用户名: 密码: 验证码:
去除水中铝及氟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝和氟均为水的重要污染物,含量过高都会对人体健康产生极大危害。世界卫生组织于1989年正式将铝确定为食品污染物而加以控制,并提出人体每天的摄铝量不应超过每千克体重1毫克。工业废水排放过量的氟,会污染环境,危害农作物和牧畜的正常生长,更会严重影响人体健康。我国规定生活饮用水中适宜的氟含量为0.5~1.0mg/L,根据《污水综合排放标准》GB8979—1996中一级标准规定:工业废水中氟的无机化合物最高允许排放浓度为10mg/L。因此,如何除去水中残余铝、工业废水除氟工艺研究和水源中氟含量的控制一直是国内外环保及卫生领域的重要课题。本文分别对水中除铝,除氟问题进行了研究,主要内容如下:
     1.分别对饮用水和工业废水中残余铝的问题进行了分析探讨,实验研究了不同混凝剂、不同原水水质对水中残余铝量的影响。实验表明,饮用水中残余铝含量受混凝剂种类及投药量、原水浊度、pH值、温度等因素的影响,并与其在水中的存在形态有很大关系。实验总结了各因素对出水余铝的影响规律,提出除铝可以分为降低溶解铝和去除颗粒铝两种途径。研究发现,余铝和余浊在一定范围内呈线形相关关系,此时除浊能同时有效去除颗粒铝。通过调整水的pH值,可以改变溶解铝和颗粒铝的比例,从而改善残余铝的去除率。
     由于混合、絮凝、沉淀三种工艺的相关参数对沉后水余铝浊度的影响相互联系、共同作用,所以实验时选择正交实验来确定三个处理阶段的最佳工艺参数,并研究其对除水余铝、浊度的显著性影响。实验中选择四因素三水平正交实验表,对絮凝、沉淀阶段进行研究。研究表明,强化、优化相应处理构筑物的运行,对水处理中浊度、铝的去除具有相当重要的作用。
     工业废水中铝的去除研究,选用钢厂废水和造纸厂废水作为研究对象,发现聚合硅酸铝铁不论在除浊和COD去除率方面,还是在降低残余铝方面都明显优于聚合氯化铝和聚合硫酸铁。同时发现,非铝盐混凝剂对水中铝的去除效果并不太理想,因此单单通过非铝盐混凝剂代替铝盐混凝剂来降低水中残余铝是不够的。
     2.对废水除氟的两种工艺,即化学沉淀法和混凝沉淀法进行了系统研究,综合评价了单纯石灰沉淀法、石灰+PAM投药组合、石灰+无机混凝剂投药、石灰+无机混凝剂+PAM投药组合的除氟功效。研究发现,仅靠简单的化学沉淀法很难将含氟废水处理至10mg/L以下的排放标准。Ca(OH)_2+Al_2(SO_4)_3+PAM组合除氟工艺在除氟、除浊方面均优于前几种除氟工艺,适用于处理低浓度含氟废水。
     对各浓度含氟废水的除氟研究表明,控制硫酸铝投药量在50mg/L~200mg/L之间,可使含氟50mg/L~1000mg/L浓度范围内处理水达标。实验需用石灰量随着[F~-]浓度增加而增加,为防止石灰投加量过剩,水pH值应严格控制在7.0~9.0之间。
Both aluminum and fluorin are important contaminants in water. The excess amount of the either element has some negative effect to people's health. In 1989, World Health Organization formally identified aluminum as food contaminant and proposed that the amount of aluminum that human take in each day should not exceed 1.0 mg per kilogram of body weight. Excessive fluoride from industrial waste water will pollute the environment and do harm to the crops and livestock; Moreover, it will seriously affect the health of human. As suggested by Health ministry that the appropriate fluoride content for drinking water is 0.5~1.0 mg/L. According to < Integrated Wastewater Discharge Standard > GB8979—1996, the maximum concentration of fluorine in industrial wastewater should be below 10mg/L. Therefore, the removal process of fluoride and aluminum in the water has been a research hotspot in health field. In this paper, both aluminum and fluoride removal issues have been studied. The detailed information of the discussion is listed as follows.
     1. The residual aluminum in drinking water and industrial wastewater has been studied and discussed, respectively. The categories of coagulant and the differences of raw water's effects were investigated. It was found that the amount of coagulant, turbidity, pH, and temperature of raw water and the status of water played important roles in the quantity of residual aluminum in drinking water. Based on the experiments, the disciplinarian of each factor's influences on aluminum has been found. Also, it was found that two routes to remove aluminum from water, one is by reducing dissolved aluminum, and another is by removing aluminum solids. A linear relationship to a certain extent was shown between residual turbidity and residual aluminum in filtered water. In this case, aluminum solids can be removed while turbidity is removed. By changing the pH value of water, the ratio of dissolved aluminum to solid aluminum can be changed, and then the removal rate of residual aluminum can be improved.
     In addition, the connection, between the residual aluminum and turbidity in clarified effluent or filtrated effluent, is osmosed through whole thesis, in order that we could discover the consistency how. to remove the aluminum and turbidity in drinking water, so the purpose for reducing the residual aluminum in potable water may be achieved through controlling turbidity strictly.
     2.0verdischarging F in industrial waste water will pollute the environment,harm the normal growth of crops and livestocks and even severely affect the health of human beings. So defluorination in industrial waste water and F control in water resource become the most important research tasks in environment protection and sanitation fields home and abroad. This paper is about defluorination experiment. Acording to the tests, I evaluated the experiment effect of defluorination through lime-sedimentation、the combination of Ca(OH)_2+PAM.
引文
[1]甘若兰,《无机化学》(下册),江苏科技出版社,1982年
    [2]董锦平、陈涛、邹公伟,“铝对人体健康的影响”,《环境监测管理与技术》,1998.10
    [3]崔福义、李名锐、王志红,“饮用水中铝的危害、来源及现状”,《哈尔滨建筑大学学报》,1997,Vol.30 No.6
    [4]郑宝山.地方性氟中毒及工业氟污染究.中国环境科学出版社,1992,(2):17-26
    [5]中科院贵阳地化所编译.《简明地球化学手册》.科学出版社,1977
    [6]《铝对人体的危害》,网络文章
    [7]孔增荣、刘凤贞,“环境铝暴露条件下慢性肾功能不全人体机体铝负荷的研究”,《环境与健康杂志》,1994.2
    [8]刘凤贞,“环境铝的生物学作用研究近况”,《环境与健康》,1987.6
    [9]鹏桂英,“农业环境保护”,《环境与健康》,1988.7
    [10]廖自基,《微量元素的环境化学及生物效应》,中国环境科学出版社,1992
    [11]王晓波、孔繁增,“铝对人体健康研究新进展”,《环境与健康》1997.2
    [12]冯梅、杜安达,“广东省碱式氯化铝产品卫生质量分析”,《环境与健康》,1995.5
    [13]刘文新、栾兆坤、汤鸿霄,“饮用水中铝的生物可给性研究进展”,《环境与健康》1997.10
    [14]J.W.帕特森(美).工业废水处理技术手册.化学工业出版社,1985145-148
    [15]GB3234-83.工业性氟病诊断标准及处理原则
    [16]刘焕文.大气氟污染与家畜慢性氟中毒的研究.天则出版社,1989:6-11
    [17]崔福义、李名锐、王志红,“饮用水中铝的危害、来源及现状”,《哈尔滨建筑大学学报》,1997,Vol.30 No.6
    [18] Nemerow, N. L. Theories and Practices of Industrial Waste Treament (Reeding, MA:Addison-Wesley, 1963).
    
    [19] McGarvey, F. X., R. E. Tenhoor, and R. P. Nevers. " Brass and Copper Industry:Cation Exchangers for Metals Concentration from Pickle Rinse Waters, " Ind. Eng. Chem. 44 (1952):534-541
    
    [20] Lowe, W. " The Origin and Characteristics of Toxic Wastes with Particular Reference to the Metal Industries, " Water Poll. Control (London, 1970): 270-280
    
    [21] Brass Wire Mill Process Changes and Waste Abatement, Recovery and Reuse, Water Pollution Control Research Series 12010 DFP, (Washington , DC: USEPA, 1971).
    
    [22] Pilot, J. " Treatment of Pickling Plant Effluent at B. S. C. Whitehead Works . " Effluent Water Treatment J. 14(1974):260-263
    
    [23] Marino.M.. M.E. Terril. B. Burke. And A. Simon. "Application of the Reverse Osmosis Process for Achieving Industrial Wastewater Reuse . " paper presented at the 51st Annual Conference of Water Pollution Control Federation , Ananheim. CA (October 2 ,1978).
    
    [24] Barnes. G. E. "Disposal and Recovery of Electroplating Wastes. "J.Water Poll. Control. Fed . 40(1968):1459-1470.
    
    [25] Nyquist . O. W. and H. R. Carroll. "Design and Treatment of Metal Processing Wastewaters. " Sew. Ind. Wastes 31(1959):941-948.
    
    [26] Pinkerton. H. L. "Waste Disposal. " Electroplating Engineering Handbook. 2nd ed.. A. Kenneth Graham. Ed. (New York: Reinhold. 1962).
    
    [27] Robinson. A. and J. Sum. "Sulfide Precipitation of Heavy Metals. " USEPA 600/2-80-139 (June 1980)'
    
    [28] "Development Document for Interim Final Effluent Limitations Guidelines and New Source Performance Standards for the Coal Mining Point Source Category . " USEPA 440/1-75/057, Group II(October 1975).
    
    [29] Yeats. A. " Ion Exchange Selectively Removes Heavy Metals from Mixed Plating Wastes." Paper presented at the 32nd Annual Purdue lndustrial Waste Conference.West Lafayette.IN(May.1977)
    [30]McGarvey.F.X.and S.A.Fisher."Effluent Control in Zinc Bonderizing Processes.I.The Recycle of Rinse Wzters via an Ion Exchange Process."Plating 62(1975):231-234.
    [31]邓慧萍,“对饮用水中剩余铝问题的研究及探讨”,《净水技术》
    [32]梁雨、于水利、崔崇威、冯琪、韩健,“聚硅铁与复合铝铁及硫酸铝的净水效果研究”,《哈尔滨商业大学学报(自然科学版)》
    [33]高宝玉、岳钦艳、王淑仁,“含铝离子的聚硅酸混凝剂研究”,《环境科学》
    [34]汪国寿主编,《城市供水行业2000年技术进步发展规划》,中国建筑出版社,1993
    [35]王东田,《聚硅酸铝混凝剂的研究与应用》,哈尔滨建筑大学博士论文,1999
    [36]高宝玉、岳钦艳,“聚硅氯化铝的混凝效果及在处理水中的残留铝研究”,《中国给水排水》,1999Vol.15 No.7
    [37]水质大全编写组,《水质分析大全》,科学技术文献出版社,1989
    [38]王志红,《饮用水处理中残余铝去除的实验研究》,哈尔滨建筑大学硕士论文,1997.12
    [39]刘容倩,《饮用水处理中残余铝去除的实验研究》,哈尔滨建筑大学硕士论文,1999.6
    [40]黄毓忠,“自来水中铝离子的含量问题”,《西南给排水》,1988.1(1)
    [41]吕新之,“铝的污染和危害”,《环境保护》,1998.5
    [42]李燕,“铝对人体的潜在危害”,《环境科学》,1992Vol 12.(2)
    [43]“饮用水中微量元素的测定电感耦合等离子体质谱法”吉林省地质实验测试研究所,吉林省矿泉水产、商品质量监督检验站
    [44]AWWA,Inc.Water Quality and Treatment,3d ED.chap.4.New York:AMEROCAN WATER WORKS ASSOCIASSION
    [45]《高分子聚合物的搅拌实验评价》研究报告
    [46]许保玖、安鼎年,《给水处理理论与设计》,中国建筑工业出版社,1992
    [47]许保玖,“烧杯搅拌实验的发展”,《中国给水排水》,1985,Vol1(1)
    [48]张洪沅等,《化工过程及设备》(上册),1964
    [49]基谢列夫著,周鹏、华钊译,《水力学(流体力学原理)》,水利电力出版社,1983
    [50]李伟英、范瑾初,“烧杯搅拌试验的规范化”,《城市工用事业》,
    [51]《混凝剂的分类》,网络文章
    [52]栾兆坤、汤鸿霄,“聚合铝絮凝动态过程研究”,《环境化学》,1996,Vol.15
    [53]汤鸿宵,“无机高分子絮凝剂的基础研究”,《环境化学》,1990,Vol.10
    [54]王晓昌,“浅论铝盐的水解和吸附电中和过程中被凝聚物浓度的影响”,《环境化学》,199l,Vol.15
    [55]苏威,“无机絮凝剂发展及建议”,《工业水处理》,1993,Vol.13
    [56]汤鸿霄,“羟基聚合氯化铝的絮凝形态学”,《环境科学学报》,1998,Vol.18
    [57]栾兆坤、汤鸿霄,“聚合氯化铝与传统混凝剂的凝聚-絮凝行为差异”,《环境化学》,1997,Vol.16
    [58]35李雪玲,刘俊峰,李培元.石灰沉淀法除氟的应用.水处理技术.2000,26(6):359-361
    [59]薛笑莉、李瑞平、张瑞士,“聚硅酸铝铁、聚合氯化铝、聚合硫酸铁絮凝效果的比较”《天津化工》2005.19(4)40-42
    [60]杨玉萍、马晓鸥,“混凝剂聚硅酸硫酸铝铁的复合工艺及其在印染废水中的应用”,《印染助剂》
    [61]潘碌亭,“新型聚硅铝铁絮凝剂强化处理低温低浊水”,《水处理技术》
    [62]张霄宇,《饮用水处理中残余铝去除的实验研究》,哈尔滨建筑大学硕士论文,2000.6
    [63]水质大全编写组,《水质分析大全》,科学技术文献出版社,1989
    [64]高宝玉、岳钦艳等,“新型复合无机高分子混凝剂--聚硅氯化铝”,《环境科学学报》2002,22(6):706-710
    [65]王炳建、高宝玉等,“新型无机高分子复合絮凝剂聚合硅酸铝铁混凝效果研究”,《山东大学学报(理学版)》2003.38(5)111-115
    [66]许保玖,《给水处理》,建工出版社,1979
    [67]胡明成,《国内水厂铝盐混凝剂的使用以及城市居民饮用水中铝含量的现状》,哈尔滨建筑大学硕士论文,1998.12
    [68]王志红、崔福义,张霄宇“饮用水过滤中的除铝实验研究”《工业用水与废水》2001.32(5):7-9
    [69]王志红,崔福义,聚合铝类混凝剂及混凝条件对余铝的影响试验研究.给水排水.2001,(2):25-26
    [70]凌波.铝盐混凝沉淀除氟.水处理技术.1999,16(6)
    [71]唐锦涛,等.萤石矿高氟废水处理[J].环境化学,1990,9(3):20-24
    [72]白卯娟,娄性义,王珂.含氟水治理方法的分析[J].青岛建筑工程学院学报,2002,23(1):83-86
    [73]浑志强,邹斌,潘敏而.含氟废水处理工艺改革与扩容[J].工厂动力,2004,(4):21-24
    [74]Saha S.Treatment of aqueous effluent for fluoride removal Water Reseach,1993,27(8):1347-1350
    [75]Toyoa A Trata T.New method for t rearing fluorinewaste water to reduce sludge and 2000 running costsIEEE t ransaction on miconductor manufacturing,13(3):305-309
    [76]凌波,铝盐混凝法沉淀降氟[J],《水处理技术》,1993,16(6):418-421
    [77]陈后兴,罗仙平,刘立良,含氟废水处理研究进展,《四川有色金属》,2006,(1):31-35
    [78]邸秋莺,《含氟废水混凝沉淀处理工艺的研究》,哈尔滨工业大学论文, 2005.12
    [79]Dahi E,Bregnhoj H,Orio L.Sorption isotherms of Fluoride on Flocculatd Alumina.In:Proceedings of The First Interna2 tional Workshop on Fluorosis and Defluoridation of Water,18-22 October 1995,Tanzania:35-39
    [80]孙殿军,等译.饮水中氟化物.可持续发展与健康的环境.WHO.日内瓦,1999:21
    [81]长春市卫生防疫站等.高氟水加碱加矾土法分散除氟试验初步报告.地方性氟中毒论文专辑(一),1979,151
    [82]宁夏盐池地主性氟中毒联合调查组.硫酸铝、石灰法饮水降氟实验报告.地方性氟中毒论文专辑(一),1979,123
    [83]邸秋莺《含氟废水混凝沉淀处理工艺的研究》哈尔滨工业大学 硕士论文 2005.11
    [84]Amor Z Bariou B.Fluorine removal from brackish water by electrodialysis.Desalination.2002,133(3):215-223
    [85]Machoy-Mokrzynska A.Fuorine in toxicology,medicine,and environment protection.Fluorine,1999,32(4):248-250
    [86]Sigg,L,Stumm,W.The interaction of anions and weak acids with the hydrous geothite(-FeOOH) surface.Colloids and Surface.1981,2:101-117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700