用户名: 密码: 验证码:
考虑温度效应的岩石动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对深部岩体工程、核废料存储以及地热开发利用等重大工程实际需要,开展岩石在温度作用下的动态力学特性研究具有十分重要的意义。本文利用自行研制的温压耦合下动力扰动试验系统,对不同温度和预应力耦合作用下岩石开展了动态力学特性的试验研究以及不同高温作用冷却后岩石的动态压缩、拉伸和断裂性能测试,并在此基础上进行了相关的实验和理论研究。主要内容和结论性成果如下:
     (1)自行研制了能模拟岩石遭受高温高应力及动力扰动状态下的加载试验系统。并针对岩石类脆性材料的特性,讨论了一系列脉冲整形技术,如去波头法、入射波整形法、异形冲头法等试验技术;分析了高温下岩石试样与波导杆接触时热传递对数据结果影响,并讨论了SHPB试验中几个常见的问题,如应力平衡及均匀化、摩擦效应和波的弥散及热传导问题。
     (2)在大量试验的基础上,实时再现观察和研究了不同温度作用及轴向预应力下砂岩的动态特性,得到了砂岩动态强度随温度和轴向预应力的变化规律。基于机械模型和损伤模型,建立了温压耦合与动力扰动下岩石的本构模型,分析了不同温度下砂岩能量耗散与轴向静压的关系,指出轴向静压与能量吸收率之间存在一个最优值,且温度变化影响能量吸收率。
     (3)本文通过系统的试验和研究获得了不同温度对砂岩密度、纵波波速、峰值强度、破坏模式、块度分布的影响规律:砂岩的平均密度和弹性模量随温度升高下降;纵波波速也随温度升高降低,且降低的幅度随着作用温度的升高而增大;动态峰值强度随着温度的增加而降低,而400℃~600℃范围内降低幅度较小,800℃后影响程度尤为显著;通过动态破裂过程高速摄影图片可知试样沿加载方向呈径向裂纹破坏。
     (4)系统分析比较了高温后砂岩在静、动载荷加载下的破坏模式、峰值强度和峰值应变的差异,并从微观角度探讨温度对岩石力学性质的影响。结果表明,随着温度的升高,静载荷时岩石破坏模式表现为劈裂破坏和剪切破坏并伴随着脆性断裂,而动载荷作用时岩石破坏模式表现拉伸破坏;静动载荷作用下的峰值强度随着温度的升高而明显降低,且基本呈线性关系,静载荷作用下,平均峰值强度从126.37MPa降到64.76MPa,降低幅度为48.8%,动载荷作用时,平均峰值强度从176.3MPa降到83.1MPa,降低幅度达到了52.9%;而静动载荷作用下的峰值应变都随着温度的升高而增大。温度引起的热应力和微结构的变化导致砂岩力学性质发生改变,以及不同加载方式引起岩样内部孔隙扩展和微裂纹的生成方式不同,导致其抵抗外力变形的能力存在差异。
     (5)采用巴西圆盘(Brazilian Disc, BD)和半圆盘(Semi-Circular Bending, SCB)加载方法研究了不同高温处理后Laurentian花岗岩动态拉伸特性,并用有限元分析方法验证准静态条件下半圆盘拉伸强度计算公式应用于动态试验中的可行性。试验结果表明:温度作用对花岗岩试样物理性质如密度、热膨胀系数和超声波速有一定的影响;动态拉伸强度与加载率呈线性关系增长,且加热温度越高,拉伸强度降低;试样在拉伸破坏过程中,两端沿着主加载方向出现“X”形状的裂纹。
     (6)通过SHPB加载带预置裂纹的半圆盘三点弯试样,测量高温处理后花岗岩动态I型断裂韧度。在大量试验结果的基础上,得到结论:花岗岩动态断裂韧度几乎都随着加载率线性增长,却随着温度升高而降低;从电镜扫描仪(SEM)图片观察试样内部微观结构变化,超过250℃时,可以清楚的看到热作用诱导微裂纹扩展,这是导致岩石断裂韧度下降的主要因素。
It becomes more and more important to study and understand the dynamic mechanical properties of rocks under temperature condition to meet the increasing demands of deep mining, nuclear waste disposal and development and utilization of geothermal. For rocks with different temperatures and pre-stress state, the dynamic experiments were conducted by using an innovative testing system. And the rock dynamic properties of compression, tensile and fracture after thermal treatment were measured using the Split Hopkinson Pressure Bar (SHPB). Some theoretical researches were also carried on in this study. The main contents and conclusive results are as follows:
     (1) An innovative testing system was constructed for tests of rock with coupling temperature and pre-stress under dynamic loading. Pulse shaping techniques were discussed for rock brittle material, such as, removing wave head, the incident pulse shaping technique and special-shaped striker. The effect of thermal transfer to the experimental results was analyzed when sample touch with elastic bar under temperature loads. Several common problems in SHPB test were discussed, for instance, dynamic force balance, friction effect and thermal transferring.
     (2) The dynamic properties of sandstone under different temperatures and pre-stress were observed and studied. The dynamic strength relationship of temperature and pre-stress was obtained. Based on present mechanical and damage model, dynamic constitutive model of rocks under coupling with temperature and pre-stress were built. The influence of temperature on pre-stress and energy dissipation of sandstone was analyzed, the results shows that the rate of energy absorption changes with rise of temperature.
     (3) The mechanical properties of sandstone specimens such as density, longitudinal wave velocity, peak dynamic strength are studied under dynamic compression loading after being heated to different temperatures(25℃~800℃). Though the experimental results are discrete, the general law is obvious. The results show that, with the increasing temperature, the specimen density, the longitudinal wave velocity and the peak strength all gradually decrease, and the decreased magnitude of the longitudinal wave velocity has been increased when the temperature is over200℃. And the temperature changes from400℃to600℃, the peak strength of rock had less decreased magnitude, and decreases sharply when the temperature is over800℃. With the increasing temperature, the size of rock fragments becomes smaller. Through high-speed photography, dynamic failure process of rock has been expressed. It is obtained that radial cracks are distributed round specimens along the loading direction, the failure mode of rock is not representative at initial loading, but the final failure mode of rock is obtained through the stress wave multiple reflection.
     (4) The difference of rock failure mode, peak strength and peak strain after high temperature under static and dynamic loading are analyzed and compared systematically. The effects of temperature on rock mechanical properties are investigated from microcosmic point of view. The results show that the mechanical properties of rock dynamic and static have difference evidently. With the increasing temperature, the failure mode of rock exhibit splitting failure with brittle fracture under static loading while the rock failure mode is tensile fracture under dynamic loading. The peak strength decreased evidently with the increasing temperature in a nearly linear way under static and dynamic loading. The average peak strength decreased from126.37MPa to64.76MPa in an extent of48.8%under static loading, as well as from176.3MPa to83.1MPa in an extent of52.9%under dynamic loading. The peak strain increased with the increasing temperature under static and dynamic loading. Thermal stress and variation of microstructure induce different the mechanical properties of sandstone due to the effects of temperature, and different methods of internal pore expansion and formation of microcracks due to different loading method, which result in difference of the resistance of deformation.
     (5) The dynamic tensile properties of Laurentian granite after various high temperatures treatment were studied using Brazilian Disc (BD) and Semi-Circular bending (SCB) testing methods and the feasibility of applying the quasi-static tensile strength formula of Semi-Circular sample for dynamic test was analyzed based on finite element method. The test results show that the physical properties of specimen such as density, thermal expansion coefficient and ultrasonic wave velocity were influenced by temperature. The dynamic tensile strength increases linearly with the rise of loading rate and decreases with increasing treatment temperature. The sample appears cracks with the shape of "X" along the loading direction during dynamic tensile test.
     (6) The dynamic fracture test of Laurentian granite after thermal treatment were carried on using the semi-circular three point bending specimens with pre-crack. The results shows that the dynamic fracture toughness of granite specimens increases linear with the rate of loading, but the higher treatment temperature, the smaller dynamic fracture toughness. The influence of temperature on inner structure of granite was analyzed using scanning electron microscope (SEM). Beyond250℃, crack propagation induced by thermal effect is more distinct, which is the main reason for the decrease of fracture toughness.
引文
[1]. Brace, W.F. and E.G. Bombolakis, A note on brittle crack growth in compression [J]. J. Geophys. Res.,1963,68:3709-3713
    [2]. Cook, N. G. W., The failure of rock [J]. Int. J. Rock Mech. Min. Sci.,1965, 2:389-403
    [3]. Hoek, E. and Bieniawski, Z. T., Brittle fracture propagation under compression [J]. International Journal of Fracture Mechanics,1965,1: 137-155
    [4]. T.L. Blanton. Effect of Strain Rates from 10-2 to 10-1 in Triaxial Compression Tests on Three Rocks [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr., 1981,18:47-62
    [5]. 古德生,李夕兵.有色金属深井采矿研究现状与科学前沿[C].中国有色金属学会第五届学术年会,2003,23:1-5
    [6]. 钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报,2004,27(1):1-5
    [7]. 何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报,2002,21(8):1215-1224
    [8]. 李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994
    [9]. X.B.Li, T.S.Lok, and J.Zhao, Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Meck.& Rock Engineering,2005, 38(1):1-19
    [10].赵伏军,李夕兵,冯涛.动静载荷耦合作用下岩石破碎理论分析及试验研究.岩石力学与工程学报,2005,24(8):1315-1321
    [11].李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析,岩石力学和工程学报,2005,24(16):2814-2825
    [12]. Chiddister J L, Malvern L E. Compression-impact testing of aluminum at elevated temperatures [J]. Exp. Mech.,1963,3:81-90
    [13]. Rosenberg Z, Dawicke D, St Rander E, Bless S J. A New Technique for Heating Specimens in Split Hopkinson Bar Experiment s Using Induction-Coil Heaters [J]. Exp. Mech.,1986,26(3):275-278
    [14]. Gilat A, Wu X. Elevated temperature testing with the torsional split Hopkinson bar [J]. Experimental Mechanics,1994,34 (2):166-170
    [15]. 周国才,胡时胜,付峥.用于测量材料高温动态力学性能的SHPB技术[J].实验力学,2010,25(1):9-15
    [16]. Frantz, Follansbee. New Experimental Technique with the Split Hopkinson Pressure Bar [J]. Phys.E:Sci.lnstrum,1982,15:280-282
    [17].张方举,谢若泽,田常津等.SHPB系统高温实验自动组装技术[J].实验力学,2005,20(2):281-284
    [18].李玉龙,索涛,郭伟国等.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击,2005,25(6):487-492
    [19].邓志方,李思忠,颜怡霞等.一种高温SHPB实验技术中的温度场分析[J].实验力学,2005,20:65-69
    [20]. Lennon, A.M. Ramesh, K.T. Technique for measuring the dynamic behavior of materials at high temperatures [J].International Journal of Plasticity. 1998,14:1279-1290
    [21]. Lankford, J. Threshold micro fracture during elastic-plastic indentation of ceramics [J]. Journal of Materials Science.1981,16:1567-1578
    [22]. Oosterkamp D.L, Ivankovic A, Venizelos G. High strain rate properties of selected Aluminum alloys, Materials Science and Engineering,2000, A278:225-235
    [23]. Chiddister J and Malvern L.E. compression-impact testing of aluminium at elevated temperatures, Exp. Mech.1963,3,81-90
    [24]. Campell J.D, Ferguson W.G. Temperature and strain-rate dependence of the sheer strength of Mild steel. Phi.Mag.,1970,21:63-82
    [25].夏开文,刘文彦,唐志平,30CrMnsiA钢高温动态力学性质的实验研究,爆炸与冲击,1998,18(4):310-316
    [26].金振民.我国高温高压试验研究进展和展望[J].地球物理学报,1997,40(增):70-81
    [27]. Vander M.L.The shift of the α-β transition temperature of quartz associated with the thermal expansion of granite at high pressure [J]. Tectonophysics, 1981,73:323-342
    [28]. Wai R. S. C, Lo K.Y, Rowe R. K. Thermal stress analysis in rocks with nonlinear properties [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1982, 19(5):211-220
    [29].郭才华,宋瑞卿.高温高压下岩石纵波速度的测量[C],第一届高温高压 岩石力学学术讨论会议,北京:学术期刊出版社,1988,61-66
    [30].吴宗絮、郭才华,冀东陆壳岩石在高温高压下波速实验研究[J].地球物理学进展,1993,8(4):206-213
    [31].谢鸿森、张月明、徐惠刚等.高温高压下测量岩石波速的新方法及其意义[J].中国科学:B辑,1993,23(8):861-864
    [32].谢鸿森,周文戈,李玉文等.高温高压下蛇绞岩脱水的弹性特征及其意义[J].2000,43(6):806-810
    [33].谢鸿森,赵志丹等.高压下岩石弹性波速度几种测量方法的比较实验研究[J],中国科学:D辑,2002,32(2):121-126
    [34].母润昌,高平,刘若新等.华北地区韧性剪切带几种岩石的波速各向异性高温高压实验研究[J].地球物理学报,1995,38(2):213-219
    [35].郑海飞、谢鸿森、徐有杰等.高温高压下含水矿物对岩石熔点影响的实验研究[J].地质学报,1996,69(4):326-336
    [36].赵志丹、高山、骆庭川等,秦岭和华北地区地壳低速层的成因探讨—岩石高温高压波速实验证据[J].地球物理学报,1996,39(5):637-652
    [37].高山、金振民、Kern H等.大别山超高压榴辉岩高温高压地震波速和密度的初步研究—对造山带地壳深部组成和莫霍性质的启示[J].科学通报,1997,42(8):862-864
    [38].高平、母润昌,高温高压下地馒岩石物理性质及其流体影响的实验研究,地馒流体与软流层(体)地球化学,北京:地质出版社,1996:341-356
    [39].杨树锋,陈汉林,姜继双等,高温高压下华南工和S型花岗岩的波速特征及其地质意义[J].中国科学(D辑),1997,27(1):33-38.
    [40].刘斌,葛宁洁,Kern H等不同温压条件下蛇纹岩和角闪岩中波速与衰减的各向异性[J].地球物理学报,1998,41:371-382
    [41].席道瑛.温度对岩石模量和波速的影响[J].岩石力学与工程学报,1998,17(增):802-80.
    [42]. Shmonov V. M, Vitovtova V. M, Zharikov A. V. Experimental study of seismic oscillation effect on rock permeability under high temperature and pressure [J]. Int. J. Rock Mech.& Min. Sci.,1999,36(3):405-412
    [43].柳江琳,白武明,孔祥儒,等.高温高压下花岗岩、玄武岩和辉橄岩电导率的变化特征[J].地球物理学报,2001,44(4):528-533
    [44].白利平,杜建国,刘巍,等.高温高压下辉长岩纵波速度和电导率实验研究[J].中国科学(D辑),2002,32(11):959-968
    [45].夏小和,陆雅萍,黄醒春等.高温后大理岩在不同应力水平下超声波特性的实验研究[J].上海交通大学学报,2004,38(7):1225-1228
    [46]. 闫治国,朱合华,邓涛,等.三种岩石高温后纵波波速特性的试验研究[J].岩土工程学报,2006,28(11):2010-2014
    [47]. R.D. Dwivedi, R.K. Goel, V.V.R. Prasad, et al. Thermo-mechanical properties of Indian and other granites [J]. International journal of rock mechanics and Mining science,2008,45:303-315
    [48]. Artemieva I. In situ permeability of hot dry rock fractured reservoirs [J]. Nord Pet Technol Ser Part-1 Goteborg,1997,1:99-124.
    [49]. H.Yavuz, S.Demirdag, S. Caran. Thermal effect on the physical properties of carbonate rocks [J]. International journal of rock mechanics and Mining science,2010,47:94-103
    [50]. Caldwell J A. The theoretical determination of the permeability tensor for jointed rock [C]. In. Proc. Symp. On percolation through Fissured Rock. Int. soe. Rock Mech. and Int. assoc. Eng. Geol., Stuttgart.1972.1-6.
    [51]. Simmons G and Richter D. Physics and Chemisting of Rock [J]. Strers R G J Wiley.1976:105-137
    [52]. Hasan, S. E., Thermophysical Properties of Rock[C].19th U.S. Symp. On Rock Mech,1978,210-213
    [53]. Hodgkinson D P, et al. Initial assessment of the thermal stresses around a radioactive waste depository in hard rock [J]. Annals of Nuclear Energy, 1980,7:541-552.
    [54]. Long T C S, Remer J S, Wilson C R and Withwespoon P A. Porous media equivalents for networks of discontinuous fractures [J]. Water Resources Research,1982,18(3):645-658
    [55]. Heuze, F.E. High-temperture Mechanical, Physical and Thermal Properties of Granitic Rocks, A Review [J]. Int. J. Rock Mech. Min. Sei. And Geomech. Abstr.1983,20(1):3-10.
    [56]. Houpert R. Rock Mech, Montreux[C]. Proc.4th Int.Congr.1979,3(l):104-114
    [57]. Atkinson B K, etal. Mieroselsmic Activity in Geologic Structures and Materials[C]. Proc.3rd Int:Conf on AE Leighton,1984
    [58]. Almo, et al. The influence of micro crack density on the elastic and fracture mechanical properties of stropa granite [J]. Physics of the Earth and Planetary Interiors,1985,40:161-179
    [59]. Simpson C, Deformation of granitic rock across the brittle-ductile transition[J]. J, Struc.Geol.1985(7):503-511
    [60].寇绍全.热开裂损伤对花岗岩变形及破坏特性的影响[J].力学学报,1987,19(6):550-555
    [61].张静华,王靖涛,赵爱国.高温下花岗岩断裂特性的研究[J],岩土力学,1987,8(4):11-16
    [62].王靖涛,赵爱国,黄明昌.花岗岩断裂韧度的高温效应[J].岩土工程学报,1989,6(11):113-115
    [63].李长春,付文生,袁建新.考虑温度效应的岩石损伤内时本构关系[J].岩土力学,1991,12(3):1-10
    [64].林睦曾.岩石热物理学及其工程应用[M].重庆:重庆大学出版社,1991
    [65]. Brede M. Brittle-to-ductile transition in Silicon [J]. Acta Metallurgica,1993, 41(1):211-228.
    [66]. Oda M. Modern developments in rock structure characterization [J].In Comprehensive Rock Engineering.,1993,1:185-200
    [67]. Heueckel T.Peano A.and Pellegrint R, A constitutive law for thermo-plastic behavior of rocks:an analogy with clay[J]. surveys in Geophysics,1994, 15(4):643-671
    [68]. Lau J.S.O. Gorski B. and Jackson R. The effects of temperature and water-siturational on mechanical properties of Lacdu Bonnet Pink granite [C]. 8th.Int.Con.On Rock Mech, Tokyo, Japan,1995
    [69].张晶瑶,马万昌,张风鹏,高温条件下岩石结构特征的研究[J].东北大学学报,1996,17(1):5-9
    [70].刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,19(4):408-411
    [71].刘泉声,许锡昌,山口勉.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,20(5):715-719
    [72].刘泉声,王崇革.岩石时一温等效原理的理论与实验研究,第一部分:岩石时-温等效原理的热力学基础[J].岩石力学与工程学报,2002,21(2):193-198.
    [73].许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22(3):332-335.
    [74]. Al-Shayea N.A, Khan K, Abduljauward S.N. Effects of confining pressure and temperature on mixed-mode (I-II) fracture toughness of a limestone rock [J]. Int. J. Rock Mech.& Min. Sci.,2000,37(4):629-643.
    [75].桑祖南,周永胜,何昌容,等.辉长岩脆-塑性转化及其影响因素的高温高压实验研究[J].地质力学学报,2001,7(2):130-137
    [76].王颖轶,张宏君,黄醒春,等.高温作用下大理岩应力-应变全过程的试验研究[J].岩石力学与工程学报,2002,21(增2):2345-2349
    [77].黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学,2003,24(增):203-206
    [78].杜守继,刘 华.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364
    [79].梁卫国,赵阳升,徐素国.240℃内盐岩物理力学特性的试验研究[J].岩石力学与工程学报,2004,23(14):2365-2369
    [80].方荣,朱珍德,张勇,等.高温和循环高温作用后大理岩力学性能试验研究与比较[J].岩石力学与工程学报,2005,24(增刊1):4735-4739
    [81].谌伦建,吴忠.煤层顶板砂岩在高温下的力学性质及破坏机理[J]重庆大学学报,2005,28(3):23-126
    [82].左建平,谢和平,周宏伟.温度压力耦合作用下的岩石屈服破坏研究[J].岩石力学与工程学报,2005,24(16):2917-2921
    [83].孟召平,李明生.深部温度、压力条件及其对砂岩力学性质的影响[J].岩石力学与工程学报,2006,25(6):1177-1181
    [84].朱合华,闫治国,邓涛,等.3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,2006,25(10):1945-1950
    [85].左建平,谢和平,周宏伟,等.不同温度作用下砂岩热开裂的实验研究[J].地球物理学报,2007,50(4):1150-1155
    [86].左建平,谢和平,刘瑜杰,等.不同温度热处理后砂岩三点弯曲的断裂特性[J].固体力学学报,2010,31(2):119-126
    [87].苏承东,郭文兵,李小双.粗砂岩高温作用后力学效应的试验研究[J].岩石力学与工程学报,2008,27(6):1162-1170
    [88].张志镇,高峰,徐小丽.花岗岩力学特性的温度效应试验研究[J].岩土力学,2011,32(8):2346-2352
    [89]. Kumar A. The effect of stress rate and temperature on the strength of basalt and granite [J]. Geophysics,1968,33 (3):501-510
    [90]. Chong KP, Hoyt PM, Smith JW. Effects of strain rate on oil shale fracturing [J]. Int J Rock Mech Min 17:35-43
    [91]. Grady DE. The mechanics of fracture under high-rate stress loading [J]. Mechanics of Geomaterials,1985,129-155
    [92]. Grady D E, kipp, M.E. Continunm modeling of explosive fracture in oil shale [J]. Int J Rock Mech Min Sci,1980,17:147-157
    [93].朱瑞庚.不同加载速率条件下花岗岩的破坏判据[J].爆炸与冲击,1984,(1):1-8
    [94].王武林,刘远惠,陆以璐等.RDT-10000型高压三轴仪的研制[J].岩土力学,1989,10(2):69-82
    [95]. Friedman M, Perkins RD and Green SJ. Observation of brittle-deformation features at maximum stress of westly granite and solenhofen limestone [J]. Int J Rock Mech Min Sci,1970,7:297-306
    [96]. Janach W. The role of bulking in brittle failure of rock under rapid compression [J]. Int J Rock Mech Min Sci,1976,13:177-186.
    [97].杨春和,李廷芥.地质材料率相关内变量本构理论的研究[J].岩土力学,1992,13(1):12-17
    [98].李海波,赵坚,李俊如,等.三轴情况下花岗岩动态力学特性的实验研究[J].爆炸与冲击,2004,24(5):470-474
    [99]. 李夕兵,古德生.岩石在不同加载波下的动载强度[J].中南矿冶学院学报,1994,25(3):301-304
    [100].李夕兵,宫凤强,Jian ZHAO,等.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,29(2):251-260
    [101].李夕兵,周子龙,叶州元,等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报,2008,27(7):1387-1395
    [102].翟越,马国伟,赵均海,等.花岗岩和混凝土在冲击荷载下的动态性能比较研究[J].岩石力学与工程学报,2007,26(4):762-768
    [103].翟越.岩石类材料的动态性能研究[博士学位论文][D].西安:长安大学,2008
    [104]. ALBERTINI C, MONTAGNANI M. Testing techniques based on the split Hopkinson bar [C]. Institute of Physics Conference Series, London,1974: 22-31
    [105].喻勇,张宗贤,俞洁,等.岩石动态拉伸断裂特性的试验研究[J].长 江科学院院报,1998,15(2):4-7
    [106]. ZHAO J, LI H B. Experimental determination of dynamic tensile properties of granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000,37(5):861-866
    [107].翟越,赵均海,门玉明.花岗岩和混凝土动态拉伸性能研究[J].西安建筑科技大学学报(自然科学版),2009,41(3):334-339
    [108]. GOMEZ J T, SHUKLA A, SHARMA A. Static and dynamic behavior of concrete and granite in tension with damage [J]. Theoretical and Applied Fracture Mechanics,2001,36(1):37-49
    [109]. Mellor M, Hawkes I. Measurement of tensile strength by diametrical compression of discs and annuli [J]. Eng. Geol.,1971,5:173-225
    [110]. Price DG, Knill JL. A study of the tensile strength of isotropic rocks [A]. Proc. 1st Congr. Int. Soci. Rock Mech. [C]. Lisbon,1966,439-442
    [111].吴绵拔,刘远惠.龙门石灰岩的动力特性[J].岩石力学与工程学报,1996,15:422-427
    [112].李海波,张君伟,邵蔚.Bukit timah花岗岩的动态拉伸力学特性试验研究[J].岩土力学,2002,23(增):1-4
    [113].李伟,谢和平,王启智.大理岩动态拉伸强度及弹性模量的SHPB实验研究[J].试验力学,2005,20(2):200-206
    [114].刘世奇,李海波,李俊如.轴向拉伸情况下岩石的动态力学特性试验研究[J].岩土工程学报,2007,29(12):1904-1907
    [115].王瑶,吴胜兴,周继凯.花岗岩动态轴向拉伸力学性能试验研究[J].岩石力学与工程学报,2010,29(11):2328-2336
    [116]. Feng Dai and KaiWen Xia, Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite[J]. Pure and Applied Geophysics,2010,167: 1419-1432
    [117]. Zhou Zilong, Ma Guowei, Li Xibing. Dynamic brazilian splitting and spalling tests for granite[C]. Proceedings of the 11th congress of the ISRM2007, Lisbon, Portugal,2007, VOL. Ⅱ:1127-1130, Taylor & Francis Group
    [118]. F.Q. Gong, X.B. Li, L.J. Dong. Experimental determination of dynamic tensile strength of sandstone at different loading rate. Proceedings of the 2nd ISRM International Young Scholars'Symposium on Rock Mechanics,2011, Beijing,789-792
    [119]. Costin L. S., Static and dynamic fracture behavior of oil shale, Fracture mechanics for ceramics, rocks, and concrete. ASTMSTP745,1981,169-184
    [120]. Wu MB., Effects of loading rates on fracture toughness of rock [J]. Mech Practice 1986,10 (2):21-24
    [121]. Bazant Z. P., Bai S. P., Gettu R., Fracture of rock:effect of loading rate [J]. Eng. Fract. Mech,1993,45:393-411
    [122]. Tang C. A., Xu X., A new method for measuring dynamic fracture toughness of rock [J]. Eng. Fract. Mech.,1990,35,4-9
    [123]. Z. X. Zhang, S. Q. Kou, J. Yu, Y. Yu, L. G. Jiang, P. A. Lindqvist. Effects of loading rate on rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:597-611
    [124]. Z. X. Zhang, J. Yu, S.Q. Kou, et al. Effects of high temperatures on dynamic rock fracture [J]. International Journal of rock mechanics and Mining Sciences, 2001,38:211-225
    [125]. F. V. Donze, J. Bouchez, S. A. Magnier, Modeling Fractures in Rock Blasting [J]. Int. J. Rock Mech. Min. Sci.,1997,34(8):1153-1163
    [126]. Sang Ho Cho, Katsuhiko Kaneko. Influence of the applied pressure waveform on the dynamic fracture processes in rock [J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:771-784
    [127].陈荣,郭弦,卢芳云,等.Stanstead花岗岩动态断裂性能[J].岩石力学与工程学报,2010,29(2):375-380
    [128].李长春,付文生,袁建新,等.考虑温度效应的岩石损伤内时本构关系[J].岩土力学,1991,12(3):1-10
    [129]. Wenbo Luo, Tingqing Yang, Zhida Li, et al. Experimental studies on the temperature fluctuations in deformed thermoplastics with defects [J]. International Journal of Solids and Structures,2000,37(6):887-897
    [130]. Allen D. H. Thermomechanical coupling in inelastic solids [J]. Appl. Mech. Rev.,1991,44(8):361-373.
    [131].许锡昌.花岗岩热损伤特性研究[J].岩土力学,2003,24(增刊):188-191
    [132]. Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Containing Papers of a Mathematical or Physical Character.London, Philosophical Transactions of the Royal Society.1914,437-456
    [133]. Davies R M. A critical study of the Hopkinson Pressure Bar [J]. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences,1948,240(821):375-457
    [134]. Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Prophys soe,1949,B62:676-700
    [135]. Lindholm U. Some experiments with the Split Hopkinson Pressure Bar [J]. Journal of the Mechanics and Physics of Solids,1964,12(5):317-335
    [136]. Harding J, Wood E O, Campbell J D. Tensile testing of materials at impact rates of strain [J]. Journal of Mechanical Engineering Science,1960,2(2): 88-96
    [137]. Baker W E, Yew C H. Strain-rate effects in the propagation of torsional plastic waves [J]. Journal of Applied Mechanics,1966,33(6):917-923
    [138].李夕兵,周子龙,尹土兵,高科.用于岩石冲击实验的试样加热装置.中国,专利号:ZL200810143629.6,2011
    [139].北戴河电子仪器厂.CS-1D超动态电阻应变仪使用说明书[D].北戴河电子仪器厂,2000
    [140].关明慧,徐宇工,卢太金,等.微波加热技术在清除道路积冰中的应用[J].北方交通大学学报,2003,27(4):79-83
    [141]. Lennon A.M. and RameshK, A technique for measuring the dynamic behavior of materials at high temperatures [J]. Int.J. Plasticity,1998,14:1279-1292
    [142].贾彬.混凝土高温静动力学特性研究[博士学位论文][D].重庆:重庆大学,2011
    [143]. Frantz C.E. Follansbe P.S. and Wright W.J. New experimental techniques with the split Hopkinson pressure bar[C]. Proceeding of the 8th International Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division. New York:ASME,1984,229-236
    [144]. Nemat-Nasser S Isaacs J B and Starrett J E. Hopkinson techniques for dynamic recovery experiments[C]. Proceeding of the Royal Society of London, Series A,1991,534(1894):371-391
    [145]. Wu X J and Gorham D A. Stress equilibrium in the split Hopkinson pressure bar test [J]. J. Physic. in France,1997,7(3):91-96
    [146]. Frew D J, Forrestal M J and Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J]. Experimental Mechanics,2002,42(1):93-106
    [147].卢芳云,Chen W. and Frew D.J.软材料的SHPB实验设计[J],爆炸与冲击,2002,22(1):15-20
    [148].徐明利,张若棋,张光莹.SHPB实验中试件内早期应力平衡分析[J].爆炸与冲击,2003,23(3):235-241
    [149].胡金生,唐德高,陈向欣等.提高大直径SHPB装置精度的方法[J].解放军理工大学学报,2003,14(1):71-74
    [150].赵习金,卢芳云,王悟等.入射波整形技术的实验和理论研究[J].高压物理学报,2004,18(3):231-236
    [151].王鲁明,赵坚,华安增等.脆性材料SHPB实验技术的研究[J].岩石力学与工程学报,2003,22(11):1798-1802
    [152]. Ellwood S, Griffiths L J, and Parry D J. Materials testing at high constant strain rates [J]. Journal of Physics E:Scientific Instruments.1982,15(3): 280-282
    [153].陶俊林,田常津,陈裕泽等.SHPB系统试件恒应变率加载实验方法研究[J].爆炸与冲击.2004,24(5):413-418
    [154].李夕兵,刘德顺,古德生.消除岩石动态实验曲线振荡的有效途径[J].中南工业大学学报,1995,26(4):457-460
    [155].李夕兵,古德生.冲击载荷下岩石动态应力应变全图测试中的合理加载波形[J],爆炸与冲击.1993,13(2):125-131
    [156].刘德顺,李夕兵.冲击机械系统动力学[M].北京:科学出版社,1999
    [157].李夕兵.矿岩中应力波的传输效应和能量耗散规律的研究[博士学位论文][D].长沙:中南工业大学,1992
    [158]. Li X B Lok T S and Zhao J. et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J], Int. J. Rock Mech.& Min. Sci.,2000,37(7),1055-1060
    [159]. Auertini C, Cadoni E and Labibes K. Dynamic mechanical behavior of large concrete specimens by means of Hopkinson bar bundle[C]. Proc.2nd ISIE'96. Beijing:Chinese Journal of Mechanics Press,1996,214-219
    [160]. Bacon C., Carlsson J. and Lataillade J. L, Evaluation of force and Particle velocity at the heated end of arod subjected to impact loading[C].3rd International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading J.Phys.Ⅳ France,1991:395-402
    [161]. Lindholm U.S and Yeakley L.M. High strain-rates testing:Tension and Compression [J]. Exp. Mech,1968,8:1-9
    [162].夏开文,程经毅,胡时胜.SHPB装置应用于测量高温动态力学性能的研究[J].试验力学,1998,13(3):307-313
    [163]. Lennon A.M. and Ramesh K.T., A teehnique for measuring the dynamic behavior of materials at high temperatures[J]. Int. J. Plasticity,1998,14: 1279-1292
    [164]. Apostol M., VuoristoT. and Kuokkala V.T., High temperature high strain rate testing with a compressive SHPB [J]. J. Phus. IV France,2003,110,459-464
    [165].尚兵,王彤彤,庄茁. 高温SHPB实验温度修正的差分方法[J].高压物理学报,2010,24(3):219-224
    [166]. Bell J F. An experimental diffraction grating study of the quasi-static hypothesis of the SHPB experiment [J]. Journal of the Mechanics and Physics of Solids,1966,14(6):309-327
    [167]. Sharpe W.N. and Hoge K.G. Specimen strain measurement in the split Hopkinson pressure bar experiment [J]. Experimental Mechanics,1972, 12(12):570-574
    [168].周子龙,李夕兵,赵国彦等.岩石类SHPB实验理想加载波形的三维数值分析[J].矿冶工程,2005,25(3):18-21
    [169].陈德兴,胡时胜,张守保,等.大尺寸Hopkinson压杆及其应用[J].实验力学,2005,20(3):398-402
    [170]. Love A.E. A treatise on the mathematical theory of elasticity [M]. Dover Publications, New York,1944
    [171]. Pochhammer L. On the propagation velocities of small oscillations in an unlimited isotropic circular cylinder [J]. Journal Fur Die Reine Und Angewandte Mathematik.1876,81:324-326
    [172].王晓燕,卢芳云,林玉亮.SHPB实验中端面摩擦效应研究[J].爆炸与冲击,2006,26(2):134-139
    [173]. Klepaczko J, Malinowski Z, Kawata K, et al. High velocity deformation of solids [M]. Springer Berlin,1978,403
    [174].李夕兵,李地元,郭雷,等.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007,26(5):922-928
    [175].左宇军,李夕兵,唐春安,等.二维动静组合加载下岩石破坏的试验研究 [J].岩石力学与工程学报,2006,25(9):1809-1820.
    [176].马春德,李夕兵,陈枫等.单轴动静组合加载对岩石力学特性影响的试验研究[J].矿业研究与开发,2004,24(4):1-3
    [177]. Li XB, Zhou ZL, and Lok TS et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. Int. J. of Rock Mech. and Min. Eng.,2008, (45):739-748
    [178].周子龙.岩石动静组合加载实验与力学特性研究[博士学位论文][D].长沙:中南大学,2007
    [179].尹光志,李小双,赵洪宝.高温后粗砂岩常规三轴压缩条件下力学特性试验研究[J].岩石力学与工程学报,2009,28(3):598-604
    [180].万志军,赵阳升,董付科,等.高温及三轴应力下花岗岩体力学特性的试验研究[J].岩石力学与工程学报,2008,27(1):72-77
    [181].吴刚,邢爱国,张磊.砂岩高温后的力学特性[J].岩石力学与工程学报,2007,26(10):2110-2116
    [182]. Dai, F. and K. Xia, Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite[J]. Pure and Applied Geophysics,2010,167(11):1419-1432
    [183]. Huang, S., et al., An Experimental Study of the Rate Dependence of Tensile Strength Softening of Longyou Sandstone[J]. Rock Mechanics and Rock Engineering,2010.43(6):677-683
    [184]. Cai, M., et al., A study on the dynamic behavior of the Meuse/Haute-Marne argillite[J]. Physics and Chemistry of the Earth,2007.32(8-14):907-916
    [185]. Wang, Q.Z., W. Li, and H.P. Xie, Dynamic split tensile test of Flattened Brazilian Disc of rock with SHPB setup[J]. Mechanics of Materials,2009. 41(3):252-260
    [186]. Rao, Q.h., et al., Experimental study of mechanical properties of sandstone at high temperature [J]. Journal of Central South University of Technology,2007. 14:478-483
    [187]. Lee, D.H., C.H. Juang, and I.M. Lei, High-temperature Brazilian test for tensile strength of metamorphic limestone[J]. Geotechnical Testing Journal, 1996.19(2):223-226
    [188]. Homandetienne, F. and R. Houpert. Thermally induced microcracking in granites-characterization and analysis [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1989.26(2): 125-134
    [189].蔡美峰,何满潮,刘东燕.岩石力学与工程[M].2002,北京:科学出版社
    [190].谢和平,陈忠辉.岩石力学[M].2004,北京:科学出版社
    [191].叶明亮.岩石抗拉强度试验方法的探讨[J].贵州工业大学学报(自然科学版),2001.30(6):19-25
    [192].沈荣明.岩体力学[M].1998,上海:同济大学出版社
    [193]. Yamabe, T., and Neaupane, K.M., Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38: 1029-1034
    [194]. Chaki, S., Takarli, M., and Agbodjan, W.P., Influence of thermal damage on physical properties of a granite rock:Porosity, permeability and ultrasonic wave evolutions[J]. Construction and Building Materials,2008,22,1456-1461
    [195]. Chen, W., Song, B., Frew, D.J., and Forrestal, M.J., Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar [J]. Experimental Mechanics,2003,43:20-23
    [196]. Palmer S J P, Field J E, Huntley J M. Deformation, strengths and strains of failureof polymer bonded explosives. Proceedings of the Royal Society of London Series:Mathematical Physical and Engineering Sciences,1993, A440: 399-419
    [197]. Vishal, V., Pradhan, S.P., and Singh, T.N., Tensile Strength of Rock Under Elevated Temperatures [J]. Geotechnical & Geological Engineering,2011, 1127-1133
    [198]. Nasseri, M.H.B., Tatone, B.S.A., Grasselli, G, and Young, R.P., Fracture Toughness and Fracture Roughness Interrelationship in Thermally treated Westerly Granite[J]. Pure and Applied Geophysics,2009,166:801-822
    [199].李玉龙,刘元镛.用裂纹张开位移计算三点弯曲试样的动态应力强度因子[J].爆炸与冲击,1993,13(3):249-258
    [200].钟卫洲,罗景润,徐伟芳,等.三点弯曲试样动态应力强度因子计算研究[J].实验力学,2005,20(4):602-605
    [201].杨卫,宏微观断裂力学[M].北京:国防工业出版社,1995
    [202].Chong K P, Kuruppu M D. New specimen for fracture-toughness determination for rock and other materials [J]. International Journal of Fracture,1984,26(2):59-62
    [203]. Owen D M, Zhuang S, Rosakis A J, et al. Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets [J]. International Journal of Fracture,1998,90(1-2):153-174
    [204]. ASTM-E399-06e2. Standard test method for plane strain fracture toughness of metallic materials, in Annual book of ASTM Standards.2006, ASTM International
    [205]. Barsoum R S. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements [J]. International Journal for Numerical Methods in Engineering,1977,11(1):85-98
    [206].谢卫红,高峰,李顺才,等.石灰岩热损伤破坏机制研究[J].岩土力学,2007,28(5):1021-1025
    [207].B.R.劳恩,T.R.威尔肖.脆性固体断裂力学[M].北京:地震出版社,1985
    [208].张俊善.材料的高温变形与断裂[M].北京:科学出版社,2006,145-147,218-220
    [209]. Funatsu T., Seto M., Shimada H., Matsui K., and Kuruppu M., Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks [J]. International Journal of Rock Mechanics and Mining Sciences:2004,41,927-938
    [210]. Nasseri M. H. B., Tatone B. S. A., Grasselli G., and Young R. P., Fracture Toughness and Fracture Roughness Interrelationship in thermally treated Westerly Granite [J]. Pure and applied geophysics,2009,166,801-822

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700