用户名: 密码: 验证码:
数字合成孔径雷达技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达是利用合成孔径原理和脉冲压缩技术对地面目标进行高分辨率成像的高技术雷达,广泛应用于民用和军事领域,带来了巨大的社会效益和经济效益。随着技术的进步和应用范围的扩大,对合成孔径雷达的成像质量提出了更高的要求,不但要能实现单频段、单模式的高分辨成像,而且要求多频段、多模式的高分辨成像;不但要能实现地面静止目标和运动目标的二维高分辨成像,而且还要能实现三维成像;不但要求侧视的高分辨成像,而且要求灵活的斜视或前视高分辨成像。因此,未来合成孔径雷达是多波段、多极化、多模式的高分辨成像雷达,具有很大的灵活性。
     针对这种多波段、多极化、多模式的发展要求,传统合成孔径雷达系统需要改进,必须采用先进的雷达系统结构来提高合成孔径雷达成像系统的灵活性。数字合成孔径雷达技术正是这种需求下的必然发展趋势。
     实现数字技术将使合成孔径雷达具有更大的灵活性。可以实现一定的模块重组使旧的合成孔径雷达平台得到升级换代,大大缩短研发周期,节约开发成本。同时,数字技术增强了合成孔径雷达的冗余性,使系统的可靠性得到极大提高。此外,数字技术为合成孔径雷达功能的软件化提供了基础,提高了合成孔径雷达的软件化程度,进而实现合成孔径雷达的小型化和智能化。
     本文分析了数字合成孔径雷达成像处理系统的体系结构;从几个主要方面深入研究了数字合成孔径雷达技术;设计并实现了数字合成孔径雷达接收实验平台,主要创新性工作有:
     (1) 基于体系结构的概念,从功能、部件、设计规则三个方面对数字合成孔径雷达技术进行了研究。针对数字合成孔径雷达的可编程性要求,提出了一种基于总线式的数字合成孔径雷达结构,硬件和软件结构均通过总线技术来实现。针对数字合成孔径雷达实时性要求,定量地分析了数字合成孔径雷达实时成像处理的资源需求,并提出了一种基于多指令单数据流和多指令多数据流二级划分的处理结构。
     (2) 研究了数字合成孔径雷达宽带线性调频信号的直接数字合成技术,并研制了基于AD9854的可编程产生宽带线性调频信号的实验系统。
    
    (3)
    (4)
    (5)
    研究了数字合成孔径雷达直接射频采样和数字正交解调的数字乘积检波
    技术:提出了修正数字乘积检波实现中FQ不平衡的多相滤波方法。
    研究了数字合成孔径雷达的二维自动增益控制技术;
    研制了一套基于通用工作站的数字合成孔径雷达接收实验平台:该平台实
    现了可编程采样,可编程单/双通道变换,’可实现软件化正交解调,具备
    了“软件接收机”的雏形。
    关键词:
    合成孔径雷达
    数字正交解调
    数字合成孔径雷达
    数字乘积检波
    直接数字合成
Synthetic aperture radar is the high technology radar that can take high resolution imaging for the ground target by using the synthetic aperture principle and pulse compression technique. Synthetic aperture radar has been widely applied in the areas of military and civil and it has brought great benefits in economics and society. With the technology evolution and the application extension, people desire to get high quality synthetic aperture radar imaging, not only require the single frequency band, single mode high resolution imaging but also require multiple frequency bands, multiple modes high resolution imaging, and not only get the high resolution two-dimensional image of the ground immobile targets and moving targets but also get the three dimensional image of them, and not only require the side-looking high resolution synthetic aperture radar imaging but also require the squint or the forward-looking synthetic aperture radar imaging. So synthetic aperture radar is greater flexible high resolution imaging radar with multiple frequency bands, multiple polarizations, and multiple modes in the near future.For the request of multiple frequency bands, multiple polarizations, and multiple modes, the conventional synthetic aperture radar system needs to be developed by adopting the advanced radar architecture to improve the flexibility of synthetic aperture radar imaging system. The digital synthetic aperture radar technologies are the inevitable trend.The flexibility of synthetic aperture radar can be improved by implementing the digital techniques. The techniques can accomplish the rearrangement of some modules, which contributes new functions for the older synthetic aperture radar system. The developmental cost is saved, meanwhile, the system redundance is enhanced, which improves the reliability of synthetic aperture radar. Besides, the synthetic aperture radar functions can be implemented by software and the software extent can be improved on the basis of its digitalization, which implements the minitype and intellectualization of synthetic aperture radar.In the dissertation, the architecture of synthetic'aperture radar image processing
    
    system is analyzed, and the digital synthetic aperture radar technique is investigated from some key aspects in-detail-depth, and the digital synthetic radar receiving experimental platform is designed and implemented. The highlight contents are as follows:(1) Based on the architecture concept, researches on digital synthetic aperture radar technologies are made from functions, components and design rules. For the programmable requirements, a digital synthetic aperture radar architecture based on BUS is proposed. For the real-time processing requirements, the resources requirements of digital synthetic aperture radar real-time processing are analyzed quantitively. A processing structure based on multiple instructions multiple data and multiple instructions multiple data is proposed.(2) Researches on the direct digital synthesizing techniques of wide-band linear modulation frequency signal of digital synthetic aperture radar are made, and the experimental system for programmable synthesizing wide band linear modulation frequency signal based on AD9854 is complemented.(3) Researches on direct radio frequency sampling and digital quadrature modulation of digital SAR are made, especially digital product detection .method. For the imbalance of I/Q channel in digital product detection, the poly-phase filter is proposed.(4) Researches on two-dimensional auto gain controlling technique of digital synthetic aperture radar are made.(5) A receiving experimental platform based on universal workstation of digital synthetic aperture radar is developed. This platform can implement the programmable sample, implement programmable single and double channel mode, and implement quadurature modulation by software. So the system has the basic characteristics of the "software receiver".
引文
[1] W.M.Brown, An Introduction to Synthetic Aperture Radar. IEEE Spectrum, Vol.4, Sept 1969
    [2] 曲长文,何友,龚沈光,机载SAR发展概况,现代雷达,2002(1),9-10
    [3] NASA, Hybrid Analog/Digital Receiver: Intermediate-frequency Signals Are Processed Directly Digital Means. NTIS No: NTN90-0019/HDM, 1990
    [4] G.Boscagli, M.C. Comparini, M.Martone, Digital Receiver for on-Board FM/FSK-FM/BPSK Demodulation, NTIS No.: N94-21091/1/HDM, 1993
    [5] F.Oscarsson, Konrad, Wide Band Digital HF Receiver. NTIS No.: PB94-184686/HDM, 1994
    [6] Adrian Garrod, Digital Modules for Phased Array Radar, IEEE International Radar Conference, 1995: 726~731
    [7] M.J.Chen, Intermodulation in Charmelized Digital ESM Receivers. NTIS No.: AD-A320554/9/HDM, 1996
    [8] H.C.Chien-In, FFT Based VLSI Digital One Bit Electronic Warefare Receiver, NTIS No.: ADA348449/XAB, 1998
    [9] William S.Song, Anew 3-GSPS 65-GOPS UHF Digital Radar Receiver and Its Performance Characteristics. IEEE Conference Record of the Thirty-first Asilomar Conference on Signals, System and Computers. 1997: 1542~2546
    [10] P.Ghuman, S.Sheikh, S.Koubek, S.Hoy, A.Gray. High Rate Digital Demodulator ASIC. NTIS No.: N 19980237957/XAB, 2000
    [11] A.Gray, M.Srinibasan, M.Simon, T.Y.Yan. Flexible All-Digital Receiver for Bandwidth Efficiecnt Modulations. NTIS No.: N20000070848/XAB, 2000
    [12] N.C.Davies. A High Performance HF Software Radio. IEEE 8th International Conference on HF Radio Systems and Techniques. 2000: 249~256
    [13] Junius Pridgen, Richard Jaffe, William Kline. RASSP Technology into the Synthetic Aperture Radar Image Processor Application. Lockheed Martin Advanced Technology Laboratories
    [14] 刘永坦等著,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,1999年
    [15] 陈冰冰,SAR实时信号预处理和高分辨率实时成像处理系统的研究,中科院电子所博士论文,2001年
    [16] 王俊,全数字式高分辨率机载SAR实时处理机研究与实现,北京航空航天大学博士论文,2001年
    [17] 贾惠波,张绪刚,蒋昌龙,总线复用型存储器阵列系统数据记录速度模型研究,清华大学学报,2001(8),29-32
    [18] 施亮,朱兰娟,吴智铭,一种由SCSI控制器完成多线程I/O任务调度的编程方法,电子计算机与外部设备,2000(2),9-11
    [19] 王楠,张江陵,冯丹,基于SYM53C8XX PCI-SCSI I/O处理器的多线程I/O调度,计算机工程与应用,2000(1),34-36
    [20] 王福文,周智敏,郭微光,梁甸农,基于磁盘阵列的高速数据录取系统实现方案,国防科技大学学报,1999(4),59-62
    [21] 刘宇,机载合成孔径雷达实时信号处理及实时存储技术的研究与实现,中科院电子 所博士论文,2003
    [2
    
    [22] 王沛,张群英,一种实用的LMF信号产生系统的设计与实现,第17届电路与系统年会,2002年9月
    [23] 费元春,苏广川等,宽带雷达信号产生技术,国防工业出版社,2002年1月
    [24] 刘光炎,斜视及前视合成孔径雷达系统的成像与算法研究,电子科技大学博士论文,2002年12月
    [25] 袁孝康,星载合成孔径雷达导论,国防工业出版社,2003年1月
    [26] J.Mitola, The Software Radio Architecture, IEEE Communications Magazine, 1995
    [27] Kennedy, Sullivan, Direction Finding and Smart Antennas Using Software Radio Architecture, IEEE Communications Magazine, 1995 (5)
    [28] Upmal, Lackey, SPEAKeasy, the Military Software Radio, IEEE Communications Magazine, 1995
    [29] P. Cook, An Architectural Overview of the Speakeasy System, IEEE JSAC, 1999
    [30] M.Cummings, S.Heath, Mode Switching and Software Download for Software Defined Radio: the SDR Forum Approach, IEEE Communications Magazine, 1999
    [31] Robert Orfali, Dan Harkey, Jeff Edwarda, Instant CORBA, John Wiley $ Sons, 1997
    [32] J.Razavilar, Software Radio Architecture with Smart Antennas: A Tutorial on Algorithms and Complexity, IEEE JSAC, 1999
    [33] R.Walden, Analog to Digital Converter Survey and Analysis, IEEE JASC, 1999
    [34] The Software Defined Radio, BellSouth, Dec., 1995
    [35] Harris Digital Channelizer Application Note: Channalized Receiver, Harris Corporation, 1990
    [36] K.Zangi, R.Koilpillai, Software Radio Issues in Celluar Base Stations, IEEE JSAC, 1999
    [37] C.Dick, Configurable Logic for Digital Communications: Some Signal Processing Perspectives, IEEE Communications Magazine, 1999
    [38] V.Bose, Virtual Radios, IEEE JSAC, 1999
    [39] T.Turletti, Towards the Software Realization ofa GSM Base Station, IEEE JSAC
    [40] J.Mitola, Cognitive Radio: Model Based Competence for Software Radios, Licentiate Thesis, 1999
    [41] J.Mitola, Software Radio Architecture: A Mathimatical Perspective, IEEE JSAC, 1999
    [42] MMITS Forum Technical Report, www.mmitsforum.com, 1997
    [43] J.Mitola, Software Radios: Survey, Critical Evaluation and Future Directions, Proc. National Telesystems Conference, 1992
    [44] Gunn, A Low Power DSP-core Based software radio architecture, IEEE JSAC, 1999
    [45] N.Correal, A DSP-based multiuser receiver employing partial parallel interface cancellation, IEEE JSAC, 1999
    [46] J.Cummings, Software radios for airborne applications, IEEE JSAC, 1999
    [47] Wepman J.A,, Analog-to-digital converts and their application in radio receiver, IEEE Communication Magazine, 1995(5)
    [48] Baines R., The DSP bottleneck, IEEE Communication Magazine, 1995(5)
    [49] J. Mitola. Software radio architecture: object-oriented approaches to wireless systems engineering. New York: John Wiley & Sons, Inc., 2000.
    [50] B.Enrico. The software radio concept. IEEE Communications Magazine, 2000,9:138-143.
    [5
    
    [51] J. Mitola, Z. Zvonar. Software radio technologies selected readings. IEEE press, 2000.
    [52] J.H. Reed. Software radio: a modern approach to radio engineering. New Jersey: Prentice Hall PTR, 2002.
    [53] [美]M.I.斯科尔尼克主编,谢卓译.雷达手册(第二分册).北京:国防工业出版社,1978,6
    [54] D.T.辛吉.遥感中的自适应雷达.1991,1
    [55] 杨小牛等.软件无线电原理与应用.电子工业出版社,2001,1
    [56] 宋俊德,王海.软件无线电技术综述.外军电信动态,2000,4.
    [57] H.W.Walter. Software-defined radio: facets of a developing technolpgy, IEEE Personal Communications, 1999,4: 38-44.
    [58] H.W.walter. Software radio technology: a European perspective. IEEE Communications Magazine, 1999,2
    [59] H.R.Jeffrey, P. Athanas, and R. Boyle. A soft radio architecture for reconfigurable platforms. IEEE Communications Magazine, 2000,2
    [60] D. Efstathiou, J.Fridman, and Z. Zvonar. Recent developments in enabling technologies for software defined radio. IEEE Communications Magazine, 1999, 8
    [61] D.L.Sharpin. J.B.Tsui. Analysis of the linear amplifier/analog-digital converter interface in a digital microwave receiver. IEEE Trans. On Aerospace and Electronic System, 1995,1
    [62] H.Robert. Performance trends for analog-to-digital converters. IEEE Communications Magazine. 1999,2
    [63] Mike Golio, The RF and Microwave Handbook, CRC Press, 2001
    [64] William C.Y.Lee,宋维模等译,移动通信工程理论和应用,人民邮电出版社,2002
    [65] Simon Haykin, Adaptive Filter Thoery (4th), Prentice Hall, 2002
    [66] P.S.R. Diniz, Rio De Janeiro, Adaptive Filtering: Algorithms and Practical Implementation (2nd), 2002
    [67] Mehrdad, Soumekh, Synthetic Aperture Radar Signal Processing With Matlab Algorithms, 1999
    [68] 沈凤麟,叶中付,钱玉美,信号统计分析与处理,中国科学技术大学出版社,2001
    [69] [美]S.M.凯依,黄建国等译,现代谱估计:原理与应用,科学出版社,1994
    [70] Bhag Singh Guru, R.Hiziroglu, Electromagnetic Field Theory Fundamentals, International Thomson, 1998
    [71] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design (2nd), Prentice Hall, 1997
    [72] 闰润卿,李英惠,微波技术基础,北京理工大学出版社(第二版),1999
    [73] Reinhold Ludwing, Pavel Bretchko, RF Circuit Design: Theory and Applictions, Prentice Hall, 2000
    [74] 薛天宇,孟庆昌,华正权,模数变换器件应用技术,科学出版社,2001
    [75] [美]H.L.范特里斯,毛士艺,周荫清,张其善译,检测、估计和线性调制理论(Ⅰ、 Ⅱ、Ⅲ),国防工业出版社,1983
    [76] Sharpin, D.L., Tsui, J.B.Y. Analysis of the Linear Amplifier/Digital Converter Interface in a Digital Microwave Receiver, IEEE Trans. AES, Vol. 31, pp.248-256, 1995
    [77] 马晓岩,向家彬,雷达信号处理,湖南科学技术出版社,1999
    [78] 鞠德航,林可祥,陈捷,信号检测理论导论,科学出版社,1977
    
    [79] 周朝栋,王元坤,杨恩耀,天线与电波,西安电子科技大学,1999
    [80] Ulrich L.Rohde, Jerry C.Whitaker, Communications Receivers: DSR Software Radio, and Design (3nd), McGraw Hill, 2001
    [81] C.L. Shi, M. Ismail, Data Converters for Wireless Standards, Kluwer Academic, 2002
    [82] J. Tsui, Digital Techniques for Wideband Receivers (2nd), Artech House, 2001
    [83] M.Gustavsson, J.Jacob Wikner, N.Nick Tan, CMOS Data Converters for Communications, Kluwer Academic. 2000
    [84] 梁士龙,全相干数字单脉冲接收系统的研究与实现,博士生论文,2002
    [85] 徐家福,吕建,软件语言及其实现,科学出版社,2000
    [86] 宋茂强,通信软件设计基础,北京邮电大学出版社,2001
    [87] C.W. Sherwin, J. R Ruina and R. D. Rawcliff. Some Early Developments in Synthetic Aperture Radar Systems. IRE Trans. on Military Electronics, Vol. MIL-66, No. 2, April 1962
    [88] W.M. Brown, et al. An Introduction to Synthetic Aperture Radar. IEEE Spectrum, Vol. 4, Sept 1969
    [89] 张澄波,综合孔径雷达原理、系统分析与应用,科学出版社,1989
    [90] Giorgio Francechetti, Riccando Lanari. Synthetic Aperture Radar Processing. CRC Press, 1999
    [91] A. Freeman, et al. SAR. Application in the 21th Century. Lonigswinter, German. 1996:25-30
    [92] U. Hahn, et al. Wideband Digital Waveform Generator for On-board SAR Applications, EUSAR2000, May 2000, Munich, Germany, 285-292
    [93] M. Suess, et al. Efficient and Scalable On-board SAR Processor Architecture, EUSAR2000, May 2000, Munich, Germany, 289-292
    [94] Jorgen Dall, et al. The Danish Real-time SAR Processor: First Results, IGARSS '93:1401-1404
    [95] 陈冰冰,SAR实时信号预处理和高分辨率实时成像处理系统的研究,中科院电子所博士论文,2002年
    [96] 王俊,全数字式高分辨率机载SAR实时处理机研究与实现,北京航空航天大学博士论文,2001年
    [97] 曲长文,何友,龚沈光,机载SAR发展概况,现代雷达,2002(1),9-10
    [98] 谢寿生,徐永进,微波遥感技术与应用,北京:电子工业出版社,1987
    [99] EBER, L.O, SOULE, H.H.Jr., Digital generation of wideband LFM waveforms. Proc. Of 1975 IEEE International radar conference, 1975:170-175
    [100] 张贤达著,现代信号处理,北京:清华大学出版社,1994年
    [101] M. Bernfeld, C. E. Cook, J. Paolillo, C. A. Palmieri, Matched Filtering, Pulse Compression and Waveform Design, Microwave Journal, Jan. 1976:34
    [102] 林茂庸,柯有安编,雷达信号理论,北京:国防工业出版社,1981年
    [103] C. Wu, B. Barkan, et al, SEASAT Synthetic Aperture Radar Data Reduction using parallel programmable array processors, IEEE Trans. GE, Vol.20, No.3, July 1982
    [104] John, C. Curlander, et al, Synthetic Aperture Radar. System and Signal Processing, John Wiley and Sons Inc,1991
    [105] H. Runge, R. Bamler, A novel high precision SAR Focussing Algorithm Based On Chirp Scaling, IGARSS 1992
    
    [106] I. Cumming and F. Wong, A SAR Processing Algorithm With No Intrerpolation, IGARSS 1992
    [107] 奥本海姆,谢弗著,离散时间信号处理,北京:科学出版社,1998年
    [108] Burrus, C. S., Parks, T. W., DFT/FFT and Convolution Algorithms Theory and Implementation, John Wiley and Sons inc, 1985
    [109] Burrus, C. S., "Efficient Fourier Transform and Convolution Algorithms" in Advanced Topics in Signal Processing, Englewood Cliffs: Prentice-Hall, 1988
    [110] David J. Defatta, Digital Signal Processing: A System Design Approach, John Wiley and Sons Inc, 1988
    [111] Brigham, E. O., The Fast Fourier Transform and Its Applications, Englewood Cliffs: Prentice-Hall, 1988
    [112] S.J. Roome. Analysis of quadrature detectors using complex envelope notation [J]. IEE Pro., 1989, 136 (2)
    [113] 张云华,姜景山,张鸿远,张德海,刘和光,I/Q幅度和相位不平衡对脉冲压缩的影响及其矫正方法[J].遥感技术与应用,2000,15(2)
    [114] W.M. Waters, B.R. Jarrett. Bandpass signal sampling and coherent detection. IEEE Trans. on Aerospace and Electronic Systems, 1982, 18 (4)
    [115] 杨平,耿富录.正交采样理论和技术实现.火控雷达,1992(1)
    [116] H.R. Ward. An optimum filter for direct A/D conversion. IEEE Trans. on Aerospace and Electronic Systems, 1991, 27 (6)
    [117] Leopold E. Pellon. A Double Nyquist Digital Product Detector for Quadrature Sampling. IEEE Transactions on Signal Processing, 1992, 40 (7)
    [118] 孙晓兵,保铮.中频信号采样与正交相干检波.系统工程与电子技术,1993,15(5)
    [119] D.W. Rice, K.H. Wu. Quadrature sampling with high dynamic range. IEEE Trans. on Aerospace and Electronic Systems, 1982, 18 (4)
    [120] A simple method for sampling in-phase and quadrature components. IEEE Trans. on Aerospace and Electronic Systems, 1984, 20 (6)
    [121] W. M. Waters, B.R. Jarrett. Bandpass signal sampling and coherent detection. IEEE Trans. on Aerospace and Electronic Systems, 1982, 18 (4)
    [122] H. Liu, A. Ghafoor, RH. Stockmann. A new quadrature sampling and processing approach. IEEE Trans. on Aerospace and Electronic Systems, 1989, 25 (5)
    [123] K. C. Ho, Y.T. Chan, R. Inkol. A digital quadrature demodulation system. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32 (4)
    [124] R.G. Vaughan, N. L. Scott, D.R. White. The theory of bandpass sampling. IEEE Trans. on Signal Processing, 1991, 39 (9)
    [125] S.J. Roome. Analysis of quadrature detectors using complex envelope notation, IEE Pro., 1989, 136 (2)
    [126] A. I. Sinsky, P. C.R Wang. Error analysis of a quadrature coherent detector processor. IEEE Trans. Aerospace and Electronic Systems, 1974, 10 (6)
    [127] R. E. Crochiere, L. R. Rabiner. Multirate digital signal processing. New Jersey: Prentice-Hall Inc., 1983
    [128] 沈兰荪编著,实时系统构成技术,合肥:中国科学技术大学出版社,1993年
    [129] Kai Hwang, K. A. Briggs. Computer architecture and parallel processing, New York, McGraw-Hill, 1986
    
    [130] David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture, A Hardware/Software Approach, Second Edition, Morgan Kaufmann Publishers Inc, 1996
    [131] Texas Instruments, Inc., TMS320 DSP Product Family, www. ti.com, 1998
    [132] D. D. Gajski, et al, High-Level Synthesis: Introduction to Chip and System Design Netherlands: Kluwer Academic Publishers, 1992
    [133] 汤庸编著,结构化与面向对象软件方法,北京:科学出版社,1998
    [134] 王志华,邓仰东编著,数字集成系统的结构化设计与高层次综合,北京:清华大学出版社,2000
    [135] A. A. Jerraya, H. Ding, P. Kission, et al, Behavioral Synthesis and component reuse with VHDL, Netherlands: Kluwer academic Publishers, 1997
    [136] R. E. Harr, A. G. Srtanculescu, Applications of VHDL to Circuit Design, Netherlands: Kludwer Academic Publishers, 1986
    [137] IEEE Standard VHDL Language Reference Manual, New York: IEEE Press, 1987
    [138] R. Lipsett, C. Schaefer, C. Ussery, VHDL Hardware,Description and Design, Netherlands: Kluwer Academic Publishers, 1989
    [139] Z. Navabi VHDL: Analysis and Modeling of Digital Systems, New York: McGraw-Hill, Inc., 1993
    [140] 任丽香,马疏芬,李方慧编著:TMS320C6000系列DSPS的原理与应用,北京:电子工业出版社,2000
    [141] Tom Shanley, Don Anderson, PCI System Architecture(4th edition), MindShare, Inc., 1999
    [142] 王睿,杨汝良,合成孔径雷达中的二维自动增益控制,
    [143] Yoshiki Nemoto, Hideo Nishino, Japanese Earth Resources Satellite-1 Synthetic Aperture Radar, Proce. Of the IEEE, 1991,79(6),806-807
    [144] 赵宇鹏,合成孔径雷达原始数据实用压缩算法研究,中国科学院电子所硕士论文
    [145] 宗孔德,多速率数字信号处理,北京:清华大学出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700