用户名: 密码: 验证码:
辉钼矿与难选钼矿的柱式高效分选工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钼是一种重要的稀有金属和战略储备资源,对整个国民经济及人类健康,都起着极其重要的作用。近年来,随着矿石开采量加大,富矿资源减少,贫细杂难选钼矿石的比例不断增加,在此背景下,钼选矿呈现出典型的微细粒分选的特点,并出现了两大需求与研究热点:一是钼精矿的质量进一步提高,二是难选钼矿的开发与利用。辉钼矿与难选钼矿的柱式高效分选工艺研究就是在此背景下提出的。
     本文首先对钼矿分选的可浮性特征进行了研究。无论精选过程、粗选过程还是难选钼矿的分选,可浮性都呈现变化的物性特征-“开始易浮,后期可浮性逐渐变差,越来越难浮”。以物性为背景,提出了把旋流-静态微泡浮选柱分选方法应用于钼分选的设想,并结合对“非均衡”分选过程的分析,研究了其适用于钼矿高效分选的可能性。此外,系统分析研究了微泡析出及形成对基于微细粒易浮钼矿分选的独特作用,并围绕旋流静态微泡浮选柱旋流力场的作用机理和管流矿化的紊流环境对难选颗粒的分选作用进行了较为系统的研究。
     本文首先开展了辉钼矿柱式精选研究,建立了钼矿精选半工业分流试验系统并进行了系列分选试验。在确定了处理量和药剂制度及操作参数等条件的基础上,进行了连续运转试验,结果表明:以浮选粗精矿再磨后的物料为试验入料,在平均品位5%、处理量1.51t/d的条件下,采用旋流-静态微泡浮选柱一粗两精流程,获得钼精矿品位53.21%,精选回收率92.95%的指标;通过与一粗两精一扫流程的对比试验,确定了一粗两精为最终试验流程;与现场浮选机九次精选一次精扫工艺相比较,在相同入料条件下,采用该工艺钼精矿品位提高6.52%,精选回收率提高7.31%。对精选过程进行分析,认为影响精选回收率的主要是磨矿细度、解离度和分选溶液环境等因素。进行深入分析认为,管流浮选装置的独特结构有利于析出和形成大量微泡,对于钼矿精选的细颗粒物料分选十分有利,大量的微泡不仅可以极大提高矿化概率,更有利于表面疏水性极好的辉钼矿颗粒加速上浮。
     浮选柱无法应用于粗选工艺和难以实现全流程分选工艺,是目前浮选柱设备的薄弱环节。在钼精选的基础上,本文对流沙山钼矿进行了实验室试验和柱式全流程分选工业应用试验研究。通过实验室试验确定了磨矿细度药剂制度和磨矿细度等试验,在确定了处理量、循环量和充气量等条件后进行了全流程分选工业系统试验。试验结果表明:针对流沙山钼矿石中硫化钼为易选的辉钼矿,氧化钼以难选钼钙矿为主的特点,采用柱式工艺对硫化矿和氧化矿分别选别,硫化矿采用一粗两精流程,氧化矿采用脱泥分选、粗粒分选和一次精选的流程,获得了硫化钼精矿品位45%以上、氧化钼精矿10%以上,综合钼精矿品位42%以上、综合回收率70%以上的指标。对粗选过程和全流程分选进行分析认为,旋流力场结构促进了矿化气絮团的分离效果,中矿循环返回再选使难选颗粒有了多次矿化分离的机会,因而可以提高粗选环节的回收率。
     本文对夜长坪难选氧化钼矿进行了柱式分选研究,建立了从实验室到工业应用的各级试验系统,并在此基础上开展了难选氧化钼矿的系列试验研究。实验室细泥分选试验结果表明:浮选柱在分选细泥方面比浮选机更加优越;半工业分流试验结果表明:对难选氧化钼矿细泥采用柱式一粗两精流程,可以获得钼精矿品位28.55%、回收率59.52%的分选指标,并确立了一粗两精为最终试验流程;柱式细泥工艺工业应用试验结果表明:采用柱式一粗两精流程,精矿品位平均26.9%,尾矿品位平均0.080%,平均回收率为57.81%,获得的各项指标接近于半工业分流试验;柱式细泥分选流程,可使整个生产系统钼精矿指标提高2.33%,尾矿品位降低0.01%,平均回收率提高5.28%。对分选过程进行分析认为,旋流静态微泡浮选柱的强紊流分选环境有利于可浮性差的难选钼矿分选。对于提高难选钼矿石的分选效率作用比较明显。
     本文在对钼矿分选过程分析的基础上,通过大量的试验和理论探索,开发了旋流-静态微泡浮选柱应用于辉钼矿精选、钼矿全流程分选、难选钼矿分选等不同的高效分选工艺,获得了较好的分选指标,也为高效开发利用国内钼矿资源提供了一种途径。
Molybdenum is a rare metal and also a strategic reserve resource. It plays an very important role in national economy and human health, and is being largely applied in industrial field. In recent years, with the increasing of exploiting molybdenum, rich mine resources are reducing and the proportion of poverty, fine, miscellaneous, and difficultly-separated molybdenum ores are constantly increasing, so the separation equipment and technology were put forward to higher requirement. In this background, molybdenum mineral shows a typical micro-fine separation characteristics, and two major needs and two research focus exsit. First, the quality of molybdenum concentrate needs furtherly improved. The second is the exploitation and utilization of difficultly-separated molybdenum ore. Column high efficient separation process of Molybdenite and difficultly-separated molybdenum is proposed in this context.
     This paper analyzed flotability characteristic of molybdenum separation process first. No matter for concentrate process, rough separation or refractory separation, the flotability characteristics follow the same trend,“easy to float for the beginning, further worse and worse, and finally more and more difficult to float”. Taking physical properties as background, this thesis points out to apply cyclonic static micro-bubble flotation column separation method to separation of molybdenum, combining with analysis of "non-equilibrium" separation process, and studies its possibilities of application to high efficient separation of molybdenum ore. In addition, system study analyzed the unique function of micro-bubble separating out and foaming on the separation based on the micro-fine and easily floating molybdenum ore. Systematic studies are also carried out on the separation function of mechanism of cyclonic static micro-bubble flotation column separation cyclone field and pipe flow mineralization environment to difficultly-separated particles.
     Molybdenite column concentrate separation study is first carried out in this paper. The semi-industrial separation test system of molybdenum ores concentration was built up and series of tests has been carried out. On the basis of confirming the conditions of ore consumption, medicament system and operation parameters, continuous operation test are carried out. The test results reveals that, under conditions of using materials after regringding flotation concentrates and average grade value of 5%, consumption 1.5 t/d, one rough process and two concentrate courses of cyclonic static micro-bubble flotation column separation can get 53.21% molybdenum concentrate grade value and 92.95% concentrate separation recovery rate index. Compared with one rough process and two concentrate and one scavenging courses, one rough process and two concentrate courses is finally determined as final testing process. Compared with nine concentrate and one scavenging courses of flotation machine on spot, under conditions of the same feeding materials, using such process, grade value has improved 6.52% and concentrate separation recovery rate has increased 7.31%. Analysis of the concentration process reveals that main factors affecting concentrate separation recovery rate are mainly fineness of milling ores, degree of dissociation and separation solution liquid. Further and deep study find that unique characteristics of pipe flow flotation devices has advantage in isolating and foaming large amount of micro-bubbles, which is beneficial to fine particles materials separation of molybdenum concentrate. Large amount of micro-bubbles not only can greatly improve mineralizing probability and promote the quicking floating of molybdenite particles with extremely good surfacial hydrophobilty.
     Flotation column cannot be applied to rough separation and full-flow separation, which is weak link of flotation column equipments. On basis of molybdenum concentration, this paper studied on laboratory test and column full-flow separation industrial tests on Liushashan molybdenum mine. Laboratory test determined milling fineness medicament system and milling fineness tests and so on. After confirming conditions of consumption, and circulation gas volume, full-flow separation industrial system tests are carried out. The results reveal that, in view of characteristics that sulphide ore of Liushashan molybdenum ore is easily separated ores, and that oxide molybdenum ore mainly contains difficultly separated powellite, sulphide ores and oxide ores are respectively separated by column technique. One rough process and two concentrate courses are applied for sulphide ore. Desliming separate-coarse separate-one concentration process are applied for oxide ores. Results shows grade value of sulphide molybdenum concentrates is above 45%, grade value of oxide sulphide molybdenum concentrates is above 10%, grade value of comprehensive molybdenum concentrates is above 42%, and comprehensive recovery rate is above 70%. Conclusion can be drawn from analysis of coarse separation and full-flow separation process that, cyclone dynamics construction promotes separation effect of mineralizd air-masses. Re-separation of mid-size ores circular returning increases chances of mineralized separation of difficultly separated particles, so recovery rate in coarse separation process can be promoted.
     This paper made a column separation research on Yechangping oxide molybdenum ores. Testing system from laboratory to industrial practices are build up and series of tests on difficultly separated oxide molybdenum ores are carried out on this basis. laboratory fine slime separation test shows that, flotation column has advantage over flotation machines on fine slime separation. Result of Semi-industrial partial flow tests dedicates that, using column one rough process and two concentrate courses to separate difficultly separated oxide molybdenum ores can get 28.55% molybdenum concentration grade value, 59.52% recovery rate, and one rough process and two concentrate courses process is identified as final testing process. Result of column fine slime technical industrial application tests shows that, using column one rough process and two concentrate courses can get average 26.9% concentrates grade value, average 0.080% tailings grade value, average 57.81% recovery rate. Each obtained indexes all close to semi-industrial test. Column fine slime separation process can make the whole producing system molybdenum concentrates index increase 2.33%, tailings grade value reduce 0.01%, average recovery rate improve 5.28%. Analysis of separation process show that, high-intensity turbulent separation environment of cyclonic static micro-bubble flotation column is beneficial to separation of difficultly separated molybdenum ores with poor floating properties and also has obvious effect on improving separation efficiency of difficulty separated molybdenum ores.
     This paper explores cyclonic static micro-bubble flotation column through a host of experiments and theoretical researches on the basis of analysis of separation process. In this paper cyclonic static micro-bubble flotation column are applied to different high efficient separation processes as molybdenite concentration, molybdenum ores full-flow separation and difficlutly molybdenum ores separation. It also provides a method for highly efficient utilizing national molybdenum resources.
引文
[1]贾红秀,高丽梅,姜威.钼市场30年回顾与展望[J].中国钼业,2006,30(1):42-47.
    [2]廖经桢.国内外钼钨组合矿床的综合评价和利用[J].中国钼业,2003,19(6):43-46.
    [3]张文朴.我国钼资源综合利用与再生研发进展评述[J].中国资源综合利用用,2006,24(12):4-7.
    [4]彭如清.中国钼精矿产量及其分布[J].世界有色金属,2001,17(8):15-16.
    [5]邢会敏等.国外铀钼伴生矿综合回收技术[J].铀矿冶,2006,25(4):186-191.
    [6]张文钲.21世纪的钼化学品[J].中国钼业,2000,24(1):35-37.
    [7]张文钲.2006年钼业年评[J].中国钼业,2007,31(1):3-8.
    [8]张文钲.2000年钼业年评[J].中国钼业,2001(1):18-23.
    [9]冯进成等.当前钼矿开发热与资源开发政策[J].河南国土资源,2005(9):12-13.
    [10]刘炯天,周晓华,王永田,等.浮选设备评述[J].选煤技术,2003(6):25-33.
    [11]刘广龙.浮选机特点与研发方向[J].金川科技,2004(2):27-33.
    [12]杜岩.国外浮选设备的发展及应用[J].金属矿山.1993(3):52-55.
    [13]杨琳琳,程坤,文书明.浮选柱研究现状及其进展[J].矿业快报,2008,1(1):4-7.
    [14]李玄怀.浮选柱的研究和应用[J].科技情报开发与经济,2004,14(10):346-349.
    [15]陶长林.詹姆森浮选柱-浮选柱工艺的一大技术突破[J].中国矿业,1995,4(1):43-47.
    [16]刘殿文等.浮选柱研究及其应用新进展[J].国外金属矿选矿,2002(6):14-19.
    [17]黄云峰.浮选柱的现状与发展.第四届全国青年选矿学术会议论文集[C].昆明:云南科技出版社,1996:5.
    [18]王永田等.旋流微泡浮选柱在细粒煤泥分选中的应用.第四届全国青年选矿学术会议论文集[C].昆明:云南科技出版社1996:125.
    [19]周晓华,宋晓娟,等.旋流-静态微泡浮选柱浮选萤石试验研究[J].矿冶,2005,14(2):21-24.
    [20]张海军,刘炯天,等.FCSMC浮选柱提铁降硅工业试验研究[J].矿冶工程,2008,28/4(2):31-34.
    [21]马子龙,刘炯天,等.旋流静态微泡浮选柱用于金川镍矿的可行性研究[J].有色金属(选矿部分),2009,22 (02) :32-35.
    [22]易意.2006年中国钼工业发展状况综述[J].中国金属通报,2007(7):12-14.
    [23]林春元,程秀俭.钼矿选矿与深加工[M].北京:冶金工业出版社,1996.
    [24]任觉世.工业矿产资源开发利用手册[M].武汉:武汉工业大学出版社,1993.
    [25]罗振中.钼的应用及其发展[J].中国钼业,1998,22(4):17-20.
    [26]刘浩元,王安民.钼矿床工业分类实例[J].中国钼业,1999,23(3):14-16.
    [27] MINERAL COMMODITY SUMMARIES 2007[R].Washington:U.S. Geological Survey,2007.110-111.
    [28]胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社,1987.
    [29]曾纪伦.江西阳储钨钼矿几种矿物的特征及其矿床成因关系[J].矿物学报,1986(9):278-280
    [30]张文钲,李枢本.钼矿选矿[M].北京:冶金工业出版社,1989.
    [31]中国金属学会选矿学术委员会编.铜、铅、锌、钼选矿技术[M].北京:科学出版,1984.
    [32]林春生,夏华龙.德兴铜矿钼的工艺矿物研究[J]铜业工程,2003,(4):14-17.
    [33] Chader S,Fuerstenau D W.On the Natural Floatability of Molybdenite [J].Transactions of the Society of Mining Engineers of AIME,1972,252:62-68.
    [34] Smit F J,Bhasin A K.Relationship of Petroleum Hydrocarbon Characteristics and Molybdenite Flotation [J].International Journal of MineralProcessing,1985,15(1-2):19-40.
    [35] Chander S,Fuerstenau DW.Effect of Potassium Diethyldthiophosphate on the Interfacial Properities of Molybdenite[J].Institution of Mining Metallurgy Transactions/Section C,1974:180~182.
    [36]龙仲胜.多金属矿的可选性研究[J].矿业研究与开发,2002,22(1):31-33.
    [37]吕建业.改变辉钼矿表面积和棱性质的浮选[J].矿产综合利用,1992,(5):7-12.
    [38]张文钲.钼矿选矿技术进展[J].中国钼业,2008,32(1):1-7.
    [39]李顺玉等.2:18-硫钼杂多阴离子修饰电极电化学和电催化研究[J].东北师大学报,1999,(2):57-60.
    [40]吕建业.辉钼矿表面特性及其可浮性的研究[J].有色金属(选矿部分),1992(4):4-8.
    [41]张文钲.辉钼矿的浮选理论与实践[J].国外矿冶,1984(6):8-11.
    [42]孙兴家.辉钼矿的工艺矿物性质[J].有色金属(选矿部分),1982(5):54-58.
    [43] A.A.斯皮瓦克.从硫化矿中浸出钼的可能性和前景[J].钼业经济技术,1989(1):5-8.
    [44]赵平,赵建伟,等.含金氧化钼矿及选矿试验研究[J].黄金,2008(7):41-43.
    [45] G.M.Yashina and L.D.Sheveleva.Possibility of Leaching of East Kounrad Deposit Molybdenum Sulfide Ores[J].CA,112:102489q.
    [46] Richard.O.Huch.Tale-Molybdenite Separation: US,3921810[P].1975.
    [47]报道.滑石型钼矿选矿难题取得重大突破[J].矿产保护与利用, 2000,(03):49.
    [48]冯其明,许时,陈荩.硫化矿物浮选电化学[J].有色金属(选矿部分),1990(4):36-42.
    [49]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科技出版社,1987.
    [50] P.Somasundaran.浮选溶液化学[J].国外金属选矿,1990(11):1-7.
    [51]王淀佐,邱冠周,等.硫化矿物硫化钠诱导浮选的电化学研究[J].有色金属,1997,49(1):45-48.
    [52]林春元,程秀俭.钼矿选矿与深加工[M].北京:冶金工业出版社,1996.
    [53]纪斌.百花岭选矿厂钼精选工艺研究及改造实践[J].中国矿业,2001,10(1),68-71.
    [54]柳晓峰等.钼选矿过程中再磨位置的探讨[J].中国钼业,1999,23(4),45-47.
    [55]王漪静等.金堆城不同类型矿石生产低铅钼精矿实验研究[J].中国钼业,2004, 28(5):22-26.
    [56]王漪静.钼精矿含铅高原因分析及对策措施[J].有色金属,2003(1):10-13.
    [57]周彩铃.进一步降低钼精矿中铜、铅含量的生产实践.[J]中国钼业,2003,27(3):11-13.
    [58]杨剑波等.浮选柱在钼选矿中的应用和实践[J].中国钼业,2005,30(2):22-24.
    [59]刘学胜等.钼氧化矿物的浮选实验研究[J].有色矿冶,2004,20(6):12-14.
    [60]朱穗玲等.快速浮选新工艺的研究与应用[J].有色金属,2003(6):24-28.
    [61]李皊值.提高月山铜矿钼选矿指标的研究[J].国外金属选矿,1994(6):11-13.
    [62]陈代雄等.高谈钼镍矿可选性试验研究[J].湖南有色金属,2006,22(6):9-11.
    [63]冯安生等.高档钼精矿的制备技术[J].矿产综合利用,2002(4):93-97.
    [64]张文钲等.提高钼精矿质量的探讨[J].中国钼业,2006,12(3):1-4.
    [65]郑昕.从铜钼矿石选钼的理论与实践[J].国外金属矿选矿,1995(12):28-34.
    [66]朱建光.2006年浮选药剂的进展[J].国外金属矿选矿,2007(2):4-13.
    [67]朱建光,等.N-132选钼捕收剂浮辉钼矿试验[J].有色矿山,2000,29(4):30-33.
    [68]徐秋生.磁化烃油选钼试验研究[J].金属矿山,2006(9):53-54.
    [69]张美鸽,张学武,等.新型捕收剂TBC选钼实验研究[J].有色金属(选矿部分),2005(2):42-44.
    [70] D.Malhotra,韩树山.辉钼矿浮选捕收剂的评价[J].国外金属矿选矿,1986(12):17-19.
    [71] Douglas.R.Shaw.一种优良的硫化矿捕收剂-十二烷基硫醇[J].国外金属选矿,1991(3):1-11.
    [72]吕玉庭等.煤油乳化捕收剂作用机理及应用[J].矿产综合与利用,2003,12(6):33-35.
    [73]俞国庆.A-200起泡剂选钼试验研究[J].中国钼业,2007,31(1):20-22.
    [74] G.H哈里斯等.改进的新型起泡剂[J].国外金属选矿,2000(8):31-34.
    [75]徐秋生.辉钼矿及有色金属选矿起泡剂:中国,200710017415.X[P].2007-02-13.
    [76]任骊东.选钼捕收剂的应用研究与实践[J].中国钼业,2006,30(3):30-32.
    [77]李皊值.用改性水玻璃浮选钼矿石[J].有色金属(选矿部分),2003(3):33-34.
    [78]张小云,黎铉海.辉钼矿与滑石的分选试验[J].湖南有色金属, 1997(01):47-49.
    [79]朱一民.辉钼矿浮选药剂[J].国外金属矿选矿,1998(11):7-12.
    [80]张文钲.钼精矿降铅方法[J].中国钼业.2003(04):9-12.
    [81]杨久流.制备优质辉钼矿精矿的提纯技术[J].国外金属矿选矿,2000,30(08):22-24.
    [82]蒋玉仁,周立辉,等.新型抑制剂浮选分离黄铜矿和辉钼矿的研究[J].矿业工程,2001,21(1):33-36.
    [83] Kawatra S.S. and Eisele T.C..The use of horizontal baffles to improve the effective of column flotation of coal[C].The 13th international mineral processing,771-777.
    [84]陈泉源,张泾生.浮选柱的研究与应用[J].矿冶工程,2000,20(3):2-5.
    [85] Yianatos J.B.BerghL.G.RTD.Studies in an industrial flotation column[J].Use of the radio active fracer technique International Journal of Mineral Processing,1992,(36):81-91.
    [86] Miller J.D.,Ye Y Gopalakrishnan S.Development of the air-sparged hydrocyclone[J].Column Flotation,1988,(34):305-313.
    [87]杨锦隆.新型充填式浮选柱[J] .国外金属矿选矿,1991(2):8-12.
    [88] G.Schena, A.Casali. Column flotation circuits in Chilean copper concentrators [J].Minerals Engineering,1994,7(1):1473-1486.
    [89] Y.Ye,S.Gopalatreshnan,E.Paequet,etc.Development of air-sparged hydrocyclone-A swirl-flow floation column [C].Column Foltation’88:Society of mining engineers,INC,Littleton,Colorado,1998:305-314.
    [90]刘炯天.柱分离过程的静态化及其充填方式[J].选煤技术,2000(2):1-5.
    [91] H.El-Shall,N.A.Abdel-Khalek,S.Svoronos.Collector-frother interaction in column flotation of Florida phosphate[J].Mineral Processing,2000,58(6):187-189.
    [92]刘炯天.旋流-静态微泡浮选柱分选方法及应用(之五)柱分选设备系列化及大型旋流-静态微泡浮选床[J].选煤技术,2000(5):1-4.
    [93] G.J.Jameson,E.V.Manlapig.Applications of the Jameson flotation cell[C].Column Flotation’91:Canada Cominco Engineering Services Ltd,1991:673-687.
    [94] R.Clayton, G.J.Jameson, E.V.Manlapig. The development and application of the Jameson cell[J].Minerals Engineering,1991,4(1):925-933.
    [95] G.J.Harbort,B.R.Jackson,E.V.Manlapig.Recent advances in jameson flotation cell technology[J].Minerals Engineering,1994,7(2):319-332.
    [96]张兴昌.CPT浮选柱工作原理及应用[J].有色金属(选矿部分),2003,(2):22-24.
    [97]樊晓鹏.CCF浮选柱在金川铜镍硫化物选矿中的应用研究[M].西安:长安大学,2006.
    [98]刘炯天.旋流-静态微泡浮选柱分选方法及应用(之一)柱分选技术与旋流-静态微泡浮选柱分选方法[J].选煤技术,2000(5):1-4.
    [99]中国矿业大学.新型高效矿物柱分选方法与设备[R].内部资料,2007.
    [100]李绍英,谢华,等.浮选柱的研发与工业应用[J].煤(洗选加工),2007,32(2):31-32.
    [101]刘炯天,周晓华,等.浮选设备评述[J].选煤技术,2003,25(6):25-34
    [102] G.H.Luttrell, S.Yan,etc. A Computer-aided Design Package for Column Flotation[C].SME Annual meeting, Salt Lake City, Utah, 1990:133-142.
    [103] Mankosa,M.J.,etc. Modeling of column flotation with a view Toward Scale-up and Control [C].SME annual Meeting, Salt Lake City, Utah:1990:82-89.
    [104] J.A.Finch and G.S.Dobby.Column Flotation [M].Pergamon Press,1989,6:37-38.
    [105] Yoon R.H.矿粒-气泡作用中的流体动力学及表面力[J].国外金属矿选矿,1993(6):
    [106] Gaudin, A.M. [C]. Flotation 2nd edn,1957(3):132-142.
    [107] R.H.Yoon.The role of hydrodynamic and surface forces in bubble–particle interaction [J].Mineral Processing,2000(58):129–143.
    [108] Sutherland K. Kinetics of the flotation process [M].Physical chemistry of flotation XI, 1948:394-425;
    [109]蔡璋.浮游选煤与选矿[M].北京:煤炭工业出版社,1991.
    [110] Luttrell,G.H.etc. Production and Processing of Fine Particles[M].Toronto:Pergamon press,1973:159-167.
    [111] Holtham, P.N.,Cheng, Ta-Wui.Study of probability of detachment of particles from bubbles in flotation[J].Transactions of the Institution of Mining & Metallurgy, 1991(9):147-153.
    [112] J.A.Finch,G.S.Dobby. Column Flotation[M].Pergamon Press.1986.9:66-72.
    [113] J.A.Finch,G.S.Dobby.Column Flotation [M].Pergamon Press.1986.9:103-109.
    [114]张文钲.2000年钼业年评[J].中国钼业,2001,25(1):18-23.
    [115]张文钲,徐秋生.提高钼精矿质量的探讨[J].矿业快报,2006,12(12):1-4.
    [116]王漪靖.57钼精矿含碳高原因分析研究[J].有色金属(选矿部分),2006,14(6):14-18
    [117]刘升年.57%钼精矿技术研究与生产实践[J].有色金属(选矿部分),2008,6(4):6-10.
    [118]张文钲,李枢本.关于提高我国现行钼精矿质量标准问题[J].有色金属,1982(2):45-47.
    [119]张学武.擦洗技术在选钼中的应用[J].中国钼业,1999,23(2):20-22.
    [120]杨刘晓,许洁瑜.2005年中国钼工业发展状况[J].中国钼业,2006,30(1):3-6.
    [121]北有色地质研究院.河南汝阳东沟钼矿选矿工艺试验报告[R].内部资料,2005,10.
    [122]郑州矿产资源综合研究所.流沙山钼(金)矿选矿大样及综合利用选矿试验研究报告[R].内部资料,2008.
    [123]中国地质科学院郑州矿产综合利用研究所.卢氏县地灵矿业开发有限公司夜长坪钼矿可选性试验研究报告[R].内部资料,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700