [ J ]. Am J Clin Pathol, 2005, 124 Supp l: S122– 8.
    22. KONE B C1Molecular biology of natriuretic pep tides and nitricoxide synthases[J ]. Cardiovasc Res, 2001, 51: 429– 441.
    23. GOYM F, OL IVER PM, PURDY K E, et al. Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide [ J ]. Biochem J , 2001, 358: 379– 387.
    24. SABBATIN IM E, RODR IGUEZM R, CORBO N S, et al. C-type natriuretic peptide applied to the brain enhances exocrine pancreatic secretion through a vagal pathway[ J ]. Eur J Pharma col, 2005, 524: 67– 74.
    25. Kashiwagi M, Katafuchi T, Kato A , et al. Cloning and properties of a novel natriuretic peptide receptor , NPR - D[J ] .Eur J Biochem , 1995 , 233(1) :102 - 109.
    26. Chang MS , Lowe DG, Lewis M, et al. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases [J ] . Nature , 1989 , 341 (6237) : 68 -72.
    27. Bryan PM, Potter LR. The atrial natriuretic peptide receptor(GC - A/ NPR - A) is dephosphorylated by distinct microcystin - sensitive and magnesium - dependent protein phosphatases [J ] . J Biol Chem , 2002 , 277(8) : 16041 - 16046.
    28. Porter JG, Wang Y, Schwartz K, et al. Characterization of the atrial natriuretic peptide clearance receptor using a vaccinia virus expression vector [J ] . J Biol Chem , 1988 , 263 (35) : 18827 - 18833.
    29. Murthy KS , Teng BQ , Zhou H , et al. GMG(i - 1) / G(i - 2) - dependent signaling by single - transmembrane natriuretic peptide clearance receptor[J ] . AmJ Physiol Gastrointest Liver Physiol , 2000 , 278 (6) : G974 - G980.
    30. John SW, Krege JH , Oliver PM, et al. Genetic decreases in atrial natriuretic peptide and salt - sensitive hypertension[J ] .Science , 1995 , 267 (5198) : 679 - 681.
    31. Ogawa Y, Tamura N , Chusho H ,et al. Brain natriuretic peptide appears to act locally as an antifibrotic factor in the heart [J ] . Can J Physiol Pharmacol , 2001 , 79 (8) : 723 - 729.
    32. van Der Zander K, Houben AJ , Kroon AA , et al. Nitric oxide and potassium channels are involved in brain natriuretic peptide induced vasodilatation in man [ J ] . J Hypertens , 2002 , 20(3) : 493 - 511.
    33. Tolsa JF , Gao Y, Sander FC , et al. Differential responses of newborn pulmonary arteries and veins to atrial and C– type natriuretic peptides [ J ] . Am J Physiol , 2002 , 282 ( 1) : H273 - H280.
    34. Kim SH , Han JH , Lim SH , et al. Attenuation of inhibitory effect of CNP on the secretion of ANP from hypertrophied atria [J ] . Am J Physiol , 2001 , 281(5) : R1456 - R1463.
    35. Kobayashi O , Miwa H , Watanabe S ,et al. Cyclooxygenase -2 downregulates inducible nitric oxide synthase in rat intestinal epithelial cells [J ] . Am J Physiol , 2001 , 281(3) : G688 -G696.
    36. Kiemer AK, Vollmar AM. Elevation of intracellular calcium levels contributes to the inhibition of nitric oxide production by atrial natriuretic peptide [J ] . Immunol Cell Biol , 2001 , 79 (1) : 11 - 17.
    37. Tsukagoshi H , Shimizu Y, Kawata T, et al. Atrial natriuretic peptide inhibits tumor necrosis factor - alpha production by interferon - gamma - activated macrophages via suppression of p38 mitogen - activated protein kinase and nuclear factor -kappa B activation [J ] . Regul Pept , 2001 , 99(1) : 21 - 29.
    38. Hagiwara H , Inoue A , Yamaguchi A , et al. cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells[J ] . AmJ Physiol , 1996 , 270(5Pt 1) :C1311 - C1318.
    39.戴山林,黄茂,王宏,等.哮喘豚鼠内皮素、心钠素含量的变化及心钠素对内皮素含量的影响[J ] .中国病理生理杂志, 2000 , 16(10) :906 - 908.
    40. Cahill PA , Hassid A. Clearance receptor - binding atrial natriuretic peptides inhibit mitogenesis and proliferation of rat aortic smooth muscle cells [J ] . Biochem Biophys Res Commun , 1991 , 179(3) :1606 - 1613.
    41. Telegdy G, Adamik A , Glover V. The action of isatin (2 ,3 -dioxoindole) an endogenous indole on brain natriuretic and C - type natriuretic peptide - induced facilitation of memory consolidation in passive - avoidance learning in rats [ J ] .Brain Res Bull , 2000 , 53(3) :367 - 370.
    42. Ogawa E , Saito Y, Kuwahara K, et al . Fibronectin signaling stimulatesBNP gene transcription by inhibiting neuron2restrictive silencer element dependent repression. Cardiovasc Res , 2002 , 53 :4512459.
    43. Lee YJ , Lin SR , Shin SJ , et al . Brain natriuretic peptide is synthesized in the human adrenal medulla and its messenger ribonucleic acid expression along with that of atrial natriuretic peptide are enhanced in patients with primary aldosteronism. J Clin Endocrinol Metab , 1994 ,79 :147621482.
    44. Kohno M, Horio T , Yokokawa K, et al . Brain natriuretic peptide as a cardiac hormone in essential hypertension. AmJ Med , 1992 ,92 :29234.
    45. Tateyama H , Hino J , Minamino N , et al . Concentrations and molecularforms of human brain natriuretic peptide in plasma. Biochem Biophys Res Commun , 1992 , 185 :7602767.
    46. Kone BC. Molecular biology of natriuretic peptides and nitric oxidesynthases. Cardiovasc Res , 2001 , 51 : 4292441.
    47. Tremblay J , Desjardins R , Hum D , et al . Biochemistry and physiologyof the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biochem,2002 , 230 :31247.
    48. Stockand JD , Sansom SC. Regulation of filtration rate by glomerularmesangial cells in health and diabetic renal disease. Am J Kidney Dis ,1997 , 29 :9712981.
    49. La Villa G, Bisi G, Lazzeri C , et al . Cardiovascular effects of brain natriuretic peptide in essential hypertension. Hypertension , 1995 , 25 : 105321057.
    50. Silberbach M, Roberts CT Jr. Natriuretic peptide signalling : molecular and cellular pathways to growth regulation. Cell Signal , 2001 , 13 :2212 231.
    51. Biro E , Toth G, Telegdy G. Effect of receptor blockers on brainnatriuretic peptide and C2type natriuretic peptide caused anxiolytic state in rats. Neuropeptides , 1996 , 30 :59265.
    52. Kenny AJ , Bourne A , Ingram J . Hydrolysis of human and pig brain natriuretic peptides , urodilatin , C2type natriuretic peptide and some C-receptor ligands by endopeptidase224. 11. Biochem J , 1993 , 291 : 83288.
    53. Murdoch DR , Byrne J , Morton JJ , et al . Brain natriuretic peptide is stable in whole blood and can be measured using a simple rapid assay : implication for clinical practice. Heart , 1997 , 78 :5942597.
    54. Gobinet2Georges A , Valli N , Filliatre H , et al . Stability of brainnatriuretic peptide (BNP) in human whole blood and plasma. Clin ChemLab Med , 2000 , 38 :5192523.
    55. Shimizu H , Aono K, Masuta K, et al . Degradation of human brain natriuretic peptide (BNP) by contact activation of blood coagulation system. Clin Chim Acta , 2001 , 305 : 1812186.
    56. Buckley MG, Marcus NJ , Yacoub MH. Cardiac peptide stability ,aprotinin and roomtemperature : importance for assessing cardiac function in clinical practice. Clin Sci , 1999 , 97 :6892695.
    57. Clerico A , Del Ry S , Giannessi D. Measurement of cardiac natriuretic hormones ( atrial natriuretic peptide , brain natriuretic peptide , and related peptides) in clinical practice : the need for a new generation of immunoassay methods. Clin Chem, 2000 , 6 :152921534.
    58. Hughes D , Talwar S , Squire IB , et al . An immunoluminometric assay for N2terminal pro2brain natriuretic peptide : development of a test for left ventricular dysfunction. Clin Sci (Lond) , 1999 , 96 :3732380.
    59. Wang TJ , Larson MG, Levy D , et al . Impact of age and sex on plasmanatriuretic peptide levels in healthy adults. Am J Cardiol, 2002, 90 :2542258.
    60. Ishii J, Nomura M, Nakamura Y, et al. Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure. Am J Cardiol, 2002, 89: 6912695.
    61. McDonagh TA, Robb SD, Murdoch DR, et al. Biochemical detection of left2ventricular systolic dysfunction. Lancet, 1998, 351: 9213.
    62. Wieczorek SJ, Wu AH, Christenson R, et al. A rapid B2type natriureticpeptide assay accurately diagnoses left ventricular dysfunction and heartfailure: a multicenter evaluation. Am Heart J, 2002, 144:8342839.
    63. Suzuki M, Yamamoto K, Watanabe S, et al. Association betweenelevated brain natriuretic peptide levels and the development of leftventricular hypertrophy in patients with hypertension. AmJ Med, 2000,108:6272633.
    64. Inoue T , Sakuma M, Yaguchi I, et al. Early recanalization and plasmabrain natriuretic peptide as an indicator of left ventricular function after acute myocardial infarction. Am Heart J, 2002, 143:7902796.
    65. Cabanes L, Richaud2Thiriez B, Fulla Y, et al. Brain natriuretic peptide blood levels in the differential diagnosis of dyspnea. Chest, 2001, 120: 204722050.
    66. Richards AM, Nicholls MG, Espiner EA, et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction.Circulation , 2003 , 107 :278622792.
    67. de Lemos JA , McGuire DK, Drazner MH. B2type natriuretic peptide incardiovascular disease. Lancet, 2003, 362:3162322.
    68. Murdoch DR, Mcdonagh TA, Byme J, et al. Titration of vasodilator therapy in chronic heart failure according to plasma brain natriure ticpeptide concentration: randomized comparison of the hemodynamic and neuroendocrine effects of tailored versus empirical therapy. Am Heart J ,1999, 138:112621132.
    69. Richards AM, Doughty R, Nicholls MG, et al . Neurohumoral predictionof benefit from carvedilol in ischemic left ventricular dysfunction.Circulation, 1999, 99:7862792.
    70.傅蕙英,曾王勇,陈珈.脑钠肽与谷胱甘肽巯基转移酶融合蛋白的表达与分离纯化.农业生物技术学报, 1998,6: 1552160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700