用户名: 密码: 验证码:
摩擦电选过程动力学及微粉煤强化分选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦电选在微粉煤脱硫降灰、粉煤灰脱炭及细粒矿物分选方面有着非常广阔的应用前景,对摩擦电选理论与方法的研究是矿物加工领域的国际前沿课题。本论文在综述国内外相关文献资料基础上,围绕摩擦电选过程动力学和化学改性强化微粉煤摩擦电选开展了相关基础研究。研究了荷电颗粒在静电场中的运动规律,初步建立了化学改性强化微粉煤摩擦电选的调控理论与方法,探讨了化学改性强化煤和矿物颗粒摩擦异性荷电机理,进行了化学改性微粉煤摩擦电选试验。初步设计了在线化学改性调控摩擦电选系统,为摩擦电选技术特别是微粉煤摩擦电选工业应用提供了理论基础和技术支持。
     论文对摩擦电选过程动力学理论研究表明,荷电颗粒在摩擦电选过程中主要受电场力、曳力和重力的作用,并建立了摩擦荷电颗粒在电场中的动力学方程。采用MATLAB软件对摩擦荷电颗粒在电场中运动轨迹的模拟研究表明,颗粒粒度、电场强度、气流速度和荷质比对分选过程有显著影响,而颗粒密度对分选效果影响不大。结合摩擦荷电荷质比试验数据对煤和矿物颗粒在静电场中运动轨迹的模拟研究表明0.25~0.074 mm粒级颗粒最易于分选。利用高速动态分析系统对煤和矿物颗粒在电场中运动规律的研究表明颗粒水平和垂直加速度都呈现似正弦波变化,粒度越细加速度波动越大。
     采用13种化学药剂进行的化学改性强化煤和矿物颗粒摩擦荷电基础研究表明,化学改性方法可以有效强化煤和矿物颗粒的摩擦荷电性能,综合分析湿法改性和干法改性试验结果认为,烷烃类药剂具有良好的改性效果,而离子类药剂改性的选择性较差,不利于煤和矿物颗粒的摩擦电选分离,所选药剂中木质素、煤油、乙醇、氨水对微粉煤改性处理将会改善摩擦电选效果。对不同密度级煤样化学改性前后摩擦荷电特性的研究表明,木质素、煤油、轻柴油、乙醇、氨水的化学改性能有效改变不同密度级煤样的摩擦荷电性能,增强了低密度级和高密度级煤样的摩擦荷电差异,但难以使高密度级煤样荷电极性反转。对不同密度级煤样改性前后的红外光谱研究表明,荷质比与主要极性官能团吸收强度具有相关性,主要极性官能团的吸收强度减弱,则样品摩擦荷电趋于荷正电,其吸收强度增强,则样品摩擦荷电时趋于荷负电。
     微粉煤摩擦电选试验结果表明,随着风量增加,脱灰率和脱硫率降低,可燃体回收率增加;随着电压提高,脱灰率和可燃体回收率增加,脱硫率降低;给料速度对分选效果影响不明显。化学改性微粉煤摩擦电选试验结果表明,干法化学改性可以有效提高微粉煤摩擦电选效果,所选用药剂中氨水、煤油和轻柴油改性作用效果最好,使精煤产率提高约10%,最佳药剂用量范围为500~2000 g/t煤样。试验结果证明化学改性强化微粉煤摩擦电选方法具有实际可行性和经济可行性。
As a potential technology, triboelectrostatic separation has a wide range of application in the field of deash and desulfurization of coal powder, decarburization of fly ash and fine mineral processing. Research on the theory and method of triboelectrostatic separation is one of the frontier topics in the field of mineral processing. On the basis of extensive literature review, this dissertation mainly focused on the fundamental research of triboelectrostatic separation dynamics and enhanced fine coal triboelectrostatic separation by chemical modification. Law of motion of tribocharged particles in the process of triboelectrostatic separation was studied, and conditioning theory and method of enhanced fine coal triboelectrostatic separation by chemical modification was established initially. Mechanism of enhanced tribocharge of coal and mineral particles with opposite charges by chemical modification was discussed. The separation experiment for coal powder which was modified by chemicals was done and studied by using the laboratorial triboelectrostatic separation system. The triboelectrostatic separation system with online chemical modification was designed initially. These provided theoretic basis and technology support for the industrial application of triboelectrostatic separation, and especially for the industrial application of fine coal triboelectrostatic separation.
     The research on the triboelectrostatic separation dynamics show that the tribocharged particles were affected mainly by the electric field force/ drag force and gravity. The equation of dynamics of the tribocharged particles in electric field was established. The trajectory of the tribocharged particle in high-voltage electrostatic field was simulated using MATLAB software, and the results show that the size of particle,the intensity of electric field, the air speed and the charge-mass ratio have significant effects on the separation processing. The density of particle has a little effect on the separation results. The trajectories of coal and mineral particles were simulated using the charge-mass ratio data of the tribocharge tests by dint of MATLAB software, the simulation results show that the particles in the size fraction of 0.25~0.074 mm are the best ones to be separated easily. The particle trajectory were tested by high speed camera and analyzed by professional analysis software and the results show that the horizontal and vertical acceleration of the particle varies as sine wave, and the smaller the size is, the higher the wave of acceleration.
     Fundamental study of enhanced tribocharge of the coal and mineral particles by chemical modification were carried out using thirteen kinds of reagents and the results show that the performance of coal and mineral particles were improved after pretreated by chemical modification. The test data of modification by wet and dry process were comprehensive analyzed, and the results indicate that alkanes reagents are better for surface modification and ionic reagents are no conductive to triboelectrostatic separation of coal and mineral for lower selectivity. Ethanol, kerosene, ammonia and lignin are all more effective modification agents for improving fine coal triboelectrostatic separation. The chemical modification experiments of different density fraction coal were conducted and the characteristics of triboelectrification were tested. The results show that the charge performance of each density fraction coal particles pretreated by chemical modification is changed and the difference between the lower and the higher density fraction coal is enhanced. The polarity of tribocharge on high density fraction coal particle is difficult to reverse. The results of FTIR of each density fraction coal particles untreated and pretreated by chemicals show that the tribocharge-mass ratio is observed significant correlation with the absorbance intensity of the main polarity functional group. It is indicated that if the absorbance of the main polarity functional group on the particle surface decrease, the polarity of the tribocharge of the particle would tend to be positive, and if the absorbance of the main polarity functional group on the particle surface increase, the polarity of the tribocharge of the particle would tend to be negative.
     The results of fine coal triboelectrostatic separation tests show that the efficiency of deash and desulfurization decrease and the combustible recovery enhance with the increase of air flux. The efficiency of deash and the combustible recovery enhance and the efficiency of desulfurization reduce with the increase of the voltage. The interaction of the factors has significant influence on the efficiency of deash. The triboelectrostatic separation results of fine coal which was modified by chemicals show that the efficiency of coal powder triboelectrostatic separation is improved efficiently by chemical modification, and ammonia, kerosene and light diesel oil are the most effective chemical agents with an increase of clean coal yield of about 10%. The optimal amount of reagent is in a range of 500~2000 g per ton of fine coal. The experimental results show that the method of chemical surface modification to enhance fine coal triboelectrostatic separation is practicable with economic feasibility.
引文
[1]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006—2020年)[J].中华人民共和国国务院公报. 2006(09): 7-37.
    [2]中国人民共和国环境保护部.全国环境统计公报(2007年)[Z]. 2008.
    [3]中国工程院能源与矿业工程学部.中国西部煤炭的合理加工利用[R].北京:中国工程院, 2001.
    [4]国家环保总局、国家统计局.《中国绿色国民经济核算研究报告2004》[Z]. 2006.
    [5]陈清如.建设具有中国特色的大型坑口电站——燃前采用两段高效干法选煤技术[J].中国煤炭. 2004(10): 54-57.
    [6]山西晚报.神头劣质煤让电厂“小雪”飘飘[Z]. 2005.
    [7]新浪网.劣质电煤太疯狂四川巴蜀江油电厂发电机组因劣质煤多次熄火[Z]. 2006.
    [8]重庆商报.“吃”劣质煤电厂爆管停机沙区今日可能拉闸[Z]. 2006.
    [9]邓亚军,唐杰.四川地区电煤现状对锅炉运行影响分析[J].四川电力技术. 2007, 30(02): 13-15.
    [10]温立.燃烧劣质煤对锅炉运行的影响及对策[J].黑龙江电力. 2007, 29(05): 387-788.
    [11] Chen Q, Yang Y. Development of dry beneficiation of coal in China[J]. International Journal of Coal Preparation and Utilization. 2003, 23(1-2): 3-12.
    [12]孙学信.燃煤锅炉燃烧试验技术与方法[G].北京:中国电力出版社, 2002: 410-412.
    [13]陈清如,王海锋. Clean Processing and Utilization of Coal Energy[J].过程工程学报. 2006(03): 507-511.
    [14] Joos D W, Martinez A L, Morgan W E. Economic comparison of conventional and integrated environmental control system[C]. New York, NY, USA: ASME, 1983.
    [15] Maulbetsch J S. Progress and plans in IEC[C]. New York, NY, USA: ASME, 1983.
    [16]陈清如.筛分和重选理论及其应用的新进展[G].徐州:中国矿业大学出版社, 1994.
    [17]陈清如.我国燃煤大气污染的防治[J].苏州科技学院学报(工程技术版). 2003, 16(01): 1-7.
    [18] Chen Q, Wang H. Establishing large-scale pithead power station using two-stage high efficiency dry coal cleaning system before coal burning[J]. Journal of Mines, Metals & Fuels. 2007, 55(12): 563-568.
    [19] Chen Q, Zhang X, Chen Z, et al. Research on triboelectric beneficiation of ultrafine coal[C]. Beijing, China: A.A. Balkema Publishers, 2002.
    [20] Yoon R, Luttrell G H, Yan E S, et al. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning-final report[R]. DOE. USA, 2001.
    [21]陈清如.中国洁净煤战略思考[J].黑龙江科技学院学报. 2004, 14(05): 261-264.
    [22]章新喜,高孟华,马瑞新,等.火电站脱硫新模式——燃前煤粉在线脱硫[J].能源环境保护. 2004, 18(05): 1-4.
    [23] M J. Pearse,江洪.摩擦电选的可能性和局限性[J].国外金属矿选矿. 1978(06): 24-34.
    [24] G Alfano,刘永之,杨英杰.矿物摩擦电选的进展[J].国外金属矿选矿. 1989(02): 1-9.
    [25] Bailey A G. The charging of insulator surfaces[J]. Journal of Electrostatics. 2001(51-52): 82-90.
    [26]黄久生,刘尚合.经典静电学史与现代静电技术[J].物理. 1997, 26(1): 55-60.
    [27]刘伟军,陈拴柱,张书华.粉体荷电研究进展与煤粉荷电研究初探[J].节能. 2007(08): 10-13, 27.
    [28] Blake L I, Morscher L N. Process of electrical separation of conductors from non-conductors: USA, 709238[P]. 1901-02-26.
    [29] Dolbear C E. electrostatic separator: USA, 52706[P]. 1903-04-07.
    [30] Schnelle F O. Electrical separator: USA, 212665[P]. 1913-08-26.
    [31] Huff C H. Apparatus for electrostatic separation of substances of diverse electric susceptibility: USA, 219770[P]. 1905-10-10.
    [32] Inculet I I. Electrostatic Mineral Separation[G]. New York: Wiley, 1986.
    [33]杨卫华.喷射式悬浮电选机理研究与应用[D].昆明:昆明理工大学, 2008.
    [34] Schniewind F W C. Purification of coal: USA, 1153182 [P]. 1915-09-07.
    [35] Kraus J. Electrostatic separator for inflammable minerals: USA, 888859[P]. 1917-04-10.
    [36]罗宏昌等.静电实用技术手册[G].上海:上海科学普及出版社, 1990: 151-159.
    [37]谢广元.选矿学[M].徐州:中国矿业大学出版社, 2001.
    [38] K舒勒特,雷国元. 30μm以下细粒物料的静电分选[J].国外金属矿选矿. 1995(03): 35-39.
    [39]ин普拉克辛,нф奥洛芬斯基,胡力行.论选别矿物细粒级时电晕除尘机和分级机的采用[J].有色金属(冶炼部分). 1960(05): 19-25.
    [40] (日)菅义夫.静电手册[M].北京:科学出版社, 1981.
    [41] A W杜勃拉克,李中宇.美国用物理和微生物选矿法从煤中脱硫[J].河南煤炭. 1986(04): 56, 51.
    [42] Sun S, Morgan J D, Wesner R F. Behavior of mineral particles in electrostatic separation[J]. TRANSACTIONS AIME- MINING ENGINEERING. 1950, 187: 369-373.
    [43] Fraas F. Reagent conditioning for electrostatic separation of minerals: USA, 2593431 [P]. 1952-04-22.
    [44] Snow R E. Process for the beneficiation of sylvinite ore: USA, 52360[P]. 1962-09-04.
    [45] Autenrieth H, Peuschel G. Electrostatic separation: USA, 832529[P]. 1963-01-15.
    [46] Autenrieth H. Electrostatic separation of minerals: USA, 314028[P]. 1965-12-16.
    [47] Autenrieth H, Weichart G. Process for the electrostatic separation of carnallite-containing crude salts: USA, 216332[P]. 1965-12-28.
    [48] Singewald A, Fricke G, Jung D. Process for the electrostatic separation of clay containing crude potassium salts: USA, 282839[P]. 1974-09-17.
    [49] Singewald A, Geisler I, Fricke G, et al. Process and apparatus for the electrostatic dressing of carnallite-containing crude potassium salts: USA, 25521[P]. 1981-12-27.
    [50] Singewald A, Fricke G. Process for electrostatic separation of pyrite from crude coal: USA, 497636[P].1976-03-02.
    [51] Newman H R. The mineral industry of Germany[Z]. 2001: 2010.
    [52] Gmbh K K. History[Z]. 2008: 2010.
    [53] Pfoh O, Radick C, Thenert H. Process and device for controlling the electrostatic separation of crude potash salts in electrostatic free fall separators: USA, 776956[P]. 1988-05-10.
    [54] Alfano G, Carbini P, Carta M, et al. Applications of static electricity in coal and ore beneficiation: The contribution of the University of Cagliari to the development of new separators and to the improvement of the processing technology[J]. Journal of Electrostatics. 1985, 16(2-3): 315-328.
    [55] Carta M, Carbini P, Ciccu R, et al. Beneficiation methods for coal desulphurization[C]. Halifax, NS, Can: Canadian Soc for Chemical Engineering, Ottawa, Ont, Can, 1981.
    [56] Carta M, Alfano G, Carbini P, et al. Triboelectric phenomena in mineral processing. Theoretical fundamentals and applications[J]. Journal of Electrostatics. 1981, 10: 177-182.
    [57] M Carta,丘继存.矿物表面能的结构对电选和浮选的影响[J].国外金属矿选矿. 1975(Z2).
    [58] M Carta,G Ferrara,徐建民.用电离或摩擦使矿粒带电在气体介质中处于悬浮状态的细磨矿石的电选[J].国外金属矿选矿. 1973(07): 1-11.
    [59] M Carta,刘振中.用改变表面层能级改善电选和浮选[J].国外金属矿选矿. 1974(Z1): 1-13.
    [60] Ciccu R, Peretti R, Serci A, et al. Experimental study on triboelectric charging of mineral particles[J]. Journal of Electrostatics. 1989, 23: 157-168.
    [61]杨俊利.浅谈电选技术用于生产洁净煤[J].选煤技术. 1995(04): 40-43.
    [62] R茨库,魏明安,肖力子.一种用于细粒分选的新型静电分选机[J].国外金属矿选矿. 2001(01).
    [63]高鹏义.用摩擦电选法分离难选的黄绿石产品[J].国外金属矿选矿. 1976(07): 45-47.
    [64] Anderson J M, Parobek L, Bergougnou M A, et al. Electrostatic Separation of Coal Macerals[J]. IEEE Transactions on Industry Applications. 1979, IA-15(3): 291-293.
    [65] I I. Inculet,M A. Bergougnou,徐建民.细粒矿物在沸腾层中的静电分选[J].国外金属矿选矿. 1974(04): 34-39.
    [66] Inculet I I, Bergougnou M A, Bauer S. Electrostatic Beneficiation Apparatus for Fluidized Iron and Other Ores[J]. 1972, IA-8(6): 744-748.
    [67] Inculet I I, Bergougnou M A, Brown J D. Electrostatic Separation of Particles Below 40μm in a Dilute Phase Continuous Loop[J]. IEEE Transactions on Industry Applications. 1977, IA-13(4): 370-373.
    [68] Inculet I I, Quigley R M, Bergougnou M A, et al. Electrostatic beneficiation of HAT CREEK Coal in the fluidized state[J]. CIM Bulletin. 1980, 73(822): 51-61.
    [69] Kiewiet C W, Bergougnou M A, Brown J D, et al. Electrostatic Separation of Fine Particles in Vibrated Fluidized Beds[J]. IEEE Transactions on Industry Applications. 1978, IA-14(6): 526-530.
    [70] Beeckmans J M, Inculet I I, Dumas G. Enhancement in segregation of a mixed powder in a fluidizedbed in the presence of an electrostatic field[J]. Powder Technology. 1979, 24(2): 267-269.
    [71] Anderson J M. Electrostatic separation of pyrites and coal macerals[D]. London: The University of Western Ontario (Canada), 1976.
    [72] Inculet I I, Quigley R M, Filliter K B. Coal-clay triboelectrification[J]. IEEE Transactions on Industry Applications. 1985, IA-21(2): 514-517.
    [73] Inculet I I, Quigley R M, Beisser E M J. Electrostatic Charges on Clays[J]. IEEE Transactions on Industry Applications. 1985, IA-21(1): 23-25.
    [74] Zhou G. Continuous electrostatic beneficiation and surface conditioning of coal[D]. London: The University of Western Ontario (Canada), 1986.
    [75] Inculet I I, Strathdee G G. Electrostatic beneficiation of potash ores[C]. Pittsburgh, PA, USA: Published by IEEE, New York, NY, USA, 1988.
    [76] Inculet I I, Castle G S P, Brown J D. Tribo-electrification system for electrostatic separation of plastics[C]. Denver, CO, USA: IEEE, 1994.
    [77] Brown J D, Wynen P F, Doyle T E. Tribocharging and electrostatic separation of mixed electrically insulating particles: USA, 10/181755[P]. 2005-08-09.
    [78] Sch?nert K, Eìchas K, Niermf?er F. Charge distribution and state of agglomeration after tribocharging fine particulate materials[J]. Powder Technology. 1996, 86: 41-47.
    [79] Geisler I, Knauer H, Stahl I. Electrostatic separator for classifying triboelectrically charged substance mixtures: USA, 6011229 [P]. 2000-07-04.
    [80]伊林?盖斯勒,汉斯-尤尔根?克瑙尔,英戈?施塔尔.用于分选摩擦充电混合物质的静电分离装置:中国,97120210.9[P]. 1998-06-03.
    [81]高孟华.微粉煤摩擦荷电机理的研究[D].徐州:中国矿业大学, 2005.
    [82] D L. Kiser,J W. Leonard,雷湘沁,等.煤的物理/化学脱硫技术经济评价[J].煤炭转化. 1985(04): 48-60.
    [83] Tondu E, Thompson W G, Whitlock D R, et al. Commercial separation of unburned carbon from fly ash[J]. Mining Engineering (Littleton, Colorado). 1996, 48(6): 47-50.
    [84]张金明.选矿技术在粉煤灰综合利用中的应用[J].国外金属矿选矿. 1998(07).
    [85]黄开飞.分离粉煤灰中未燃烧的碳质[J].国外选矿快报. 1997(19): 6-8.
    [86] Bittner J D, Gasiorowski S A. Triboelectrostatic Fly Ash Beneficiaton: An Update on Separation Technologies’International Operations[Z]. 2005.
    [87] Soong Y, Link T A, Schoffstall M R, et al. Dry beneficiation of Slovakian coal[J]. Fuel Processing Technology. 2001, 72(3): 185-198.
    [88] Gustafson, Dimare R M, S Sabatini J. A chemical enhancement of the triboelectric separation of coal from pyrite and ash[R]. Little (Arthur D.), Inc., Cambridge, MA (United States), 1992.
    [89] Soong Y, Schoffstall M R, Gray M L, et al. Dry beneficiation of high loss-on-ignition fly ash[J]. Separation and Purification Technology. 2002, 26(2-3): 177-184.
    [90] Link T A, Schoffstall M R, Soong Y. Device and method for separating minerals, carbon and cement additives from fly ash: USA, 09/878196[P]. 2004-01-27.
    [91] Soong Y, Irdi G A, Mclendon T R, et al. Triboelectrostatic separation of fly ash with different charging materials[J]. Chemical Engineering & Technology. 2007, 30(2): 214-219.
    [92] Mazumder M K, Lindquist D, Tennal K B. electrostatic beneficiation of coal T2,T6-11[R]. University of Arkansas at Little Rock, 1996.
    [93] Tennal K B, Mazumder M K, Lindquist D, et al. Triboelectric separation of granular materials[C]. New Orleans, LA, USA: IEEE, 1997.
    [94] Tennal K B, Lindquist D, Mazumder M K, et al. Efficiency of electrostatic separation of minerals from coal as a function of size and charge distributions of coal particles[C]. 1999.
    [95] Ban H, Schaefer J L, Stencel J M. electrostatic separation of powdered materials: beneficiation of coal and fly ash[J]. ENERGEIA. 1995, 6(4): 1-3.
    [96] Stencel J M, Schaefer J L, Ban H, et al. Triboelectrostatic Cleaning of Coal In-Line Between Pulverizers and Burners at Utilities[J]. Int. J. Coal Prep. Util.. 1998, 19(1): 115-129.
    [97] Stencel J M. Pulverization induced charge--- in-line dry coal cleaning[R]. Lexington KY: Center of Applied Energy Rearch, 1999.
    [98] Stencel J M, Schaefer J L, Ban H, et al. Apparatus and method fo triboelectrostatic separation: USA, [P]. 1999-08-17.
    [99] Ban H, Li T X, Hower J C, et al. Dry triboelectrostatic beneficiation of fly ash[J]. Fuel. 1997, 76(8 SPEC ISS): 801-805.
    [100] Hower J C, Ban H, Schaefer J L, et al. Maceral/microlithotype partitioning through triboelectrostatic dry coal cleaning[J]. International Journal of Coal Geology. 1997, 34(3-4): 277-286.
    [101] Ban H, Stencel J M. Preferential recycling-rejection in CFBC-FBC systems using triboelectrostatic separation[R]. Lexington, KY: Center for Applied Energy Rcsearch, University of Kentucky, 1999.
    [102] Li T X, Ban H, Hower J C, et al. Dry triboelectrostatic separation of mineral particles: a potential application in space exploration[J]. Journal of Electrostatics. 1999, 47(3): 133-142.
    [103] Brown D K. Electrostatic pyrite ash and toxic mineral separator: USA, 5637122 [P]. 1997-06-10.
    [104] Stencel J M, Schaefer J L, Ban H, et al. Method and apparatus for triboelectric-centrifugal separation: USA, 5755333 [P]. 1998-05-26.
    [105] Stencel J M, Schaefer J L, Neathery J K, et al. Electrostatic particle separation system, apparatus, and related method: USA, 09/470916[P]. 2002-12-24.
    [106] Stencel J M, Gurupira T Z. Particle separation/purification system, diffuser and related methods:USA, 10/438375[P]. 2006-08-08.
    [107] Jiang X. Development and fundamental evaluation of a novel triboelectrostatic separator[D]. Lexington: University of Kentucky, 2003.
    [108] Jiang X, Tao D, Stencel J M. Enhancement of dry triboelectric separation of fly ash using seed particles[J]. Coal Preparation: A Multinational Journal. 2003, 23(1-2): 67-76.
    [109] Daniel T, Mao-Ming F, Xin-Kai J. Dry coal fly ash cleaning using rotary triboelectrostatic separator[J]. Mining Science and Technology. 2009, 5(19): 642-647.
    [110]陶东平.静电颗粒带电分选装置:中国,200420079562.1[P]. 2005-12-14.
    [111] Ahmadi G, Chunghong H, Hang B, et al. Air flow and particle transport in a triboelectric coal/ash cleaning system-counter flowing straight duct design[J]. Particulate Science & Technology. 2000, 18(3): 213-225.
    [112] Schmoutziguer W S, Mcgovern J J. Process and apparatus for separating particles by use of triboelectrification: USA, 6034342 [P]. 2000-03-07.
    [113]埃里克·扬,托马斯·格雷,蒂莫·尼蒂.使用箱形电极的静电分离装置和方法:中国,01811602.7[P]. 2003-08-20.
    [114] Yan E S, Grey T J, Niitti T U. Electrostatic separation apparatus and method using box-shaped electrodes: USA, 09/603271[P]. 2001-12-11.
    [115] Baltrus J P, Diehl J R, Soong Y, et al. Triboelectrostatic separation of fly ash and charge reversal[J]. Fuel. 2002, 81(6): 757-762.
    [116] Trigwell S, Tennal K B, Mazumder M K, et al. Precombustion cleaning of coal by triboelectric separation of minerals[J]. Particulate Science and Technology. 2003, 21(4): 353-364.
    [117] L.E.艾伦三世, B.T.里斯.介质调节静电分离:中国,03817313.1[P]. 2006-4-19.
    [118] Xiao C, Allen LⅢ. Electrostatic separation enhanced by media addition: USA, 09/469596[P]. 2002-09-17.
    [119] Allen LⅢ, Riise B L. Mediating electrostatic separation: USA, 10/775741[P]. 2006-06-20.
    [120] Turcaniova L, Soong Y, Lovas M, et al. The effect of microwave radiation on the triboelectrostatic separation of coal[J]. Fuel. 2004, 83(14-15 SPEC ISS): 2075-2079.
    [121] Dwari R K, Hanumantha Rao K. Tribo-electrostatic behaviour of high ash non-coking Indian thermal coal[J]. International Journal of Mineral Processing. 2006, 81(2): 93-104.
    [122] Dwari R K. Thermal non-coking coal preparation by triboelectic dry process[D]. Lulea: Lulea University of technology, 2006.
    [123] Dwari R K. High ash non-coking coal preparation by tribo-electrostatic dry process[D]. Lulea: Lulea University of technology, 2008.
    [124] Sharma R, Trigwell S, Mazumder M K. Interfacial processes and tribocharging: effect of plasmasurface modification and physisorption[J]. Particulate Science and Technology. 2008, 26(6): 587-594.
    [125] Yanar D K, Kwetkus B A. Electrostatic separation of polymer powders[J]. Journal of Electrostatics. 1995, 35(2-3): 257-266.
    [126] Lee J K. Separation system and method of unburned carbon in fly ash from a coal-fired power plant: USA, 5885330 [P]. 1999-05-23.
    [127] Lee J, Shin J. Triboelectmstatic separation of PVC materials from mixed plastics waste plastic recycling[J]. Korean J. Chem. Eng. 2002, 19(2): 267-272.
    [128] Kim J, Cho H, Kim S. Removal of unburned carbon from coal fly ash using a pneumatic triboelectrostatic separator[J]. Journal of Environmental Science and Health, Part A. 2001, 36(9): 1709-1724.
    [129] Kim J, Kim S. Tribo-electrostatic beneficiation of fly ash for ash utilization[J]. Korean J. Chem. Eng. 2001, 18(4): 531-538.
    [130] Park C, Jeon H, Park J. PVC removal from mixed plastics by triboelectrostatic separation[J]. Journal of Hazardous Materials. 2007, 144(1-2): 470-476.
    [131] Park C, Jeon H, Cho B, et al. Triboelectrostatic separation of covering plastics in chopped waste electric wire[J]. Polymer Engineering & Science. 2007, 47(12): 1975-1982.
    [132] Park C, Jeon H, Yu H. Application of electrostatic separation to the recycling of plastic wastes: Separation of PVC, PEL and ABS[J]. Environmental Science & Technology. 2008, 42(1): 249-255.
    [133] Masuda S, Toraguchi M, Takahashi T, et al. Electrostatic Beneficiation of Coal Using a Cyclone-Tribocharger[J]. IEEE Transactions on Industry Applications. 1983, IA-19(5): 789-793.
    [134] Kitazawa K, Ozaki T. Process for removing ash from coal: USA, 459691[P]. 1984-12-13.
    [135] Matsushita Y, Mori N, Sometani T. Electrostatic separation of plastics by friction mixer with rotary blades[J]. Electrical Engineering in Japan. 1999, 127(3): 33-40.
    [136] Dodbiba G, Sadaki J, Okaya K, et al. The use of air tabling and triboelectric separation for separating a mixture of three plastics[J]. Minerals Engineering. 2005, 18(15): 1350-1360.
    [137] Owada S.“Dry flotation”: A novel electrostatic separation by modifying particle surface with surfactant and electrolyte[J]. Resources Processing. 2006, 53(1): 29-33.
    [138] Saeki M. Vibratory separation of plastic mixtures using triboelectric charging[J]. Particulate Science and Technology. 2006, 24(2): 153-164.
    [139] Saeki M. Triboelectric separation of three-component plastic mixture[J]. Particulate Science and Technology. 2008, 26(5): 494-506.
    [140] Hearn G L, Ballard J R. The use of electrostatic techniques for the identification and sorting of waste packaging materials[J]. Resources, Conservation and Recycling. 2005, 44: 91-98.
    [141] Iuga A, Morar R, Samuila A, et al. Electrostatic separation of brass from industrial wastes[J]. IEEETransactions on Industry Applications. 1999, 35(3): 537-542.
    [142] Dascalescu L, Mihalcioiu A, Tilmatine A, et al. Electrostatic separation processes[J]. IEEE Industry Applications Magazine. 2004, 10(6): 19-25.
    [143] Iuga A, Cuglesan I, Samuila A, et al. Electrostatic separation of muscovite mica from feldspathic pegmatites[J]. IEEE Transactions on Industry Applications. 2004, 40(2): 422-429.
    [144] Iuga A, Morar R, Samuila A, et al. Electrostatic separation of metals and plastics from granular industrial wastes[J]. IEE Proceedings -Science, Measurement and Technology. 2001, 148(2): 47-54.
    [145] Urs A, Samuila A, Mihalcioiu A, et al. Charging and discharging of insulating particles on the surface of a grounded electrode[J]. IEEE Transactions on Industry Applications. 2004, 40(2): 437-441.
    [146] Iuga A, Samuila A, Neamtu V, et al. Electrostatic separation methods for metal removal from ABS wastes[C]. 2007.
    [147] Iuga A, Calin L, Neamtu V, et al. Tribocharging of plastics granulates in a fluidized bed device[J]. Journal of Electrostatics. 2005, 63(6-10): 937-942.
    [148] Calin L, Caliap L, Neamtu V, et al. Tribocharging of granular plastic mixtures in view of electrostatic separation[J]. IEEE Transactions on Industry Applications. 2008, 44(4): 1045-1051.
    [149] Calin L, Mihalcioiu A, Iuga A, et al. Fluidized bed device for plastic granules triboelectrification[J]. Particulate Science and Technology. 2007, 25(2): 205-211.
    [150]彭高.茶叶静电分选原理及运用[J].茶叶通讯. 2006, 33(03): 29-32.
    [151]窦伟国,乌力根代来,石辛民,等.静电分选装置的试验研究[J].农业机械学报. 1987(04): 27-33.
    [152]李东江,余登苑.滚筒式静电选种机的理论分析与初步试验研究[J].南京农业大学学报. 1994, 17(03): 128-133.
    [153]康敏,刘德营,余登苑.种子静电清选分级装置的研究[J].农机化研究. 2001(03): 39-41.
    [154]郭清南,张路军,李法德,等. 2n花粉静电分选的机理研究[J].农业工程学报. 1999, 15(04): 212-215.
    [155]贝广霞.实用花粉静电分选装置的试验与研制[D].泰安:山东农业大学, 2004.
    [156]杨圣伟.粉煤灰的摩擦带电性与放电特征[D].西安:西安建筑科技大学, 2007.
    [157]徐品晶.粉煤灰电选脱碳技术的开发——粉煤灰带电特征的研究[D].西安:西安建筑科技大学, 2007.
    [158]何家宁.复合式摩擦电选机分选机理的研究[D].昆明:昆明理工大学, 2007.
    [159]张桂芳.悬浮微细矿粒在电场中的数值分析及分选机理研究[D].昆明:昆明理工大学, 2003.
    [160]焦有宙.粉煤灰静电分离脱炭技术试验研究[D].郑州:河南农业大学, 2001.
    [161]章新喜.微粉煤干法脱硫降灰的研究[D].徐州:中国矿业大学, 1994.
    [162]李齐明,黄祥鑫,李永蔚.φ120×1500工业型电选机[J].有色金属(冶炼部分). 1965(09): 11-16.
    [163]周岳远. YD系列高压电选机与电选工艺[J].金属矿山. 1996(08): 13-15.
    [164]王军,邹建新,周建国. YD-3型及Carpco型电选机电极结构与工艺参数优化研究[J].矿产综合利用. 2004(04): 44-49.
    [165]赵南方,周岳远,林德福. YD31200-23型高压电选机的研制及应用[J].中南工业大学学报(自然科学版). 1998, 29(04): 385-387.
    [166]龚文勇,林德福. YD31200_23型高效电选机的研制及应用[J].矿冶工程. 1996, 16(2): 40-42.
    [167]龚文勇,张华.电选粉煤灰脱碳技术的研究[J].粉煤灰. 2005(03): 33-36.
    [168]徐星佩.锅炉粉煤灰电选工艺的研究[J].矿冶工程. 1982(02): 38-43.
    [169]向延松,赖国新,朱远标. HDX-1500型板式电选机的研制[J].广东有色金属学报. 1997, 7(01): 6-10.
    [170]陈宝权.粉煤灰分选脱碳及综合利用试验研究[J].湖南有色金属. 1995, 11(1): 35-38.
    [171]骆振福.中国西部煤炭能源的优化利用[J].中国矿业. 2001(01).
    [172]陈清如,杨玉芬. 21世纪高效干法选煤技术的发展[J].中国矿业大学学报(自然科学版). 2001(06): 527-530.
    [173]安振连,章新喜,陈清如.微细粒煤摩擦电选的试验研究[J].煤炭科学技术. 1998(06): 24-26.
    [174]王启宝,任瑜霞,解强,等.超低灰煤制备优质活性炭的研究[J].黑龙江矿业学院学报. 1999(01): 1-3.
    [175]高孟华,章新喜,陈清如.中梁山煤摩擦电选可选性研究[J].煤炭科学技术. 2007, 35(08): 68-71.
    [176]于凤芹,章新喜,张军华,等.微粉煤的摩擦电选[J].华北科技学院学报. 2007, 4(01): 15-18.
    [177]张军华,蒋善勇,章新喜,等.登封煤的电晕预荷电摩擦电选[J].煤. 2007, 16(03): 10-13.
    [178]高孟华,章新喜,陈清如.煤系伴生矿物介电常数和摩擦带电实验研究[J].中国矿业. 2007, 16(08): 106-109.
    [179]马瑞欣,章新喜.煤与矿物质的摩擦电选分离试验研究[J].煤. 2006, 15(03): 5-8.
    [180]章新喜,段超红,于凤芹,等.微粉煤的电性质及摩擦带电研究[J].中国矿业大学学报. 2005, 34(06): 694-697.
    [181]高孟华,章新喜,陈清如.应用摩擦电选技术降低微粉煤灰分[J].中国矿业大学学报. 2003, 32(06): 674-677.
    [182]章新喜,高孟华,段超红,等.大同煤的摩擦电选试验研究[J].中国矿业大学学报. 2003, 32(06): 620-623.
    [183]章新喜,段超红,粱春成.低灰洁净煤的电选制备[J].中国矿业大学学报(自然科学版). 2001, 30(06): 570-572.
    [184]张军华.微粉煤摩擦电选工艺参数试验研究[D].徐州:中国矿业大学, 2007.
    [185]马瑞欣.煤的摩擦电选过程中矿物质脱除规律的研究[D].徐州:中国矿业大学, 2006.
    [186]章新喜.微细粒物料摩擦电选方法与装置:中国,200610038162.X[P]. 2007-08-08.
    [187]温燕明,陈昌华,孔凡朔.高炉喷吹用煤的摩擦电选实验研究[J].钢铁. 2006, 41(02): 11-15.
    [188]张宗华,石道民,李世厚.白钨矿药剂处理电选除锡方法:中国,86 1 03767[P]. 1987-06-06.
    [189]张宗华,戴慧新,石道民.悬浮电选机:中国,94200555.4[P]. 1995-12-20.
    [190]何家宁,Daniel Tao,张宗华,等.电选机电场强度与相对湿度之间的关系[J].金属矿山. 2006(06): 27-29, 39.
    [191]张桂芳,张宗华,高利坤.分选微细矿粒电选机研究[J].矿山机械. 2003(10): 48-50.
    [192]杨卫华,张宗华,张云生,等.超高压悬浮电选机的电源系统应用研究[J].矿山机械. 2007(04): 74-78.
    [193]张桂芳,张宗华,高利坤.悬浮电选机分选微细粒的试验研究[J].有色金属(选矿部分). 2003(02).
    [194]张宗华,戴惠新,吴幼竺,等.会东难选金红石矿的矿物工艺特性及选矿试验研究[J].云南冶金. 2001, 30(05): 7-13.
    [195]张桂芳,张宗华,高利坤.悬浮电选机分选微细粒的试验研究[J].有色金属(选矿部分). 2003(02): 25-27.
    [196]戴惠新,张宗华.细粒钛铁矿选矿新工艺研究[J].国外金属矿选矿. 1998(05): 22-23.
    [197]张宗华,石道民.微细粒级黑钨矿除锡试验研究[J].云南冶金. 1997, 26(6): 20-26.
    [198]戴惠新,王春秀,段希祥.电选在我国磷矿选矿中应用的可能性探讨[J].化工矿物与加工. 2003(02): 5-7.
    [199]戴惠新,段希祥,王春秀,等.磷矿的电选试验研究[J].中国矿业. 2003(09): 52-54.
    [200]吴彩斌,段希祥,戴惠新,等.中低品位磷矿富集的新方法——干式电选法[J].化工矿物与加工. 2003(09): 7-9.
    [201]吴彩斌,周平,段希祥,等.干式电选工艺在化工矿山中的应用研究[J].化工环保. 2004, 24(01): 9-12.
    [202]黎强,陈昌和,杨玉芬,等.粉煤灰的微观结构与脱炭方法的实验比较[J].选煤技术. 2003(01): 11-13.
    [203]黎强,陈昌和,杨玉芬,等.粉煤灰微观特征与干法脱炭实验[J].矿产综合利用. 2003(02): 8-11.
    [204]黎强,陈昌和,杨玉芬,等.干法脱炭与粉煤灰的利用研究[J].中国矿业. 2002(06): 48-51.
    [205]黎强,杨玉芬,章新喜,等.粉煤灰干法脱炭的实验研究[J].煤炭科学技术. 2002(11): 4-6.
    [206]于凤芹,章新喜,段代勇,等.粉煤灰摩擦电选脱碳的试验研究[J].选煤技术. 2008(01): 8-12.
    [207]侯新凯,徐品晶,徐德龙,等.粉煤灰中灰颗粒的摩擦带电特征[J].煤炭学报. 2007, 32(07): 757-761.
    [208]杨圣玮,侯新凯,徐品晶,等.影响粉煤灰中炭的摩擦带电特性的因素[J].粉煤灰综合利用. 2007(06): 26-28.
    [209]杨圣玮,侯新凯,梅元,等.粉煤灰中炭的摩擦带电特性的基础研究[J].选煤技术. 2007(05): 18-22.
    [210]焦有宙,张全国,张相锋,等.粉煤灰电特性与摩擦高压静电脱炭技术试验研究[J].河南师范大学学报(自然科学版). 2004, 32(03): 36-40.
    [211]焦有宙,武卫政,孙育峰,等.干排粉煤灰摩擦高压静电脱炭技术试验研究[J].华北水利水电学院学报. 2005, 26(04): 72-75.
    [212]张全国,杨群发,焦有宙,等.粉煤灰高压静电脱炭工艺特性的试验研究[J].粉煤灰. 2002(05): 3-6.
    [213]张全国,李刚,徐波,等.粉煤灰静电脱炭技术研究[J].安全与环境学报. 2002, 2(01): 47-50.
    [214]张相锋.粉煤灰脱炭试验装置研究[D].郑州:河南农业大学, 2000.
    [215]汀澜,隋同波,王宏霞,等.粉煤灰带式输送静电分离方法及装置:中国,200610088885.0[P]. 2007-01-03.
    [216]李佳,许振明.电路板破碎颗粒的高压静电分离装置:中国,200510023788.9[P]. 2005-08-27.
    [217]国为民,陈生大,冯涤.高温合金中非金属夹杂的静电分离工艺参数研究[J].哈尔滨理工大学学报. 1999, 4(04): 80-82.
    [218]马俊伟,王真真,杨志峰,等.电选法回收利用废印刷线路板[J].环境污染治理技术与设备. 2005, 6(07): 63-66.
    [219]胡利晓,温雪峰,刘建国,等.废印刷电路板的静电分选实验研究[J].环境污染与防治. 2005, 27(05): 326-330.
    [220]曹志群,龚文勇,张华.高合金钢磨屑电选试验研究[J].矿冶工程. 2001, 21(02): 45-47.
    [221] Engers D A, Fricke M N, Newman A W, et al. Triboelectric charging and dielectric properties of pharmaceutically relevant mixtures[J]. Journal of Electrostatics. 2007, 65(9): 571-581.
    [222] H R.马诺切赫里,林森,李长根.电选法应用实践评述(Ⅰ)[J].国外金属矿选矿. 2002(10): 4-17.
    [223] Charlson E M, Charlson E J, Burkett S, et al. Study of the contact electrification of polymers using contact and separation current[J]. IEEE Transactions on Electrical Insulation. 1992, 27(6): 1144-1151.
    [224] Gupta R, Gidaspow D, Wasan D T. Electrostatic separation of powder mixtures based on the work functions of its constituents[J]. Powder Technology. 1993, 75(1): 79-87.
    [225] Mazumder M K, Sims R A, Biris A S, et al. Twenty-first century research needs in electrostatic processes applied to industry and medicine[J]. Chemical Engineering Science. 2006, 61(7): 2192-2211.
    [226] Kodama J, Foerch R, Mcintyre N S, et al. Effect of plasma treatment on the triboelectric properties of polymer powders[J]. Journal of Applied Physics. 1993, 74(6): 4026-4033.
    [227] Dascalescu L, Urs A, Bente S, et al. Charging of mm-size insulating particles in vibratory devices[J]. Journal of Electrostatics. 2005, 63(6-10): 705-710.
    [228] Anderson J H. The effect of additives on the tribocharging of electrophotographic toners[J]. Journal of Electrostatics. 1996, 37(3): 197-209.
    [229] Matsuyama T, Yamamoto H. Charge transfer between a polymer particle and a metal plate due toimpact[J]. IEEE Transactions on Industry Applications. 1994, 30(3): 602-607.
    [230] Ban H, Schaefer J L, Saito K, et al. Particle tribocharging characteristics relating to electrostatic dry coal cleaning[J]. Fuel. 1994, 73(7): 1108-1113.
    [231] Doney J A. Hydrodynamic factors that can influence triboelectrostatic separations[D]. Pittsburgh: Carnegie Mellon University, 1995.
    [232] Vinay S J, Jhon M S. Particle "swarm" dynamics in triboelectric systems.[J]. Journal of Applied Physics. 2001, 89(2): 1436-1440.
    [233] Metwally I A, A-Rahim A A. Dynamics of spherical metallic particles in electrostatic separators/sizers[J]. Journal of Electrostatics. 2001(51-52): 252-258.
    [234] Sharmene A F, Adnan A M, Ayesha A R, et al. Minority charge separation in falling particles with bipolar charge[J]. Journal of Electrostatics. 1998, 45: 139-155.
    [235] Jhon M S. An experimental study of multi-Particle dynamics in triboelectrostatic systems[R]. Pittsburgh: Department of Chemical Engineering, Carnegie Mellon University, 2001.
    [236] Calin L, Mihalcioiu A, Das S, et al. Controlling particle trajectory in free-fall electrostatic separators[J]. IEEE Transactions on Industry Applications. 2008, 44(4): 1038-1044.
    [237] Trigwell S, Mazumder M K, Pellissier R. Tribocharging in electrostatic beneficiation of coal: Effects of surface composition on work function as measured by x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy in air[J]. Journal of Vacuum Science and Technology, A. 2001, 19(4): 1454-1459.
    [238] Trigwell S, Grable N, Yurteri C U, et al. Effects of surface properties on the tribocharging characteristics of polymer powder as applied to industrial processes[J]. IEEE Transactions on industry applications. 2003, 39(1): 79-86.
    [239] Murtomaaa M, Ojanen K, Laine E, et al. Effect of detergent on powder triboelectrification[J]. European Journal of Pharmaceutical Sciences. 2002(17): 195-199.
    [240] Murtomaa M, Mellin V, Harjunen P, et al. Effect of particle morphology on the triboelectrification in dry powder inhalers[J]. International Journal of Pharmaceutics. 2004, 282(1-2): 107-114.
    [241] Mountain J R, Mazumder M K, Sims R A, et al. Triboelectric charging of polymer powders in fluidization and transport processes[J]. IEEE Transactions on Industry Applications. 2001, 37(3): 778-784.
    [242] Tao R, Xu X, Khilnaney-Chhabria D. Electrostatic separation of superconducting particles from a mixture[J]. Applied Physics Letters. 2006, 88(8): 82503.
    [243] Captain J, Trigwell S, Arens E, et al. Tribocharging lunar simulant in vacuum for electrostatic beneficiation[J]. AIP Conference Proceedings. 2007, 880(1): 951-956.
    [244] Saini D, Trigwell S, Srirama P K, et al. Portable free-fall electrostatic separator for beneficiation of charged particulate materials[J]. Particulate Science and Technology. 2008, 26(4): 349-360.
    [245] Mehrani P, Bi H T, Grace J R. Bench-scale tests to determine mechanisms of charge generation due to particle-particle and particle-wall contact in binary systems of fine and coarse particles[J]. Powder Technology. 2007, 173(2): 73-81.
    [246] Manouchehri H R, Rao K H, Forssberg K S E. Triboelectric charge, electrophysical properties and electrical beneficiation potential of chemically treated feldspar, quartz and wollastonite[J]. Magnetic and Electrical Separation. 2001, 11(1-2): 9-32.
    [247] Manouchehri H R, Rao K H, Forssberg K S E. Triboelectric charge characteristics and donor-acceptor, acid-base properties of minerals - Are they related?[J]. Particulate Science & Technology. 2001, 19(1): 23-43.
    [248] Dwari R K, Rao K H, Somasundaran P. Characterisation of particle tribo-charging and electron transfer with reference to electrostatic dry coal cleaning[J]. 2009, 91(3-4): 100-110.
    [249] Lungu M. Electrical separation of plastic materials using the triboelectric effect[J]. Minerals Engineering. 2004, 17(1): 69-75.
    [250]вп帕诺夫,гд帕诺娃,B T.卡西扬,等.关于氧化铁矿石矿物导电性的长时张弛问题[J].矿业工程. 1993(12): 49-52.
    [251] Harvey T J, Wood R J K, Denuault G, et al. Investigation of electrostatic charging mechanisms in oil lubricated tribo-contacts[J]. Tribology International. 2002(35): 605-614.
    [252] Lacks D J, Levandovsky A. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems[J]. Journal of Electrostatics. 2007(65): 107-112.
    [253] Duff N, Lacks D J. Particle dynamics simulations of triboelectric charging in granular insulator systems[J]. Journal of Electrostatics. 2008, 66(1-2): 51-57.
    [254] Németh E, Albrecht V, Schubert G, et al. Polymer tribo-electric charging:dependence on thermodynamic surface properties and relative humidity[J]. Journal of Electrostatics. 2003, 58: 3-16.
    [255] Cangialosi F, Liberti L, Notarnicola M, et al. Monte Carlo simulation of pneumatic tribocharging in two-phase flow for high-inertia particles[J]. Powder Technology. 2006, 165(1): 39-51.
    [256] Cangialosi F, Notarnicola M, Liberti L, et al. Significance of surface moisture removal on triboelectrostatic beneficiation of fly ash[J]. Fuel. 2006, 85(16): 2286-2293.
    [257] Cangialosi F, Notarnicola M, Liberti L, et al. The role of weathering on fly ash charge distribution during triboelectrostatic beneficiation[J]. Journal of Hazardous Materials. 2009, 164(2-3): 683-688.
    [258] Cangialosi F, Notarnicola M, Liberti L, et al. The effects of particle concentration and charge exchange on fly ash beneficiation with pneumatic triboelectrostatic separation[J]. Separation and Purification Technology. 2008, 62(1): 240-248.
    [259] Woodhead S R, Armour-Chélu D I. The influence of humidity, temperature and other variables on the electric charging characteristics of particulate aluminium hydroxide in gas-solid pipeline flows[J].Journal of Electrostatics. 2003, 58(3-4): 171-183.
    [260] Hogue M D, Mucciolo E R, Calle C I. Triboelectric, corona, and induction charging of insulators as a function of pressure[J]. Journal of Electrostatics. 2007, 65(4): 274-279.
    [261] Yu Z, Watson K. Two-step model for contact charge accumulation[J]. Journal of Electrostatics. 2001, 51-52: 313-318.
    [262] Soong Y, Schoffstall M R, Link T A. Triboelectrostatic beneficiation of fly ash[J]. Fuel. 2001, 80(6): 879-884.
    [263] Baltrus J P, Diehl J R, Soong Y, et al. Triboelectrostatic separation of fly ash and charge reversal[J]. Fuel. 2002, 81(6): 757-762.
    [264] Ban H. An experimental study of particulate charge relating to electrostatic dry coal cleaning[D]. Lexington: University of Kentucky, 1994.
    [265] Li T X. An experimental study of particle charge and charge exchange elated to triboelectrostatic beneficiation[D]. Lexington: University of Kentucky, 1999.
    [266] Mukherjee A. Characterization and separation of charged particles[D]. Chicago: Illinois Institute of Technology, 1987.
    [267] Guang D. In situ measurement of electrostatic charge and charge distribution on fly ash particles in power station exhaust stream[D]. Sydney: University of New South Wales (Australia), 1992.
    [268] Zadorozhnyi V, Lokshina S, Shchegolev I. Influence of triboelectrification of mineral products on the selectivity of electrostatic separation[J]. Journal of Mining Science. 1997, 33(2): 165-171.
    [269] Zadorozhny V K. Influence of change in electrophysical properties of mineral raw material on increase in efficiency of its separation[J]. Journal of Mining Science. 1999, 35(5): 541-546.
    [270] Doyle T E. Optical tracking of charged particle distributions[D]. London: The University of Western Ontario (Canada), 1998.
    [271] Soong Y, Link T A, Schoffstall M R, et al. Triboelectrostatic separation of mineral matter from slovakian coals[J]. Acta Montanistica Slovaca. 1998(3): 393-400.
    [272] Albrecht V, Janke A, Drechsler A, et al. Visualization of charge domains on polymer surfaces[J]. Characterization of Polymer Surfaces and Thin Films. 2006(132): 48-53.
    [273] Saint Jean M, Hudlet S, Guthmann C, et al. Local triboelectricity on oxide surfaces[J]. The European Physical Journal B - Condensed Matter and Complex Systems. 1999, 12(4): 471-477.
    [274] Bunker M, Davies M, James M, et al. Direct observation of single particle electrostatic charging by atomic force microscopy[J]. Pharmaceutical Research. 2007, 24(6): 1165-1169.
    [275] Ken-Ichiro Tanoue K M H M. Influence of functional group on the electrification of organic pigments[J]. AIChE Journal. 2001, 47(11): 2419-2424.
    [276] Wei J, Realff M J. Design and optimization of free-fall electrostatic separators for plasticsrecycling[J]. AIChE Journal. 2003, 49(12): 3138-3149.
    [277] Wei J, Realff M J. A unified probabilistic approach for modeling trajectory-based separations[J]. AIChE Journal. 2005, 51(9): 2507-2520.
    [278]罗来龙.含尘气体摩擦起电的研究[J].武汉理工大学学报(交通科学与工程版). 2002, 26(04): 525-527.
    [279]马大风,王恩实.试论摩擦带电的机理[J].吉林师范大学学报(自然科学版). 1990(01): 21-23.
    [280]陆现彩,侯庆锋,尹琳,等.几种常见矿物的接触角测定及其讨论[J].岩石矿物学杂志. 2003, 22(04): 397-400.
    [281]章新喜,陈清如.高压直流电源的电压波形对电选过程的影响[J].中国矿业大学学报. 1996, 25(04): 73-76.
    [282]章新喜,段超红,陈清如.高压电选机内电晕电流和电场的分布规律[J].煤炭学报. 2002, 27(05): 534-538.
    [283]徐建成,李润.转筒型电选机的电场分析[J].有色金属. 2002, 54(03): 83-86.
    [284]章新喜.微粉煤电选脱硫降灰[G].徐州:中国矿业大学出版社, 2002.
    [285] Soong Y, Irdi G A, Mclendon T R, et al. Triboelectrostatic separation of fly ash with different charging materials[J]. Chemical Engineering and Technology. 2007, 30(2): 214-219.
    [286]温雪峰,范英宏,赵跃民,等.用静电选的方法从废弃电路板中回收金属富集体的研究[J].环境工程. 2004(02).
    [287] Wu J, Li J, Xu Z. Electrostatic separation for multi-size granule of crushed printed circuit board waste using two-roll separator[J]. 2008, 159(2-3): 230-234.
    [288]李贺臣,戴辛华. LZ-2型高压静介电矿物分离仪及其应用[J].地质力学学报. 1985, 4(02): 142-146.
    [289]封金鹏,马少健.电选机应用的新进展[J].有色矿冶. 2005, 21(S1): 11-12.
    [290]叶孙德,戴惠新.电选技术的应用现状与发展[J].云南冶金. 2007, 36(03): 15-20.
    [291]成楚永,刘永之.国外高压电选理论的研究与分析[J].国外金属矿选矿. 1983(01): 17-24.
    [292]安振连,章新喜,陈清如.微细粒煤摩擦电选的研究现状[J].煤炭加工与综合利用. 1996(06): 15-18.
    [293]闻建龙,陈汇龙,王军锋,等.荷电两相流动颗粒运动微分方程的建立[J].排灌机械. 2003, 21(04): 43-45.
    [294]陈栓柱.煤粉荷电机理与试验研究及其计算机仿真[D].哈尔滨:哈尔滨理工大学, 2008.
    [295]骆振福,赵跃民.流态化分选理论[G].徐州:中国矿业大学出版社, 2002.
    [296]刘大有.两相流体动力学[G].北京:高等教育出版社, 1993.
    [297]黄社华,李炜,程良骏.任意流场中稀疏颗粒运动方程及其性质[J].应用数学和力学. 2000(03): 265-275.
    [298]罗惕乾,王泽,闻建龙,等.荷电两相射流的理论分析与计算[J].江苏理工大学学报. 2000, 21(06): 50-53.
    [299]施学贵,徐旭常,冯俊凯.颗粒在湍流气流中运动的受力分析[J].工程热物理学报. 1989, 10(03): 320-325.
    [300]岑可法,樊建人.煤粉颗粒在气流中的受力分析及其运动轨迹的研究[J].浙江大学学报(工学版). 1987, 221(06): 1-11.
    [301]董长银,栾万里,周生田,等.牛顿流体中的固体颗粒运动模型分析及应用[J].中国石油大学学报(自然科学版). 2007, 31(05): 55-59.
    [302] Dwari R K, Hanumantha Rao K. Tribo-electrostatic behaviour of high ash non-coking Indian thermal coal[J]. International Journal of Mineral Processing. 2006, 81(2): 93-104.
    [303] Dwari R K, Hanumantha Rao K. Fine coal preparation using novel tribo-electrostatic separator[J]. Minerals Engineering. 2009, 22(2): 119-127.
    [304]赵跃民.煤炭资源综合利用手册[M].北京:科学出版社, 2004.
    [305]韩德馨.中国煤岩学[M].徐州:中国矿业大学出版社, 1996.
    [306]郑水林.粉体表面改性(第二版)[G].北京:中国建材工业出版社, 2004.
    [307]李晔,刘奇,许时.淀粉类多糖在方解石和萤石表面吸附特性及作用机理[J].有色金属. 1996, 48(01): 26-31.
    [308] S K米,于巨生.油酸钠和硅酸钠对磷灰石及方解石浮选特性的影响[J].化工矿物与加工. 1982(05): 58-60.
    [309]陈强,袁纳.无机分散剂在高岭土选矿中应用探讨[J].中国非金属矿工业导刊. 2008(01): 28-30.
    [310]李三华,张甲宝.助磨剂在煤系高岭土湿法超细研磨中的应用试验[J].中国非金属矿工业导刊. 2006(01): 25-27.
    [311]张双全,吴国光.煤化学[M].徐州:中国矿业大学出版社, 2004.
    [312]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报. 2002, 31(05): 362-366.
    [313]朱红,李虎林,欧泽深,等.不同煤阶煤表面改性的FTIR谱研究[J].中国矿业大学学报(自然科学版). 2001, 30(04): 366-370.
    [314]朱红,王淀佐,李虎林,等.电化学法对细粒煤表面改性机理的研究[J].煤炭学报. 2000, 25(03): 307-311.
    [315]王宝俊,李敏,赵清艳,等.煤的表面电位与表面官能团间的关系[J].化工学报. 2004, 8(08): 1329-1334.
    [316] Tao D, Fan M, Jiang X. Dry coal fly ash cleaning using rotary triboelectrostatic separator[J]. Mining Science and Technology (China). 2009, 19(5): 642-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700