用户名: 密码: 验证码:
超声振动微铣削系统的建立及铣削力和残余应力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机械系统在高技术领域如航空航天、小卫星以及现代医学中得到广泛应用,其性能和使用寿命受到微机械零件的制造工艺影响较大。在微机械加工领域内,传统的制造方法是采用大型超精密机床铣削微小零件,但是存在成本较高、机械爬行难以控制、资源和能源浪费较大等问题。随着小机床的出现和不断改进,微小零件的加工主要由小机床进行。与传统铣削相比,微铣削工艺也存在工件表面粗糙度较大、工件表面有微小翻边和毛刺、工件表面残余拉应力等,这些因素不利于提高产品的精度和使用寿命,所以改善微铣削加工势在必行。已经有学者提出采用超声振动和微切削结合的方法可以有效提高微切削工件质量,这方面主要有超声振动微钻削、超声振动微刨削及超声振动微车削,而在超声振动微铣削方面的报道还比较少。加入超声振动可以解决在微铣削过程中出现的表面粗糙度值较大、加工表面微小翻边和毛刺等问题,同时改善微铣削工件表面残余应力状态,提高微铣削工件的精度、表面质量、耐腐蚀特性和使用寿命。
     本文为解决微铣削加工金属和脆性材料过程中出现的问题和提高加工精度以及提高表面质量而提出了在微铣削的基础上加入超声振动的方法。本文论述主要由以下几方面进行。
     首先根据超声换能器及变幅杆理论进行超声振子设计。同时设计了扭转振动工作台。由于本课题的超声振动铣削系统应用于铣削硬质合金,铣削力较大且超声振子的振幅要求较大,反向弹簧确保扭转工作台和超声振子同频率振动,通过理论设计的一级锥形变幅杆不能满足实验需要应进一步放大,因此在一级变幅杆末端加入一个阶梯型变幅杆。通过这种方法设计出的振子理论上可以满足实验需要,但是实际中由于振子的负载在一定范围内变化,负载变化直接导致振子在激励频率不变时固有频率偏移,那么在一些情况下振子难以正常工作。由于振子的工作带宽直接取决于振子的尺寸,为了增加带宽和确保振子正常工作,本文采用有限元软件ANSYS进行了振子尺寸和固有频率的优化,最后设计出适合本课题的超声振子。
     对微铣削以及超声振动微铣削加工硬质钢进行了切削力数学理论方面的研究。本文将切削过程适当简化,将铣刀刀尖与工件的接触点复坐标化。以相邻两个周期的切削点的坐标相减得到微铣削过程中切削厚度方程,以切削厚度与实验中测定的切削系数的乘积作为微铣削力。同样方法推导出超声振动微铣削力的方程。应用动态断裂力学理论解释超声振动微铣削工件材料裂纹的扩展对切削力的影响,从裂纹扩展机理方面解释了超声振动微铣削切削力减小的原因。在建立了超声振动微铣削理论模型之后,建立了超声振动微铣削力有限元模型,通过模拟得出加入超声振动后微铣削力降低的结论,表明仿真果与理论分析结果趋势一致。
     建立了超声振动微铣削工件表面残余应力的仿真模型,适当简化铣刀和工件。工件材料选择Johnson-Cook本构方程来描述。切屑形成过程采用Johnson-Cook断裂法则描述。经过显式计算得到去除工件约束后表面残余应力分布图。再分别提取同一个参考点在S11方向和S22方向的残余应力。然后通过模拟得到超声振动微铣削工件表面残余应力随着刀具几何参数变化、切削参数变化和振动参数变化的规律。
     在五轴小机床上加入超声振子、超声振动扭转工作台、超声波发生器以及测力仪、CCD相机,建立了超声振动微铣削系统。通过该系统进行了4340钢和玻璃的铣槽实验。通过铣槽实验验证了超声振动微铣削力降低的结论。通过激光共聚焦显微镜观察加工后的工件表面形貌得出超声振动微铣削工件表面质量改善,同时得到铣刀变形改善、工件抗腐蚀性能改善的规律。通过X射线法测量工件表面的残余应力得到超声振动微铣削工件表面的残余应力降低的结论。通过对玻璃的铣槽实验验证了加入超声振动后脆性材料的切削力明显降低,脆性材料的工件在加入超声振动后的切削过程中切屑的崩裂减少,玻璃的铣削得到改善的结论。
     本文通过加入超声振动来改善微铣削加工工件的质量为今后微机械零件的制造提供了依据。
With the development of science and technology, the micro mechanics system has been extensively applied in high technology fields such as aerospace, minisatellite, and modern medicine. The performance and the service life of the micro mechanics parts are affected greatly by the manufacturing process. In micro mechanics machining field, the traditional manufacturing approach of micro mechanical parts is to use large precision machine tool to mill. But the cost and the mechanical creep are difficult to control, and the wasted resources and energy are too large. With the emergence and continuous improvement of small machine tools, the micro mechanical parts are machined mainly by small machine tools. Compared with traditional manufacturing approach, there exist the problems that the surface roughness in the milling process is big, there are flanging and micro burrs on the surface, and there also exists surface residual tensile stress. These factors are unfavorable to improve the precision of the product and their service life, so it is necessary to improve the machining process. In this respect, some scholars have proposed that the combination of ultrasonic vibration and the micro-cutting can effectively improve the milling quality of workpiece. This method is mainly applied in the ultrasonic vibration micro drilling, ultrasonic vibration micro planing and the ultrasonic vibration micro turning. But there are few reports on ultrasonic vibration micro milling by now. The ultrasonic vibration can reduce the value of surface roughness and surface micro flanging and burr appeared in micro milling process. At the same time, it can improve the state of the surface residual stress, and improve the accuracy and surface quality, corrosion resistant properties and the service life of the workpiece.
     The purpose of this paper is to solve problems appeared in the micromilling process of the metal and brittle materials to improve the machining accuracy and surface quality, and put forward the method of the combination of ultrasonic vibration and micro milling in this paper. This paper is mainly developed from the following aspects.
     Firstly, the ultrasonic vibrator is designed based on the ultrasonic vibration theory and the ultrasonic amplitude transformer theory. And then the torsional vibration table is designed. Because the ultrasonic vibration micro milling system in this project is used in milling hard alloy, the milling force and ultrasonic vibration amplitude has to be big. The reverse spring ensures that the vibration frequency of the torsional work table is as same as the ultrasonic vibrator. The ultrasonic amplitude transformer designed based on the ultrasonic wave theory can not meet the experiment need, so the amplitude of vibration has to be further amplified.So the end of the vibrator should be added the second level amplification transformer. The step-style ultrasonic amplitude transformer is adopted. The vibrator designed through this method can satisfy the requirement of the experiment in theory. But in practice, because the vibrator load changes in a certain range, the load changes makes directly the natural frequency of the vibrator offset, and the incentive frequency of the vibrator remains unchanged, so in some cases the vibrator is difficult to work properly. Since the vibrator frequency bandwidth depends directly on the size of the vibrator, in order to increase the bandwidth and ensure the normal work of the vibrator, the finite element software ANSYS is adopted in this paper to optimize the vibrator size and its natural frequency, and then a proper size of the ultrasonic vibrator is finally got.
     The research is based on cutting force mathematical theory of the micro milling and ultrasonic vibration micro milling carbide steel. Simplifing the cutting process properly, the plural coordinates of the milling cutter contact point is got. The cutting point coordinate of the later period minus that of the fronter is the cutting thickness in micro milling process. Multiplying the cutting thickness and the cutting coefficient measured in the experiment is the milling force. Similarly the ultrasonic vibration micro milling force equation is obtained. The dynamic fracture mechanics theory is applicated in explaining the crack extension of workpiece materials how to influent the cutting force, then the cause of ultrasonic vibration micro milling force decrease by the crack propagation mechanism is explained in this paper.After constructing the theory model of the ultrasonic vibration micro milling, the finite element model of the ultrasonic vibration micro milling force is carried on in this paper. It is concluded that ultrasonic vibration micro milling force reduces in finite element simulation results. It is shown that the results of the simulation analysis and the theoretical analysis are in good agreement.
     The simulation model of the surface residual stress in ultrasonic vibration micro milling is created. And the milling cutter and the workpiece are simplified properly. The Johnson-Cook constitutive equation is choosed to describe the workpiece material performance. The Johnson-Cook damage law is adopted as a chips-forming rule. The distribution nephogram of the residual stress after removing the workpiece constraint is obtained by means of explicit calculation. The residual stress of the same reference point in the direction of the S22 and S11 is extracted respectively. Then the regularity that the surface residual stress changes with the micromilling cutter geometrical parameters, the milling parameters and the vibration parameters in the ultrasonic vibration micro milling is gained by simulation.
     The ultrasonic vibration micro milling experiment system is established by assembling the ultrasonic vibrator, the ultrasonic vibration work table, the ultrasonic generator, the dynamometer, and a CCD camera in the 5-axis small machine tool. The slotting experiment on 4340 steel and glass is performed in this experiment system. The slotting experiment verifies the conclusion that micro milling force reduces after adding ultrasonic vibration. The regularity that the milling surface roughness, the milling cutter deformation, and the corrosion resistance are improved after adding ultrasonic vibration is obtained by observing the surface topography of the workpiece under the laser confocal microscopy. The conclusion that the surface residual stress reduces after adding ultrasonic vibration is obtained after measuring the surface residual stress by using the X-ray diffraction equipment. The glass slotting experiment verifies the conclusion that the micro milling force of the brittle material reduces significantly, the edge breakage of the brittle material reduces and the milling process of glass is improved after adding ultrasonic vibration.
     A basis for manufacturing micro mechanical parts in future is provided in this paper to improve the quality of the workpiece machined by adding ultrasonic vibration.
引文
[1]苑伟政,马炳和.微机械与微细加工技术[M].西安:西北工业大学出版社, 2000.1
    [2] SabourinD.,DufvaM.,JensenT., KutterJ.,Snakenborg D.. One-step Fabrication of Microfluidic Chips with In-plane,Adhesive-free Interconnections[J]. Journal of Micromechanics and Microengineering, 2010,20(3)37001-37001.
    [3] Benjamin Gorissen, Micha?l De Volder, Aline De Greef,Dominiek Reynaerts.Theoretical and Experimental Analysis of Pneumatic Balloon[J].Microactuators Original Research. ArticleSensors and Actuators . A: Physical, 2011,168(1):58-65 .
    [4]李德胜,王东红.MEMS技术及其应用[M].哈尔滨:哈尔滨工业大学出版社.2002:5-7.
    [5] M.T. Zaman, A. Senthil Kumar, M. Rahman, S. Sreeram.A Three-dimensional Analytical Cutting Force Model for Micro End Milling Operation[J]. International Journal of Machine Tools & Manufacture ,2006,46:353–366.
    [6] I.S. Kang, J.S. Kim, J.H. Kim, M.C. Kang, Y.W. Seo.A mechanistic Model of Cutting Force in the Micro End Milling Process[J]. Journal of Materials Processing Technology,2007, 187-188:250–255.
    [7] Won-Soo Yun, Dong-Woo Cho .Accurate 3-D Cutting Force Prediction Using Cutting Condition Independent Coefficients in End Milling International[J].Journal of Machine Tools & Manufacture ,2001,41:463–478.
    [8] Jeong Hoon Ko ,Dong-Woo Cho .3D Ball-End Milling Force Model Using Instantaneous Cutting Force Coefficients[J].Journal of Manufacturing Science and Engineering ,2005, 127(1):1–10.
    [9] Shu Karube, Wataru Hoshino, Tatsuo Soutome, Keijin Sato. The Non- linear Phenomena in Vibration Cutting System The establishment of dynamic model[J].Non-linear Mechanics,2002(37):541–564.
    [10] RenQun,BaronLuc Jemielniak,Krzysztof Balazinski,Marek.Modelling of Dynamic Micromilling Cutting Forces using Type-2 Fuzzy Rule-based System Fuzzy Systems (FUZZ) [C].2010 IEEE International Conference, 2010:1-7, 18-23 .
    [11] Sinan Filiz, O. Burak Ozdoganlar.A Three-dimensional Model for the Dynamics of Micro-endmills Including Bending, Torsional and AxialVibrations [J].Original Research Article Precision Engineering, 2011,35(1):24-37.
    [12] Sumet Heamawatanachai, Eberhard Bamberg .Cutting Force Model of Orbital Single-point Micromachining Tool[J].Original Research Article International Journal of Machine Tools and Manufacture, 2010, 50(9):815-823 .
    [13] G. Newby, S. Venkatachalam, S.Y. Liang .Empirical Analysis of Cutting Force Constants in Micro-end-milling Operations[J].Journal of Materials Processing Technology,2007,192-193:41–47.
    [14] Huang, B.W. Cai, J.Z. Hsiao,W.L. Cutting Force Estimation in a Micromilling Process[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(10): 1615-1619.
    [15] Vijayaraghavan, Athulan Sodemann, Angela Hoover, Aaron Rhett Mayor, J. Dornfeld David. Trajectory Generation in High-speed,High-precision Micromilling Using Subdivision Curves[J].International Journal of Machine Tools and Manufacture, 2010, 50(4):394-403.
    [16] SodemannAngela A., Mayor J. Rhett. Parametric Investigation of Precision InTool-workpiece Conductivity Touch Off Method in Micromilling[J].Transactions of the North American Manufacturing Research Institution of SME, 2009, 37:565-572.
    [17] Michael P, Vogler Richard, E. DeVor, Shiv G. Kapoor Microstructure-Level Force Prediction Model for Micro-milling of Multi-Phase Materials[J].Journal of Manufacturing Science and Engineering Transactions of the ASME, 2003, 125:202-209 .
    [18] Albert J. Shih Jie Luo Mark A. Lewis John S. Strenkowski.Chip Morphology and Forces in End Milling of Elastomers[J].Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2004, 126(1):124-130.
    [19] Thomas A. Dow, Edward L. Miller, Kenneth Garrard. Tool Force and Deflection Compensation for Small Milling Tools [J].Precision Engineering ,2004,28(1):31–45.
    [20] H. P′erez , A. Viz′an, J.C. Hernandez, M. Guzm′an. Estimation of Cutting Forces in Micro-milling Through the Determination of Specific Cutting Pressures[J].Journal of Materials Processing Technology,2007, 190(1-3):18–22.
    [21] G. Bissacco, H.N. Hansen, J. Slunsky. Modelling the Cutting Edge Radius Size Effect for Force Prediction in Micro Milling[J].CIRP Annals- Manufacturing Technology,2008, 57(1):113-116.
    [22] G. Bissacco, H.N. Hansen, L. De Chiffre.Size Effects on Surface Generation in Micro Milling of Hardened Tool Steel[J].Annals of the CIRP ,2006,55(1):593-596.
    [23] Ching-Chih Tai, Kuang-Hua Fuh.The Prediction of Cutting Forces in The Ball-end Milling Process[J].Journal of Materials Processing Technology ,1995,54(1-4):286-301.
    [24] Han Ul Lee Dong-Woo Cho. A Mechanistic Model of Cutting Forces in Micro-End-Milling With Cutting-Condition-Independent Cutting Force Coefficients[J].Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008,130(3):031102-031110.
    [25] Kai Liu, Shreyes N. Melkote.Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process[J] .International Journal of Mechanical Sciences ,2007,49(5):650–660.
    [26] Tugrul ?zel, Erol Zeren. Numerical Modelling of Meso-scale Finish Machining with Finite Edge Radius Tools[J]. International Journal of Mechanical Sciences, 2007(3-4):451-468.
    [27] A.V.Mitrofanov, V.I.Babitsky, V.V.Silberschmidt. Finite Element Simulations of Ultrasonically Assisted Turning[J].Computational Materials Science,2005,32: 463-471.
    [28] Jackson M.J. Robinson, G.M. AhmedW. Finite Element Analysis of Mechanical Micromilling Processes[J]. International Journal of Nanomanufacturing, 2009,3(1-2):112-132.
    [29] Jackson M.J., Robinson G.M. Computational and Experimental Analysis of the Micromilling Process[J] .Journal of Computational and Theoretical Nanoscience, 2010, 7(10):2210-2234.
    [30] K. Nakamoto, T. Ishida, N. Kitamura, Y. Takeuchi.Fabrication of Microinducer by 5-axis Control Ultraprecision Micromilling[J].Original Research Article CIRP Annals - Manufacturing Technology, 2011,60(1):407-410.
    [31] Nor, M.K.M. Cheng, K. Development of a PC-based Control System for a Five-axis Ultraprecision Micromilling Machine 'Ultra-Mill' and Its Performance Assessment[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(11): 1631-1644.
    [32] SeongMin Son, HanSeok Lim, JungHwan Ahn. Effects of The Friction Coefficient on The Minimum Cutting Thickness in Micro Cutting[J].Machine Tools & Manufacture, 2005,45(4-5):529–535.
    [33] Eckart Uhlmann, Sascha Piltz, Kai Schauer.Micro Milling of Sintered Tungsten–copper Composite Materials[J].Journal of Materials Processing Technology ,2005,167(2-3):402–407.
    [34] Young bong Bang,Kyung min Lee,Seungryul Oh. 5-axis Micro Milling Machine for Machining Micro Parts. International Journal of Advanced Manufacture Technology,2005,25: 888–894
    [35] Rusnaldy, Tae Jo Ko, Hee Sool Kim. Micro-end-milling of Single-crystal Silicon[J].International Journal of Machine Tools & Manufacture ,2007,47(14):2111–2119.
    [36] Chuzhoy L., DeVor R.E.,Kapoor S.G., Bammann D.J. .Microstructure-Level Modeling of Ductile Iron Machining[J].Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2002,124(2): 162-169.
    [37] Th. Schaller, L. Bohn, J. Mayer, K. Schubert .Microstructure Grooves with a Width of Less than 50μm Cut with Ground Hard Metal Micro End Mills .Precision Engineering, 1999 , 23(4):229-235.
    [38] G. Bissacco. Surface Generation and Optimization in Micromilling[D].Ph.D. Thesis, Technical University of Denmark, 2004, IPL246.04.
    [39] J. Chae, S.S. Park. High Frequency Bandwidth Measurements of Micro Cutting Forces[J].International Journal of Machine Tools and Manufacture, 2007, 47(9):1433-1441.
    [40] PopovK.,DimovS.,IvanovA.,PhamD.T.,Gandarias E. New Tool-workpiece Setting Up Technology for Micro-milling[J].International Journal of Advanced Manufacturing Technology, 2010, 47(1-4):21-27.
    [41] A. N. Kalashnikov, F. V. Molodtsov. Autoresonant control of ultrasonically assisted cutting[J].Mechatronics, 2004,14(1):91-114.
    [42] N.Ahmed, A.V.Mitrofanov, V.I.Babitsky, V.V.Silberschmidt. Analysis of material response to ultrasonic vibration loading in turning Inconel 718[J] .Materials Science and Engineering: A.2006,424(1-2):318–325.
    [43] Sinan Filiza, Luke Xiea, Lee E. Weissb and O.B. Ozdoganlar. Micromilling of Microbarbs for Medical Implants[J].International Journal of Machine Tools and Manufacture, 2008, 48(3-4):459-472.
    [44] K. Nakamoto, T. Ishida, N. Kitamura, Y. Takeuchi.Fabrication of Micro Inducer by 5-axis control ultraprecision micromilling[J].Original Research Article CIRP Annals- Manufacturing Technology, 2011 ,60,:407-410.
    [45] M.J. Jackson, M.D. Whitfield, G.M. Robinson, W. Ahmed .Analysis of the Effects of Micromachining using Nanostructured Cutting Tools[J].EmergingNanotechnologies for Manufacturing, 2010:301-324 .
    [46] Stoebenau Sebastian,Sinzinger Stefan. Ultraprecision Machining Techniques for The Fabrication of Freeform Surfaces in Highly Integrated Optical Microsystems [J].Proceedings of SPIE-The International Society for Optical Engineering, 2009,7426:742608-742608-7
    [47] Huo D., Cheng K..Experimental Investigation on Micromilling of Oxygen-free, High-conductivity Copper Using Tungsten Carbide, Chemistry Vapour Deposition, and Single-crystal Diamond Micro Tools[J].: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, , 2010,224(6):995-1003.
    [48] BiermannDirk,BaschinAlexander,KrebsEugen,SchlenkerJuliane. Manu -facturing of Dies from Hardened Tool Steels by 3-axis micromilling [J]. Production Engineering, 2011,5(2):209-217.
    [49] Mayor J., Rhett Sodemann, Angela A. Investigation of Optimal Parameter Space for High-speed, High-precision Micromilling[C].Proceedings of the ASME, International Manufacturing Science and Engineering Conference, MSEC2008, 2009 (2):227-234.
    [50] Kumar,Mukund Dotson, Kavi Melkote, Shreyes N.. An Experimental Technique to Detect Tool-workpiece Contact in Micromilling[J].Journal of Manufacturing Processes, 2010, 12(2):99-105 .
    [51] Shelton, Jonathan A. Shin, Yung C.. Experimental Evaluation of Laser-assisted Micromilling in a Slotting Configuration[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME,2010, 132 ( 2 ):0210081-0210089.
    [52] Foy Kevin,Wei Zhi, Matsumura Takashi, Huang Yong. Effect of Tilt Angle on Cutting Regime Transition in Glass Micromilling[J].International Journal of Machine Tools and Manufacture,2009, 49(3-4):315-324.
    [53] Arif Muhammad,Rahman Mustafizur,San Wong Yoke .Ultraprecision Ductile Mode Machining of Glass by Micromilling Process[J].Journal of Manufacturing Processes, 2011, 13(1):50-59.
    [54] Aramcharoen A.,Mativenga P.T.. Effect and Tool Geometry in Micromilling of Tool Steel[J].Precision Engineering, 2009, 33(4):402-407.
    [55] Yun HuiTaek, Heo Segon Lee,Min Kyu Min,Byung-Kwon1Lee,SangJo. Ploughing Detection in Micromilling Processes Using the Cutting Force Signal[J] .International Journal of Machine Tools and Manufacture, 2011,51(5):377-382.
    [56] Sodemann AngelaA.,MayorJ.Rhett. Experimental Evaluation of the Variable-feedrate Intelligent Segmentation Method for High-speed, High-precision Micromilling[J].Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2011, 133(2):021001-021012.
    [57] Butler-Smith P.W.,AxinteD.A.,Limvachirakom V. Preliminary Study of the Effects of Crystal Orientation of a CVD Monocrystalline Diamond in Micromilling of Ti-6Al-4V[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2010, 224(8):1305-1312.
    [58] Sooraj V.S.,MathewJose. An Experimental Investigation on the Machining Characteristics of Microscale End Milling[J].International Journal of Advanced Manufacturing Technology, 2011,56(9-12):951-958.
    [59] MianA.J.,DriverN.,MativengaP.T. Micromachining of Coarse-grained Multi-phase Material[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223(4):377-385.
    [60] Biermann Dirk, Kahleyss Felix,SurmannTobias. Micromilling of NiTi Shape-memory Alloys with Ball Nose Cutters[J].Materials and Manufacturing Processes, 2009,24(12):1266-1273.
    [61] TangYan,Xu Chengying, Jackson Mark J. Adaptive Compensation of Tool Deflection in Micromilling Processes[J].International Journal of Nanomanufacturing, 2009, 3(1-2):159-168.
    [62] JinshengWang,DajianZhao,YadongGong.A Micromilling Experimental Study on AISI 4340 Steel[J] .Key Engineering Materials, 2009,407-408:335-338.
    [63] LiP., Zdebski D.,Langen H.H., HoogstrateA.M., Oosterling J.A.J., Munnig Schmidt R.H., Allen, D.M. Micromilling of Thin Ribs with High Aspect Ratios[J].Journal of Micromechanics and Microengineering, 2010, 20(11)115013-115022.
    [64] Takeuchi Yoshimi.Multi-axis Control Ultraprecision Micromilling[J]. Key Engineering Materials, 2010, 447-448:801-805.
    [65] Mukund Kumar, Kavi Dotson, Shreyes N. Melkote An experimental Technique to Detect Tool–workpiece Contact in Micromilling[J].Original Research Article Journal of Manufacturing Processes,2010,12(2):99-105.
    [66] Hui Taek Yun, Segon Heo, Min Kyu Lee, Byung-Kwon Min, Sang Jo Lee. Ploughing Detection in Micromilling Processes Using the Cutting Force Signal[J].Original Research Article International Journal of Machine Tools and Manufacture, 2011, 51(5):377-382.
    [67] Muhammad Arif, Mustafizur Rahman, Wong Yoke San. Ultraprecision Ductile Mode Machining of Glass by Micromilling Process [J].Original Research Article Journal of Manufacturing Processes,2011,13(1):50-59.
    [68] M. Rahman, A.B.M.A. Asad, T. Masaki, T. Saleh, Y.S. Wong, A Senthil Kumar.A Multiprocess Machine Tool for Compound Micromachining [J]. Original Research Article International Journal of Machine Tools and Manufacture, 2010, 50(4):344-356 .
    [69] Mario Lavella, Teresa Berruti, Enrica Bosco. Residual Rtress Analysis in Inconel 718 Milled Turbine Disk [J]. International Journal of Machining and Machinability of Materials (IJMMM),2008, 4(2-3):181-194.
    [70] Sebastiani M.,Bemporad E.,Carassiti F.,Schwarzer N.Residual Stress Measurement at the Micrometer Scale: Focused Ion Beam (FIB) Milling and Nanoindentation Testing[J].Nano-Mechanical Testing in Materials Research and Development ,2011,91(7-9):1121-1136.
    [71] Kingston E.,Smith D.J. Residual Stress Measurements in Rolling Mill Rolls using Deep Hole Drilling Technique[J].Ironmaking and Steelmaking ,2005,32(5):379-380.
    [72] Alexander M.Korsunsky,Marco Sebastiani, Edoardo Bemporad. Residual Stress Evaluation at the Micrometer Scale: Analysis of Thin Coatings by FIB Milling and Digital Image Correlation [J].Surface and Coatings Technology, 2010,205(7):2393-2403.
    [73] Wakabayashi Mikio,Nakayama,Mamoru,Tamamura Kentaro,Hino Kazuaki.Study on High Compressive Residual Stress in Face Milling Layers[J].Journal of the Society of Materials Science,1990,39:1254-1259.
    [74] FurumotoTatsuaki, UedaTakashi, Abdul Aziz Mohd Sanusi, Hosokawa,Akira,Tanaka Ryutaro.Study on Reduction of Residual Stress Induced during Rapid Tooling Process: Influence of Heating Conditions on Residual Stress[J].Key Engineering Materials ,2010,447-448:785-789.
    [75] Schulze V.,Autenrieth, H.,Deuchert, M., Weule H. Investigation of Surface near Residual Stress States after Micro-cutting by Finite Element Simulation [J].CIRP Annals - Manufacturing Technology,2010,59(1):117-120
    [76] S.M.Ratchev, S.M.Afazov,A.A.Becker,S.Liu.Mathematical Modelling and Integration of Micro-scale Residual Stresses into Axisymmetric FE Models of Ti6Al4V Alloy in Turning[J]. CIRP Journal of Manufacturing Science and Technology, 2011,4(1):80-89.
    [77]吴继华,刘战强.基于应变梯度的微切削第一变形区几何分析模型的研究[J].武汉理工大学学报(交通科学与工程版),2011,35(1):213-215.
    [78]吴继华,刘战强.正交微切削切削力预测模型研究[J] .武汉理工大学学报(交通科学与工程版) ,2010,34(1):133-133.
    [79]张琢,孙雅洲,刘海涛,梁迎春.微铣削加工刀具刃口半径影响的有限元模拟[J].工具技术,2009, 43(9):33-36.
    [80]童利东,白清顺,赵岩,王波,梁迎春.微径铣刀及微细铣削技术的研究进展[J].工具技术,2006,40(12):3-7.
    [81]孙雅洲,梁迎春.微细切削与微小型化机床[J].现代制造工程,2005 (2):112–114.
    [82]孙雅洲,梁迎春.微小型化机床研制[J].哈尔滨工业大学学报,2005,37(5):591–593.
    [83] Hongtao Li, Xinmin Lai, Chengfeng Li, Jie Feng ,Jun Ni.Modelling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-end-milling [J]. Journal of Micromechancis and Microengineering,2008(18):025006 -025017 .
    [84] Bai Q.S., Yang, K., Liang, Y.C., Yang, C.L., Wang, B. Tool Runout Effects on Wear and Mechanics Behavior in Microend Milling[J]. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2009, 27(3):1566-1572.
    [85] Wang Jinsheng,Gong Yadong,Shi Jiashun. Surface roughness prediction in micromilling using neural networks and taguchi's design of experiments[C]. Proceedings of the IEEE International Conference on Industrial Technology,2009 ,1(10-13):1-6.
    [86]修树东,周明,李敏.光学玻璃微切削时材料去除机理和表面质量的研究[J].工具技术,2008,42(4):15-17.
    [87] Long Zhen-Hai,Zhao Wen-Xiang,Wang Xi-Bin.Experimental Enalysis on Compressive Residual Stress Distribution Induced by high speed face-milling processes[J].Hangkong Cailiao Xuebao/Journal of Aeronautical Materials ,2008,28(2):24-29.
    [88] Wang Hongfeng,Zuo Dunwen, Wang Litao, MiaoHong,Wang Hongjun.Numerical Analysis of Surface Residual Stress of NC Milling 7075-T7451 Aluminum Alloy[J].Key Engineering Materials,2009, 407-408 :718-722.
    [89] Li, J.L.,An, Q.L., Chen, M. FEM Analysis and Experimental Study on Residual Stress Induced by Form-milling And Rolling of Rotor Steel26NiCrMoV145[J].Advanced Materials Research,2008, 53-54:415-420.
    [90] LiY.E., Zhao J.,Cao Q.Y., Wang, W.,Han S.G. Surface Residual Stress Gradient Distribution in High Speed Milling of H13 Die Steel[J].Materials Science Forum,2009,626-627:183-188.
    [91] Liu Yuanwei.Analysis of the Milling Distortion due to Residual Stress based on Analytical Method [J].Applied Mechanics and Materials, 2010,33:88-91.
    [92] Ding T.C.,Zhang S., Lv, H.G.,Xu X.L. A Comparative Investigation on Surface Roughness and Residual Stress during End-milling AISI H13 Steel with Different Geometrical Inserts[J].Materials and Manufacturing Processes ,2011,26(8),1085-1093.
    [93] Zhang X.H., An Q.L., Chen M. Residual Stress Prediction by Adaptive Neuro-fuzzy System in Milling Aluminum Alloy[J]. Key Engineering Materials ,2009,392-394:504-508.
    [94] Ye Bangyan, Wu Bo, Liu, Jianping, Liu Xiaochu,Zhao Xuezhi.Study on Pre-stress Cutting of Bearing Race and Its Machined Surface State. [J].Materials Science Forum,2006,532-533:528-531.
    [95] Wang Li-Tao, Ke Ying-Lin ,Huang Zhi-gang, Xu De, Wu Qun.Study on Residual Stress Produced in Milling of Aeronautic Structure [J].Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica ,2003, 24(3):286-288.
    [96] N. Suzuki, M. Haritani, J. Yang, R. Hino, E. Shamoto.Elliptical.Vibration Cutting of Tungsten Alloy Molds for Optical Glass[J]. Parts Annals of the CIRP ,2007,56(1):127–130.
    [97] Eiji Shamoto, Toshimichi Moriwaki .Ultaprecision Diamond Cutting of Hardened Steel by Applying Elliptical Vibration Cutting[J] .Annals of the ClRP , 1999,48(1):441-444.
    [98] Chandra Nath, M. Rahman, S.S.K. Andrew.A study on Ultrasonic Vibration Cutting of Low Alloy Steel[J]. Journal of Materials Processing Technology ,2007,192–193:159–165.
    [99] Gi Dae Kim, Byoung Gook Loh. An Ultrasonic Elliptical Vibration Cutting Device for Micro V-groove Machining: Kinematical Analysis and Micro V-groove Machining Characteristics[J] .Journal of Materials Processing Technology,2007 ,190(1-3):181–188.
    [100] V.I. Babitsky,V.K.Astashev, A. Meadows .Vibration Excitation and Energy Transfer During Ultrasonically Assisted Drilling[J]. Journal of Sound and Vibration ,2007,308(3-5):805–814.
    [101] Kei-Lin Kuo .Design of Rotary Ultrasonic Milling Tool using FEM Simulation[J] .Journal of Materials Processing Technology,2008,201(1-3):48–52.
    [102] Gwo-Lianq Chern, Yuan-Chin Chang .Using two-dimensional vibration cutting for micro-milling [J]. International Journal of Machine Tools& Manufacture ,2006,46(6):659–666.
    [103]林书玉.超声换能器的原理及设计[M].西安:科学出版社:2004.01.
    [104]林仲茂.超声变幅杆的原理和设计[M].西安:科学出版社.1987.
    [105]范天佑.断裂理论基础[M].北京:科学出版社.2003
    [106]詹志兰,李光霞.Ⅰ型裂纹尖端无位错区近场的微观断裂模型[J].中南民族学院学报(自然科学版),1998,17(3):30-33
    [107]邢修三.疲劳断裂非平衡统计理论——疲劳微裂纹长大的位错机理和统计特性[J].中国科学(A辑),1986, 5:501-510
    [108]米小兵,张淑仪.超声波引起固体微裂纹局部发热的理论计算[J].自然科学进展,2004, 14(6):628-634
    [109]冯辅周,张超省,张丽霞.超声激励条件下微裂纹生热的有限元分析及试验研究[J]装甲兵工程学报,2011,25(5):79-83
    [110]刘再华,解德,王元汉.工程断裂动力学[J].武汉华中理工出版社,1996
    [111]范天佑.断裂理论基础[M].北京:科学出版社会.2003
    [112]陈晓苹,王朋,李俊峰.玻璃质光学元件表面微裂纹的研究[J].中国光学与应用光学,2010,3(4):318-324
    [113] Dassault company.ABAQUS6.10 Abaqus Theory user’s manul [M]. USA:Dassault Systèmes Simulia Corp.2010.
    [114] Dassault company.ABAQUS6.10 Abaqus Analysys user’s manul/material [M]. USA:Dassault Systèmes Simulia Corp.2010(13)
    [115]庄茁,由小川,廖剑晖.基于ABAQUS的有限元分析与应用[M].北京:清华大学出版社.2009.1:506-508
    [116]方博武.金属冷热加工的残余应力[M].北京:高等教育出版社.1991:22-155
    [117]陈玉安.周上祺.残余应力X射线测定方法的研究现状[J].无损检测,2001,23(1):19-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700