用户名: 密码: 验证码:
微切削加工单位切削力及表面加工质量的尺寸效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子工业、医疗设备、生物工程、国防工业和航空航天技术的不断发展,毫米或微米级别的微小零部件的形状越来越复杂,要其实现的功能越来越多,材料种类越来越丰富,对其可靠性要求越来越高。不同于刻蚀技术、薄膜技术和LIGA技术,微切削加工技术可以快速高精度低成本地制造复杂三维微小零件,有着广阔的应用前景。最小切削厚度、单位切削力的尺寸效应和表面完整性的尺寸效应是微切削加工中的主要现象,深入研究微切削加工过程中的材料变形机理,有助于理解微切削过程中的特有现象,提高微切削加工质量。
     微切削加工中,随着切削厚度的减小,切削刃刃口圆弧半径和切削厚度在同一数量级,切削厚度和切削刃刃口圆弧半径的比值成为影响微切削过程的重要因素。文章基于滑移线场法分析微切削中工件材料的变形,研究单位切削力尺寸效应的产生机理,阐述单位切削力对表面完整性、毛刺高度的尺寸效应的影响机理,建立微铣削单位切削力模型,分析微铣削顶端毛刺的影响因素及影响规律。
     首先,基于滑移线场理论建立考虑切削刃刃口圆弧的微切削力模型,计算不同切削厚度和切削刃刃口圆弧半径比值条件下的直角微切削力和单位切削力,并进行实验验证。研究发现:微切削力随着切削厚度和切削刃刃口圆弧半径比值的减小而逐渐减小,而单位切削力逐渐增大。收集直角微切削产生的切屑并测量变形后的切屑厚度,发现在刀具前刀面的堆积作用下切屑变形系数表现出明显的尺寸效应。随着切削厚度的减小,工件材料主剪切区的剪切应变、剪切应变率和剪切温度都逐渐增大,表现出明显的尺寸效应;随着切削厚度的减小,塑性应变梯度强化效应越来越大,由于温度的软化效应,工件材料主剪切区的流动应力越来越小,二者共同导致塑性应变梯度硬化系数越来越大;由于切削刃刃口圆弧的存在,使得微切削的变形路径增长,相对切削长度表现出明显的尺寸效应现象;同时切削刃刃口圆弧对前下方的工件有很强的挤压作用,这也是影响微切削单位切削力的重要因素。
     其次,基于切削刃刃口圆弧附近材料的单位切削力变化分析微车削加工表面完整性尺寸效应的产生机理。随着切削厚度和刃口圆弧半径比值的减小,切削刃刃口圆弧附近工件材料的单位切削力逐渐增大,材料的流动性逐渐增强,工件材料发生侧流并在刀具的前刀面和后刀面附近堆积,当前、后刀面堆积的高度与进给量达到平衡时,获得最佳的微车削表面粗糙度。微切削加工中,微刀具以较大的有效负前角挤压-剪切工件材料,已加工表面先受到前刀面的挤压,后受到后刀面的挤压。微切削中已加工表面的显微硬度随着切削厚度和刃口圆弧半径比值的减小先减小后增大,当前、后刀面作用的应力相等时,已加工表面的显微硬度值最小。
     然后,分析切削厚度和切削刃刃口圆弧半径的比值对微切削毛刺高度的影响。切削刃刃口圆弧附近的工件材料在微刀具刃口圆弧挤压作用下发生侧流,形成泊松毛刺(切入毛刺和两侧毛刺)。当切削厚度小于切削刃刃口圆弧半径时,泊松毛刺的高度随着切削厚度和切削刃刃口圆弧半径的比值减小而急剧增大;当切削厚度大于切削刃刃口圆弧半径时,由于切削刃刃口圆弧附近的压力恒定不变,泊松毛刺的高度没有变化。切出毛刺是由微切削刀具推挤残留在工件边缘的切屑形成。由于单位切削力尺寸效应的影响,微切削中残留部分毛刺的高度增大。微切削的切出毛刺是一种新型卷曲毛刺,卷曲半径随着切削厚度和切削刃刃口圆弧半径的比值先减小后增大,在切削厚度和切削刃刃口圆弧半径的比值等于1时达到最小,导致切出毛刺的总高度表现出明显的尺寸效应。
     最后,分析工件材料微铣削去除过程,建立包含尺寸效应的微铣削单位切削力模型,分析铣削参数(每齿进给量和轴向切削深度)、刀具参数(微铣刀直径和螺旋角角度)和铣削方式对单位切削力的影响。微铣削由于刀具螺旋角的影响使得切削方式发生转变,材料的去除机理不同于二维直角微切削。随着每齿进给量的减小,瞬时切削厚度和切削刃刃口圆弧半径的比值减小,三维单位切削力随着每齿进给量的减小而增大;随着轴向切削深度的减小,位于切入角度和切出角度区域的切削刃比例增加,三维单位切削力缓慢增大;随着微铣刀螺旋角的减小,径向和切向单位切削力逐渐增大,轴向的单位切削力逐渐减小;随着微铣刀直径的减小,三维单位切削力逐渐缓慢减小,变化趋势不明显;随着径向切削宽度的减小,径向的单位切削力逐渐增大,逆铣方式大于顺铣方式,切向的单位切削力逐渐减小,逆铣方式小于顺铣方式,轴向的单位切削力逐渐增大,两种方式差别不大。通过微铣削试验分析铣削参数、刀具参数和铣削方式对微铣削顶端毛刺的影响。由于毛刺卷曲半径的影响,顶端毛刺高度随着每齿进给量减小先减小后增大;由于参与切削的切削刃长度缩短,顶端毛刺高度随着轴向切深的减小而逐渐减小;当切削刃刃口圆弧半径和每齿进给量相等时,顶端毛刺高度最小;由于排屑能力减弱,顶端毛刺高度随着螺旋角的减小逐渐增大。
     本研究得到国家自然科学基金重点项目“基于多重尺寸效应耦合的超硬微铣刀设计理论和制造技术(50935003)”和山东省自然科学杰出青年基金“超高速微细切削加工变形学研究(JQ200918)”资助。
With the development of microelectronics industry, modern medical equipment, biological engineering, national defense industry and aerospace technology, the micro parts in the range of millimeter or micron meter are demanded more complex shape, more functions, more kinds of material, higher reliability. Micro machining technology is different from etching technology, thin-film technology and LIGA technology, and it can create a complicated three-dimensional small part of different materials quickly with higher precision at lower cost, then micro cutting has a promising application prospect. Micro cutting appears some characteristics different from macro cutting such as minimum uncut chip thickness, size effect of specific cutting force and size effect of surface integrity. Investigation on the mechanism of workpiece deform is helpful to understanding the peculiar phenomenon of micro cutting process, and improve the quality of micro parts.
     The extrusion effect of the cutting edge on the workpiece cannot be neglected in micro cutting and the ratio of uncut chip thickness to cutting edge radius becomes an important parameters. The deformation of workpiece is analyzed based on the slip-line field. The mechanism of size effect of specific cutting force and the effect of specific cutting force on the surface roughness and burr height are investigated. A specific milling force model of micro flat end milling is established and the factors and mechanism of top side burr in micro flat end milling experiments are analyzed.
     Firstly, a deformation model is established considering the round cutting edge based on the slip-line fields. The micro orthogonal cutting forces are calculated and validated with different ratios of uncut thickness to cutting edge radius. The cutting force decreases with the ratio of uncut chip thickness to cutting edge radius decreasing, the specific cutting force increases with the decrease of uncut chip thickness to cutting edge radius. Collecting and measuring the deformed chip in micro orthogonal cutting, the deformation coefficient shows the size effect due to the pile up of the workpiece in the front of the cutting edge. With the decrease of the ratio of uncut chip thickness to cutting edge radius, the shear strain, shear strain rate, and shear temperature in the primary shear zone increases and shows the size effect phenomenon. The shear flow stress in the primary shear stress decreases due to the softening effect of the shear temperature. The plasticity strain gradient strengthening coefficient increases due to the effect of the plasticity strain gradient and the shear flow stress in the primary shear zone. The deformation path increases due to the round cutting edge and the relative cutting shows size effect phenomenon.
     Secondly, the mechanism of size effect of surface integrity is investigated based on the variation of specific cutting force around the corner. Specific cutting force and the flow ability of workpiece around the comer increases when the ratio of uncut chip thickness to corner radius. The side flow takes place and the workpiece piles up in front of the cutting edge and behind the cutting edge. The best surface roughness will be got when the pile-up height of rake, flank face and feed rate reaches a balance. The cutting edge of cutting tool extrudes and shears the workpiece with the round cutting edge. The machined surface is first extruded by the rake face and then ploughed by the flank face. The micro hardness decreases first and then increases when the ratio of uncut chip thickness to cutting edge radius decreases, and it reaches the bottom when the stress around the rake face equals that of flank face.
     Thirdly, the effect of specific cutting force on the burr height is studied. Side flow takes place when the tool extrudes the workpiece and the Poisson burr forms (entrance burr and side burr). The Poisson burr height increases with the decrease of the ratio of uncut chip thickness to cutting edge radius when the uncut chip thickness is smaller than the cutting edge radius. The Poisson burr height is stable because of the stable specific cutting force around the cutting edge when the uncut chip thickness is larger than the cutting edge radius. The tool extrudes the chip on the edge and the exit burr forms. The exit burr height will increase due to the effect of size effect of specific cutting force. The exit burr is a curled burr and different from that of macro cutting. The curled radius decreases first, and then increases with the decrease of the ratio of uncut chip thickness to cutting edge radius.
     Finally, a specific cutting force model is established of micro flat end milling including the size effect of specific cutting force, the factors of milling parameters such as feed per tooth, axial depth of cut, tool parameters such as tool diameter, helical angle, milling method such as up milling, down milling on specific cutting force are analyzed. The milling process is different from orthogonal cutting of two dimensions due to the influence of helical angle. The specific cutting forces in the three directions increase with the decrease of the feed per tooth due the size effect of specific cutting force. The specific cutting forces in the three directions increase slowly due to the increase of cutting edge in the entrance and exit area when the axial depth of cut decreases. The specific cutting forces in the ox, oy directions increase with the decrease of the helical angle, while the specific milling force in the oz direction decrease. The specific cutting forces decrease in the three directions with the decrease of the tool diameter. The specific cutting force increases with the decrease of the radial cutting width in the ox direction, and the specific cutting force in the up milling is larger than that of down milling. The specific cutting force decreases with the decrease of the radial cutting width in the oy direction, and the specific cutting force in the up milling is smaller than that of down milling. The specific cutting force increases with the decrease of the radial cutting width in the oz direction, and the specific cutting force in the up milling is in the same level with that of down milling. The factors of milling parameters such as feed per tooth, axial depth of cut, tool parameters such as cutting edge radius, helical angle on top side burr are analyzed in micro flat end milling. The height of top side burr shows size effect with the decrease of the feed per tooth. The top side burr height decreases with the decrease of axial depth of cut due to the shortening of the cutting edge. The height of top side burr reaches the minimum when the cutting edge radius is equal to the feed per tooth. The top side burr height increases with the decrease of the helical angle due to poor clearance.
     This work is sponsored by the National Natural Science Foundation of China (Grant No.50905003) and Foundation of Shandong Province of China for Distinguished Young Scholars (Grant No. JQ200918) for financial supports.
引文
[1]Masuzawa T. State of the Art of Micromachining [J]. CIRP Annals-Manufacturing Technology,2000,49(2):473-489.
    [2]邓朝晖,盛晓敏.先进制造技术[M].北京:机械工业出版社,2000:166-167.
    [3]Dornfeld D, Min S, Takeuchi Y. Recent Advances in Mechanical Micromachining [J]. CIRP Annals-Manufacturing Technology.2006,55(2):745-768.
    [4]Simoneau A, Ng E, Elbestawi M A. Modeling the Effects of Microstructure in Metal Cutting [J]. International Journal of Machine Tools & Manufacture,2006,47(2): 368-375.
    [5]Subbiah S. Some Investigations of Scaling Effects in Micro-cutting, [D]. Georgia Institute of Technology,2006:4-5.
    [6]Liu X, DeVor R E, Kapoor S G, et al. The Mechanics of Machining at the Microscale:Assessment of the Current State of the Science, [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2004,126(4): 666-678.
    [7]Aramcharoen A, Mativenga P T. Size Effect and Tool Geometry in Micromilling of Tool Steel, [J]. Precision Engineering,2009,33(4):402-407.
    [8]Corbett J, McKeown P A, Peggs G N, et al. Nanotechnology:International Developments and Emerging Products [J]. CIRP Annals-Manufacturing Technology, 2000,126(4):523-545.
    [9]Masuzawa T, Tonshoff H K. Three-Dimensional Micromachining by Machine Tools [J]. CIRP Annals-Manufacturing Technology,1997,46(2):621-628.
    [10]张明君,殷国富,袁光辉.大长径比微细轴的车削工艺研究[J].机械工程学报,2005,41(2):137-141.
    [11]张涛,刘战强,许崇海.整体式螺旋微径刀具的应用研究进展[J].工具技术, 2010,44(10):3-5.
    [12]孙雅洲,梁迎春,程凯.微米和中间尺度机械制造[J].机械工程学报,2004,40(5):1-6.
    [13]Kussul E, Baidyk T, Ruiz L, et al. Development of Low Cost Micro Equipment [C] International Symposium on Micromechatronics and Human Science, Japan,2002.
    [14]Kawahara N, Suto T, Hirano T, et al. Micro factories:New Applications of Micromachine Technology to the Manufacture of Small Products [J]. Microsystem Technologies,1997,3(2):37-41.
    [15]Zhang T, Liu Z Q, Xu C H, et al. Experimental Investigations of Size Effect on Cutting Force, Specific Cutting Energy, and Surface Integrity during Micro Cutting [C] High Speed Machining V, Materials Science Forum,2012,723:371-378.
    [16]Komanduri R. Some Aspects of Machining with Negative Rake Tools Simulating Grinding [J]. International Journal of Machine Tool Design and Research,1971,11(3): 223-233.
    [17]Tamaniau D A, Dautzenberg J H. Bluntness of the Tool and Process Forces in High-precision Machining [J]. CIRP Annals-Manufacturing Technology,1991,40(1): 65-68.
    [18]Abdelmoneim M E, Scrutton R F. Tool Edge Roundness and Stable Build-up Formation in Finishing Machining [J]. Journal of Engineering for Industry-Transactions of ASME,1974,96(4):1258-1267.
    [19]Ikawa N, Shimada S, Tanaka H. Atomistic Analysis of Nanometric Chip Removal as Affected by Tool Work Interaction in Diamond Turning [J]. CIRP Annals Manufacturing Technology,1991,40(1):551-554.
    [20]Ikawa N, Donaldson R R, Komanduri R. Ultraprecision Metal Cutting, the Past, the Present, and the Future [J]. CIRP Annals-Manufacturing Technology,1991,40(2): 587-594.
    [21]Basuray P K, Misra B K, Lal G K. Transition from Ploughing to Cutting during Machining with Blunt Tools [J]. Wear,1977,43(3):341-349.
    [22]Shimada S, Ikawa N, Tanaka H, et al. Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation [J]. CIRP Annals Manufacturing Technology,1993,42(1):91-94.
    [23]Yuan Z J, Zhou M, Dong S. Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining [J]. Journal of Materials Processing Technology,1996,62(4):327-330.
    [24]Son S M, Lim H S, Ahn J H. Effects of the Friction Coefficient on the Minimum Cutting Thickness in Micro Cutting [J]. International Journal of Machine Tools & Manufacture,2005,45(4-5):529-535.
    [25]Son S M, Lim H S, Ahn J H. The Effect of Vibration Cutting on Minimum Cutting Thickness [J]. International Journal of Machine Tools & Manufacture,2006,46(15): 2066-2072.
    [26]Kim C J., Mayor J R, Ni J. A Static Model of Chip Formation in Microscale Milling [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2004,126:710-718.
    [27]Wang S M, Chiang Z S, Chen D F. Determination of cutting Forces for Micro Milling [C]. ASME, MSEC, Evanston, Illinois, USA,2008,293-299.
    [28]Malekian M, Mostofa M G, Park S S, et al. Modeling of Minimum Uncut Chip Thickness in Micro Machining of Aluminum [J]. Journal of Materials Processing Technology,2012,212(3):553-559.
    [29]吴继华,史振宇.基于应变梯度理论的直角微车削中最小切除厚度预测[J].中国机械工程,2009,(18):2227-2230.
    [30]Bissacco G, Hansen H N, Slunsky J. Modeling the Cutting Edge Radius Size Effect for Force Prediction in Micro Milling [J]. CIRP Annals-Manufacturing Technology,2008,57(1):113-116.
    [31]Mian A J. Size Effect in Micromachining [D] The University of Manchester, Manchester,2011,168-179,121-125.
    [32]Moneim A M E. Tool Edge Roundness in Finish Machining at High Cutting Speeds [J]. Wear,1980,58(1):173-192.
    [33]Lu Z, Yoneyama T. Micro Cutting in the Micro Lathe Turning System [J]. International Journal of Machine Tools & Manufacture,1999,39(7):1171-1183
    [34]Lee B Y, Tarng Y S. Prediction of Specific Cutting Force and Cutting Force Ratio in Turning [J]. Journal of Materials Processing Technology,1994,41(1):71-82.
    [35]Kim J D, Kim D S. Theoretical Analysis of Micro-cutting Characteristics in Ultra-precision Machining [J]. Journal of Materials Processing Technology,1995, 49(3-4):387-398.
    [36]Ko T J, Kim H S. Mechanistic Cutting Force Model in Band Sawing [J]. International Journal of Machine Tools & Manufacture,1999,39(8):1185-1197.
    [37]Polini W, Turchetta S. Force and Specific Energy in Stone Cutting by Diamond Mill [J]. International Journal of Machine Tools & Manufacture,2004,44(11): 1189-1196.
    [38]Rodrigues A R, Coelho R T. Influence of the Tool Edge Geometry on Specific Cutting Energy at High-speed Cutting [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2007,29(3):279-283.
    [39]Shaw M C. The Size Effect in Metal Cutting. Sadhana,2003,28(5):875-896.
    [40]Kim K W, Lee W Y, Sin H. A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect [J]. International Journal of Machine Tools & Manufacture,1999,39(9):1507-1524.
    [41]蒋放,王西彬,刘志兵.微细切削的尺度效应研究[J].工具技术,2004,38(8):6-9.
    [42]Filiz S, Conley C M. Wasserman M B, et al. An Experimental Investigation of Micro-machinability of Copper 101 Using Tungsten Carbide Micro-endmills [J]. International Journal of Machine Tools & Manufacture,2007,47(7-8):1088-1100.
    [43]Ng C K, Melkote S N, Rahman M, et al. Experimental Study of Micro-and Nano-scale Cutting of Aluminum 7075-T6 [J]. International Journal of Machine Tools & Manufacture,2006,46(9):929-936.
    [44]Liu K, Melkote S N. Finite Element Analysis of the Influence of Tool Edge Radius on Size Effect in Orthogonal Micro-cutting Process [J]. International Journal of Mechanical Sciences,2007,49(5):650-660.
    [45]Liu K, Melkote S N. Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting [J]. International Mechanical Engineering Conference and Exposition (IMECE2005), Orlando, Florida, USA, Journal of Manufacturing Science and Engineering-Transactions of the ASME,2006,128(3):730-738.
    [46]Lawson B L, Ozdoganlar O B. Effects of Crystallographic Anisotropy on Orthogonal Micromachining of Single-Crystal Aluminum [J]. Journal of Manufacturing Science and Engineering,2008,130(3):1-11.
    [47]Mian A J, Driver N, Mativenga P T. Micromachining of Coarse-grained Multi-phase Material [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2009,223(4):377-385.
    [48]吴继华.基于应变梯度塑性理论的正交微切削变形研究[D].济南:山东大学,2009,58-59,75-80.
    [49]周军,李剑锋,孙杰.微切削加工A17050-T7451过程切屑形貌及尺度效应研究[J].山东大学学报(工学版),2010,40(3):148-153.
    [50]Wu J, Liu Z Q. Modeling of Flow Stress in Orthogonal Micro-cutting Process Based on Strain Gradient Plasticity Theory [J]. International Journal of Advanced Manufacturing Technology,2010,46(1-4):143-149.
    [51]Lai X, Li H, Li C, et al. Modeling and Analysis of Micro Scale Milling Considering Size Effect Micro Cutter Edge Radius and Minimum Chip Thickness [J]. International Journal of Machine Tools & Manufacture,2008,48(1):1-14.
    [52]Autenrieth H, Weber M, Schulze V, et al. Investigation of Process-Specific Size Effects by 3D-FE-Simulations [C]. High Performance Computing in Science and Engineering'08,2009, Part 8,543-558.
    [53]Weber M, Hochrainera T, Gumbsch P, et al. Investigation of Size-effects in Machining with Geometrically Defined Cutting Edges [J]. Machining Science and Technology,2007,11(4):447-473.
    [54]Tschatsch H, Reichelt A. Fundamentals of Machining Explained for Turning Applied Machining Technology [M]. Springer,2009,5-23.
    [55]Biermann D. Kahnis P. Analysis and Simulation of size Effects in Micromilling [J]. Production Engineering,2010 4(1):25-34.
    [56]Vollertsen F. Biermann D, Hansen H N, et al. Size Effects in Manufacturing of Metallic Components [J]. CIRP Annals-Manufacturing Technology,2009,58(2): 566-587.
    [57]Atkins A G. Modeling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for some Longstanding Problems [J]. International Journal of Mechanical Sciences,2003,45(2):373-396.
    [58]Lucca D A, Rhorer R L, Komanduri R. Energy Dissipation in the Ultraprecision Machining of Copper [J]. CIRP Annals-Manufacturing Technology,1991,40(1): 69-72.
    [59]Lucca D A, Rhorer R L, Komanduri R. Effect of Tool Edge Geometry on Energy Dissipation in Ultra-precision Machining, [J]. CIRP Annals-Manufacturing Technology,1993,42(1):83-86.
    [60]Karpat Y, Investigation of the Effect of Cutting Tool Edge Radius on Material Separation due to Ductile Fracture in Machining [J]. International Journal of Mechanical Sciences,2009,51(4):541-546.
    [61]Manjunathaiah J, Endres W J. A New Model and Analysis of Orthogonal Machining with an Edge-radiused Tool [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2000,122(3):384-390.
    [62]Pawade R S, Sonawane H A, Joshi S S. An Analytical Model to Predict Specific Shear Energy in High-speed Turning of Inconel 718 [J]. International Journal of Machine Tools & Manufacture,2009,49(12-13):979-990.
    [63]Adibi-Sedeh A H, Madhavan V, Bahr B. Extension of Oxley's Analysis of Machining to Use Different Material Models [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2003,125(4):656-666.
    [64]Subbiah S, Melkote S N. Effect of Finite Edge Radius on Ductile Fracture ahead of the Cutting Tool Edge in Micro-cutting of A12024-T3 [J]. Materials Science and Engineering A,2008,474(1-2):283-300.
    [65]Loxham J, Purcell J. Measurement and Control of the Residual Stress Produced by Grinding Operations, Proceedings of the Institution of Mechanical Engineers, Conference Proceedings,1967,182(11):205-210.
    [66]Field M, Koster W P, Kohls J B, et al. Machining High Strength Steel with Emphasis on Surface Integrity, Air Force Machining Data Center,1970, AFMDC
    [67]Field M, Kahles J F. Review of Surface Integrity of Machined Components [J]. CIRP Annals-Manufacturing Technology,1971,20(2):153-163.
    [68]Wang W, Kweon S H, Yang S H. A Study on Roughness of the Micro-end-milled Surface Produced by a Miniatured Machine Tool [J]. Journal of Materials Processing Technology,2005,162-163:702-708.
    [69]Weinert K, Kahnis P. Analysis of Tool Influences on Downscaled Milling Processes [C]. Vollertsen F., Yuan S. Proceedings of the 2nd International Conference on New Forming Technology, Bremen,2007,481-489.
    [70]赵岩.微细铣削工艺基础与实验研究[D].哈尔滨:哈尔滨工业大学,2008,53-55.
    [71]张霖.数控微细铣削机床系统构建及性能研究[D].南京:南京航空航天大学,2007:104-110.
    [72]Liu K, Melkote S N. Effect of Plastic Side Flow on Surface Roughness in Micro Turning Process [J]. International Journal of Machine Tools & Manufacture,2006, 46(14):1778-1785.
    [73]石文天,刘玉德,王西彬,等.基于响应曲面法的微细铣削表面粗糙度预报模型与试验研究[J].中国机械工程,2009,20(20):2399-2402.
    [74]石文天,刘玉德,王西彬,等.微细铣削表面粗糙度预测与试验[J].农业机械学报,2010,41(1):211-215.
    [75]Fang F Z, Zhang G X. An Experimental Study of Edge Radius Effect on Cutting Single Crystal Silicon [J]. International Journal of Advanced Manufacturing Technology,2003,22(9-10):703-707.
    [76]Nakayama K, Arai M. Burr Formation in Metal Cutting [J]. CIRP Annals-Manufacturing Technology,1987,36(1):33-36.
    [77]Hockauf W. Burr Reduction Investment-Production Costs-Burr Reduction-Prediction of Burrs, [C]. CIRP-Presentation at HPC Workshop, Paris, 2002.
    [78]Olverai O, Barrow G. An Experiment Study of Burr Formation in Square Shoulder Face Milling [J]. International Journal of Machine Tools & Manufacture,1996,36(9): 1005-1020.
    [79]Kim J S, Optimization and Control of Drilling Burr Formation in Metals [D]. California:University of California at Berkeley, Dissertation Abstracts International, 62(01) (2000) 496B (UMI No.3001895).
    [80]Schmidt J, Tritschler H. Micro Cutting of Steel [J]. Microsystem Technologies, 2004,10(3):167-174.
    [81]Lee K, Dornfeld D A. Micro-burr Formation and Minimization through Process Control [J]. Precision Engineering,2005,29(2):246-252.
    [82]孙雅洲,张庆春,高强,等.微细铣削毛刺形成研究[J].现代制造工程2006,(4):69-72.
    [83]Heisel U, Schaal M, Wolf G. Influence of Minimum Quantity Lubrication on Burr Formation in Milling [C]. Aurich J C, Dornfeld D. Proceedings of the CIRP International Conference on Burrs,2009, Burrs-Analysis, Control and Removal, University of Kaiserslautern, Germany,2010, Part 4,139-146.
    [84]Mian A J, Driver N, Mativenga P T. A Comparative Study of Material Phase Effects on Micro-machinability of Multiphase Materials [J]. International Journal of Advanced Manufacturing Technology,2010 50(1-4):163-174.
    [85]Lee D, Deichmueller M, Min S, et al. Varian in Machinability of Single Crystal Materials in Micromechanical Machining EScholarship Repository, Laboratory for Manufacturing and Sustainability, University of California, Berkeley.
    [86]Biermann D, Heilmann M. Burr Minimization Strategies in Machining Operations [C]. Proceedings of the CIRP International Conference on Burrs, Burrs-Analysis, Control and Removal, University of Kaiserslautern, Germany,2010, Part 1,13-20.
    [87]李洪涛,来新民,李成峰,等.介观尺度微细铣床开发及性能实验[J].机械工程学报,2006,42(11):162-167.
    [88]Rahman M, Kumar A S, Prakash J R S. Micro Milling of Pure Copper [J]. Journal of Material Processing Technology,2001,116(1):39-43.
    [89]Hu Y, Wang C, Wu X, et al. Investigation on Hard Ended Steel Milling with Micro-end Mill [J]. Transactions of Nanjing University o f Aeronautics & Astronautics,2004,21(4):291-297.
    [90]Rech J, Yen Y C, Schaff M J. Influence of Cutting Edge Radius on the Wear Resistance of PM-HSS Milling Inserts [J]. Wear,2005,259(7-12):1168-1176.
    [91]童利东,白清顺,赵岩.微径铣刀及微细铣削技术的研究进展[J].工具技术,2006,40(12):3-7.
    [92]Li X, Zhao X, Chen J, et al. Tool Wear Prediction in Micro-end-milling with Hard Material [J]. Journal of Shanghai Jiaotong University (Science),2007,12(3): 359-363.
    [93]赵岩,梁迎春,白清顺.微细加工中的微型铣床、微刀具磨损及切削力的实 验研究[J].光学精密工程,2007,15(6):894-902.
    [94]Li H, Lai X, Li C, et al. Modeling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-end-milling [J]. Journal of Micromechanics and Microengineering,2008,18(02):5006-5017.
    [95]蒋放,王西彬.微细切削刀具切削刃局部应力分析[J].制造技术与机床2009,(09):67-69.
    [96]Mian A J, Driver N, Mativenga P T. Identification of Factors that Dominate Size Effect in Micro-machining [J]. International Journal of Machine Tools & Manufacture, 2011,51(5):383-394.
    [97]Polini W, Turchetta S. Force and Specific Energy in Stone Cutting by Diamond Mill [J]. International Journal of Machine Tools & Manufacture,2004,44(11): 1189-1196.
    [98]Liu X, Jun M B G, Devor R E, et al. Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-End Milling. ASME International Mechanical Engineering Congress and Exposition, USA,2004,47136:583-592.
    [99]Merchant M E. Mechanics of the Metal Cutting Process. Ⅱ. Plasticity Conditions in Orthogonal Cutting [J]. Journal of Applied Physics,1945,16(6):318-324.
    [100]Lee E H, Shaffer B W. The Theory of Plasticity Applied to a Problem of Machining [J]. Journal of Applied Mechanics-Transactions of ASME 1951,73(18): 405-113.
    [101]Altintas Y, Chua C K, Vollertsen F, et al. Preface [J]. Journal of Materials Processing Technology,2012,212(3):541
    [102]Oxley P L B. Mechanics of Machining-an Analytical Approach to Assessing Machinability [M] Ellis Horwood Limited (UK) 1989,1-135.
    [103]Waldorf D J, DeVor R E, Kapoor S G. A Slip-line Field for Ploughing during Orthogonal Cutting [J]. Journal of Manufacturing Science and Engineering-Transactions of ASME 1998,120(4):693-698.
    [104]Jin X, Altintas Y. Slip-line Field Model of Micro-cutting Process with Round Tool Edge Effect [J]. Journal of Materials Processing Technology,2012,211(3): 339-355.
    [105]Fang N. Slip-line Modeling of Machining with a Rounded-edge Tool-Part Ⅰ: New Model and Theory [J]. Journal of the Mechanics and Physics of Solids,2003, 51(4):715-742.
    [106]Fang N. Slip-line Modeling of Machining with a Rounded-edge Tool-Part Ⅱ:Analysis of the Size Effect and the Shear Strain-rate [J]. Journal of the Mechanics and Physics of Solids,2003,51(4):743-762.
    [107]Johnson G J, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strains High Strain Rates and High Temperatures [C]. Proceedings of the 7th International Symposium on Ballistics,1983,541-547.
    [108]Zerilli F J, Armstrong R W. Dislocation Mechanics Based Constitutive Relations for Material Dynamics Calculations [J]. Journal of Applied Physics,1987, 61(5):1816-1825.
    [109]Usui E, Shirakashi T, Kitagawa T. Analytical Prediction of Three Dimensional Cutting Process—Part 3:Cutting Temperature and Crater Wear of Carbide Tool [J]. Journal of Engineering for Industry,1978,100(2):236-243.
    [110]Ozel T, Zeren E. Determination of Work Material Flow Stress and Friction for FEA of Machining using Orthogonal Cutting Tests [J]. Journal of Materials Processing Technology,2004,153-154(10):1019-1025.
    [111]Jaspers S P F C, Dautzenberg J H. Material Behavior in Conditions Similar to Metal Cutting:Flow Stress in the Primary Shear Zone [J]. Journal of Materials Processing Technology,2002,122(2-3):322-330.
    [112]Oxley P L.B, Hastings W F. Predicting the Strain Rate in the Zone of Intense Shear in which the Chip is Formed in Machining from the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions [J]. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 1977,356(1686):395-410.
    [113]Loewen E G, Shaw M C. On the Analysis of Cutting Tool Temperature [J]. Transactions of ASME,1954,76:217-231.
    [114]Duan C Z, Zhang L C. Adiabatic Shear Banding in AISI 1045 Steel during High speed Machining:Mechanisms of Microstructural Evolution [J]. Materials Science and Engineering A,2012,532:111-119.
    [115]Joshi S S, Melkote S N. An Explanation for the Size-effect in Machining based on Strain Gradient Plasticity [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2004,126(4):679-684.
    [116]Asad M, Mabrouki T, Girardin F, et al. Towards a Physical Comprehension of Material Strengthening Factors during Macro to Micro-scale Milling [J]. Mechanics, 2011,17(1):97-104.
    [117]Weule H, Huntrupl V, Tritschler H. Micro-cutting of Steel to Meet New Requirements in Miniaturization [J]. CIRP Annals-Manufacturing Technology,2001, 50(1):61-64.
    [118]Vogler M P, DeVor R E, Kapoor S G. On the Modeling and Analysis of Machining Performance in Micro-End Milling, Part I:Surface Generation [J]. Journal of Manufacturing Science and Engineering,2004.126(4):685-694.
    [119]Shaw M C. Metal Cutting Principles [M] Oxford:Oxford University Press Inc., New York,2004,448-456.
    [120]Dogra M, Sharma V S, Sachdeva A, et al. Tool Wear, Chip Formation and Workpiece Surface Issues in CBN Hard Turning:A Review [J]. International Journal of Precision Engineering and Manufacturing,2010,11(2):341-358.
    [121]Ichimura H, Ishii Y. Effects of Indenter Radius on the Critical Load in Scratch Testing [J]. Surface & Coatings Technology,2003,165(1):517-521.
    [122]Williams J A. Analytical Models of Scratch Hardness [J]. Tribology International,1996,29(8):675-694,
    [123]Studman C J, Mooret M A, Jones S E. On the Correlation of Indentation Experiments [J]. Journal of Physics D:Applied Physics,1997,10(6):949-956.
    [124]Gillespie L K, Blotter P T. The Formation and Properties of Machining Burrs [J]. Journal of Engineering for Industry-Transactions of ASME,1976,98(1):66-74.
    [125]Jardret V, Zahouani H, Loubet J L, et al. Understanding and Quantification of Elastic and Plastic Deformation During a Scratch Test [J]. Wear,1998,218(1):8-14.
    [126]Bucaille J, Felder L E, Hochstetter G. Mechanical Analysis of the Scratch Test on Elastic and Perfectly Plastic Materials With the Three Dimensional Finite Element Modeling [J]. Wear,2001,249(5-6):422-432.
    [127]Ahn B W, Lee S H. Characterization and Acoustic Emission Monitoring of AFM Nanomachining [J]. Journal of Micromechanics and Microengineering,2009, 19(4):1-6.
    [128]Bissacco G, Hansen H N, Chiffre L D. Micromilling of Hardened Tool Steel for Mould Making Applications [J]. Journal of Materials Processing Technology,2005, 167(2-3):201-207.
    [129]Aurich J C, Dornfeld D, Arrazola P J, et al. Burrs—Analysis, Control and Removal [J]. Journal of Micromechanics and Microengineering,2009,58(2): 519-542.
    [130]Ducobua F, Riviere-Lorphevreb E, Filippi E. A Lagrangian FEM Model to Produce Saw-toothed Macro-chip and to Study the Depth of Cut Influence on its Formation in Orthogonal Cutting of Ti6Al4V [C]. Trans Techn Publications, Switzerland, Advanced Materials Research,2011,223:3-11.
    [131]Qu H J, Yang J H, Wang G C. Simulation and Control of Two Side Direction Burr [C]. Digital Manufacturing and Automation (ICDMA),2010 International Conference on, Applied Mechanics and Materials,2012,143-144:428-432.
    [132]Hashimura M, Hassamamontr J, Dornfeld D A. Effect of in Plane Exit Angle and Rake Angles on Burr Height and Thickness in Face Milling Operation [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME 1999,121(1): 13-19.
    [133]Deng W J, Xia W, Tang Y. Finite Element Simulation for Burr Formation near the Exit of Orthogonal Cutting [J]. International Journal of Advanced Manufacturing Technology,2009,43(9-10):1035-1045.
    [134]Schueler G M, Engmann J, Marx T, et al. Burr Formation and Surface Characteristics in Micro-end Milling of Titanium Alloys [C]. Burrs-Analysis Control and Removal,2010, Part 4:129-138.
    [135]Ding H, Chen S J, Ibrahim R, et al. Investigation of the Size Effect on Burr Formation in Two-dimensional Vibration-assisted Micro End Milling [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2011,225(11):2032-2039.
    [136]Ko S, Dornfeld D A. Analysis of Fracture in Burr Formation at the Exit Stage of Metal Cutting [J]. Journal of Materials Processing Technology,1996,58(2-3): 189-200.
    [137]Lekkala R, Bajpai V, Singh R.K, et al. Characterization and Modeling of Burr Formation in Micro-end Milling [J]. Precision Engineering,2011,35(4):625-637.
    [138]Wyen C F, Wegener K. Influence of Cutting Edge Radius on Cutting Forces in Machining Titanium [J]. CIRP Annals-Manufacturing Technology,2010,59(1): 93-96.
    [139]Ko S, Dornfeld D A. A Study on Burr Formation Mechanism [J]. Journal of Engineering Materials and Technology,1991,113(1):75-87.
    [140]Ohbuchia Y, Obikawa T. Adiabatic Shear in Chip Formation with Negative Rake Angle [J]. International Journal of Mechanical Sciences,2005,47(9): 1377-1392.
    [141]Worthington B, Redford A H. Chip Curl and the Action of the Groove Type Chip Former [J]. International Journal of Machine Tool Design and Research,1973, 13(4):257-270.
    [142]Nedelβ C, Hintze W, Luttervelt C A V. Characteristic Parameters of Chip Control in Turning Operations with Indexable Inserts and Three-dimensionally Shaped Chip formers [J]. CIRP Annals-Manufacturing Technology,1989,38(1): 75-79.
    [143]Wan M, Zhang W, Dang J. A Unified Stability Prediction Method for Milling Process with Multiple Delays [J]. International Journal of Machine Tools & Manufacture,2010,50(1):29-41.
    [144]Saptaji K, Subbiah S, Dhupia J S. Effect of Side Edge Angle and Effective Rake Angle on Top Burrs in Micro-milling [J]. Precision Engineering 2012,36(3): 444-50.
    [145]Lee K, Dornfeld D A. An Experimental Study of Burr Formation in Micro Milling Aluminum and Copper [C]. Technical Paper—Society of Manufacturing Engineers, MR(MR02-202),2002,1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700