用户名: 密码: 验证码:
35 Ni4Cr2MoA摩擦焊过程数值模拟及工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦焊作为一种优质、高效、节能和无污染的先进焊接方法,已被众多发达国家作为一项技术政策而大力推广应用,因此,国内外对这项技术都开展了广泛的基础研究和应用研究。本文在总结国内外摩擦焊数值模拟研究成果的基础上,以直升机起落架机轮轴材料为研究对象,利用有限元理论和数值模拟技术建立该材料的连续驱动摩擦焊有限元数值模拟计算模型,实现连续驱动摩擦焊过程的数值模拟,开展工艺参数对决定焊接质量的各物理参量场影响规律的研究,利用计算机数值模拟的方法代替大量的实际焊接工艺试验,得到合适的焊接工艺参数范围,再结合少量的焊接工艺实验,得到优化的焊接工艺。
     本文首先根据摩擦焊是一个伴随有摩擦加热,高温形变及连续冷却的热力循环过程的特征,在分析传热学和塑性力学有关理论的基础上,建立连续驱动摩擦焊接过程的温度场和应力应变场的数学模型,结合金属材料塑性成形过程的刚-粘塑性理论,综合考虑工件的尺寸形状、变热物性参数、摩擦系数等因素的影响,采用刚-粘塑性有限元法和ABAQUS有限元软件建立了高强合金钢摩擦焊接过程的二维轴对称、热力耦合有限元计算模型。
     利用该模型计算了35Ni4Cr2MoA高强钢连续驱动摩擦焊接过程的温度场、应力应变场和轴向缩短量,并针对三个焊接阶段对计算结果进行了分析,通过相关实验验证了模型的实用性;利用有限元模型进行了焊接接头塑性区的形成、扩展和金属流动规律的数值模拟研究,发现,对于空心轴件高温塑性区首先在外径处产生,随后在内径处产生,最后才在摩擦面的中间处产生,而且内外径处的高温塑性区宽度大于中间区域。
     计算和分析了影响摩擦焊接质量的关键工艺参数转速、摩擦压力对焊接接头温度场、摩擦扭矩和变形速度的影响规律,得到了35Ni4Cr2MoA高强钢连续驱动摩擦焊的合适的转速范围和稳定摩擦扭矩的合适区间,得出了合适的摩擦变形速度区间与合适的摩擦扭矩区间是重合的结论;计算和分析了各焊接工艺参数对轴向缩短量的影响规律,计算了不同摩擦压力和摩擦时间下的接头形状,并进行了对比分析;计算和分析了摩擦压力和时间对接头温度场的影响规律;为开展摩擦焊基础研究和工艺研究提供了依据。
     最后根据焊接工艺参数对摩擦焊接过程的影响规律的研究结果,制定了35Ni4Cr2MoA高强钢的摩擦焊接正交实验计划,并进行了焊接实验;对焊后接头进行了金相组织,力学性能检验,通过极差分析,得出了摩擦压力和顶锻压力对冲击韧性影响显著;采用回归正交优化法建立了轴向缩短量与摩擦焊工艺参数的数学模型,可以实现参数的预测和控制。通过综合分析,得出了优化的连续驱动摩擦焊工艺参数。
Friction welding technology, which is a kind of methods of pollution-free advanced welding with high quality, and high efficiency, has been applied and developed in many countries as a vigorously promoted technology. Therefore, the basic research and applied research of the technology are widely carried out at home and abroad. This article summarizes many researches on friction welding numerical simulation at home and abroad. The gear machine shaft of helicopter landing was as the research material. The finite element numerical simulation model of friction welding was established using the finite element theory and numerical simulation technology. The numerical simulation was carried out by continuously driving friction welding process. The effects of technological parameter on various physical parameters were studied for determining the quality of welding field. We got the appropriate welding process parameters when the method of numerical simulation by computer was used to be instead of a large number of actual welding process tests. The optimal welding process was got, combined with a small amount of welding technology experiment.
     The friction welding is a thermal cycle process, which has a characteristic of friction heat, deformation at high temperature and the continuous cooling. Based on the analysis of heat conduction and plastic mechanics and the related theory, the mathematical models of temperature field and stress strain field were established with a continuously driving friction welding process.
     At metal plastic forming process, the factors of the size of the workpiece shape, variable thermal physical parameters and friction coefficients were considered, combined with large deformation-thermal viscoplastic theory. The element calculation models of thermodynamic coupling finite and two-dimensional axisymmetric were established at the friction welding process of high strength alloy steel, using the rigid-plastic finite element method and finite element software ABAQUS.
     By using the model, the temperature field with stress and strain and the axial shortening amount was to calculate at the high strength steel of35Ni4Cr2MoA in the process of continuously driving friction welding. The calculation results in view of the three stages of welding are analyzed, through the relevant experiment to verify the practicability of the model. The numerical simulation of flow law of metal and expansion and formation of plastic zone of welding joint are studied by using the finite element models. We found that the ring high temperature zone is first in outer diameter, and then at the inner diameter, finally on the friction surface. The width of the plastic zone of high temperature at outside diameter is larger than that at the middle area.
     The effects of the key technical parameters of the friction welding quality (rotate speed and friction pressure) were calculated and analyzed on Influence law of the friction torque and speed of deformation and weld temperature field. Suitable range of stable friction torque and speed range of drive friction welding are fit for35Ni4Cr2MoA. It is conclusion that the appropriate range of friction and deformation velocity was coincided with the range of appropriate friction torque.
     The effects of the welding process parameters on amount of the axial shortening were calculated and analyzed. The wilding Joint shapes were calculated and compared under different friction pressure and time. We analyzed the effects of the friction pressure and time on coupling temperature field for providing basic research of the friction welding.
     According to the influence law of welding process parameters on friction welding process, the orthogonal experimental program for high strength steel of35Ni4Cr2MoA was made for welding test. The welding joint was analyzed through joint microstructure and mechanical properties test. There is obviously influence of friction pressure and upset pressure on impact toughness. Through comprehensive analysis, it is concluded that friction welding technology parameters were derived the optimization continuously.
引文
[1]Spindler D E.What Industry needs to know about friction welding[J]. Welding Journal:1994,73(3):37-42.
    [2]段立宇,杜随更,时渭清等.摩擦焊接的现状和展望[J].西北工业大学学报,1993,11(增刊):1-8.
    [3]Kevin, J.Grewe. Friction welding takes on new applieations [J].WeldingJournal,1997, 9-40.
    [4]王敬和,曲伸,祝文卉.现代摩擦焊技术在航空制造业中的应用和发展[J].航空制造技术,2006,(5):14-15.
    [5]张忠信,朱海,吴则中等.摩擦焊在石油机械制造中的应用[J].石油矿场机械,1998,27(1):4-7.
    [6]中国机械工程学会焊接学会编.焊接手册-焊接方法及设备(第2版)[M].机械工业出版社,2005:697-699,711-712,706-707.
    [7]段立宇,刘金合.摩擦焊接物理研究进展[J].西北工业大学学报,1993,11(增刊):9-16.
    [8]傅莉,杜随更.摩擦焊接过程数值模拟技术研究进展[J].焊接学报,2001,22(5):87-92.
    [9]黄厚诚,王秋良.热传导问题的有限元分析[M].北京:科学出版社,2011.
    [10]赵腾伦.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [11]庄茁,由小川,廖剑辉等.基于ABAQUS的有限元分析和应用[M](第一版).清华大学出版社,2009.
    [12]刘漪涛,刘金合,卜文德.GH4169高温合金惯性摩擦焊过程的数值模拟[J].电焊机,2005,35(9):54-57.
    [13]C.J Cheng. Transient temperature distribution during friction welding of two similar materials in tubular form[J].welding Journal,1962:542s-550s.
    [14]C.J Cheng. Transient temperature distribution during friction welding of two disimilar materials in tubular form[J].welding Journal,1963:2335-2405.
    [15]Francis.A, Craine R E. On a model for fractioning stage in friction welding of thin tubes[J]. Int. J. Heat mass Transfer,1985,28(9):1747-1755.
    [16]段立宇,李晓泉,刘金合等.摩擦焊接温度场的差分数值模拟[J].西北工业大学学报,1993,11(增刊):29-35.
    [17]李晓泉,于治水,周方明等.摩擦焊接头温度场二维轴对称瞬态数值模拟[J].焊接学报,1999,20(2):139-143.
    [18]张全忠,张立文,桂方亮等.GH4169合金连续驱动摩擦焊接过程三维数值模拟[J]塑性工程学报,2005,12(60):109-113.
    [19]张全忠.GH4169合金摩擦焊接过程的数值模拟研究[D].大连理工大学博士毕业论文,2007:18-19.
    [20]李文亚.连续驱动摩擦焊接头热力耦合过程三维数值模拟研究[J].航空制造技术,2011,(2):86-89.
    [21]王建春,杨明鄂,康小建.45钢连续驱动摩擦焊的温度场数值模拟及实验验证[J].机械工程师,2012(2):57-59.
    [22]张全忠,张立文,刘伟伟等.连续驱动摩擦焊接过程的三维与二维数值模拟对比分析[J].焊接学报,2006,27(10):105-108.
    [23]K.K Wang, Wen Lin. Flywheel Friction Welding Research[J], Welding Journal, 1974:233s-241s.
    [24]Q.Z,Zhang.L.W,Zhang.W.W.Liu,X.G.Zhang,W.H.Zhu and S.Qu.3D rigid viscoplastic FE modeling of continuous drive friction welding process [J]. Scienceand Technology of Welding and Joining,2006,11(6):737-43.
    [25]K.K Wang, P.Naga PPan. Transient temperature distribution in inertia welding of steels[J]. Welding Joumal,1970,49 (9):419-426.
    [26]Duffin F D, Bahrani A S.Frictional behavior of mild steel in friction welding [J]. Wear, 1973,26(1):53-74.
    [27]Kleiber M, Sluzalec A. Numerical analysis of heat flow in flash welding[J]. Arch. Mech.,1983,(35):687-699.
    [28]Andrzej Sluzalec. Thermal effects in friction welding[J]. Int. J. Mech. Sci., 1990,32(6):467-478.
    [29]Adolf Sluzalec, Andrzej Sluzalec, Solutions of thermal problems in friction welding-comparative study [J]. Int. J. Heat Mass Transfer,1993,36(6):1582-1587.
    [30]Moal A, Massoni E. Finite element simulation of the inertia welding of two similar parts[J]. Engineering Computations,1995,12(5):497-512.
    [31]D'Alvise L, Massoni E, Walloe S J. Finite element modeling of the inertia friction welding process between dissimilar materials[J]. Journal of Materials Processing Technology.2002,125-126:387-391.
    [32]Wang L, Preuss M, Withers P J. Energy- Input- Based finite-element proeess modeling of inertia welding[J].Metallurgieal and Materials Transactions B,2005,36(8):513-523.
    [33]Fu L, Duan L Y. The coupled deformation and heat flow analysis by finite element method during friction welding[J]. Welding Journal,1998,77(5):202-207.
    [34]傅莉,段立宇,杜随更等.摩擦焊温度场的有限元热力耦合分析[J].西北工业大学学报,1993,11,3(增刊):36-41.
    [35]段立宇,傅莉.摩擦焊接应力应变场的有限元热力耦合分析[J].西北工业大学学报,1993,11(增刊)42-47.
    [36]傅莉,刘小文,郡君辉等.惯性摩擦焊接钢管焊合区热塑性变形参量场的数值模拟[J].机械科学与技术,2000,19(3):439-444.
    [37]Fu L, Duan L Y. Numerical simulation of inertia friction welding process by finite element method[J]. Welding Journal,2003,82(3):65-70.
    [38]李付国,张聪敏,段立宇等.GH4169合金惯性摩擦焊接规范与成型性能[J].焊接学报,2001,23(1):30-33.
    [39]李付国,聂蕾,李庆华等.GH4169合金惯性摩擦焊接过程组织计算与预测[J].焊接学报,2002,23(1):30-33.
    [40]Zhang L W, Liu C D. Numerical simulation of inertia friction welding process of GH4189 alloy[J]. J. Phys. ⅣFrance,2004,120:681-687.
    [41]张立文,齐少安等.GH4169高温合金惯性摩擦焊接温度场的数值模拟[J].机械工程学报,2002.38(增刊):200-202.
    [42]张全忠,张立文,刘伟伟等.空心轴件惯性摩擦焊接过程塑性区演化的数值模拟研究[J].塑性工程学报,2007,14(6):200-204.
    [43]McClure J C.A thermal Model of Friction Stir Welding[J].Trends in Welding Research,1999,62(7):25-29.
    [44]Seidel T U,Reynolds A P. Visualization of the material flow in AA2195 friction stir welds using a marker insert technique[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32(11):2879-2884.
    [45]Seidell.etc.2-dimensional CFD modeling of flow round profiled FSW tooling[J]. In:TMS Annual Meeting.San Diego,2003,13-22.
    [46]A Askari,S Silling,B London.Modeling and analysis of friction stir welding processing[J].Friction Stir Welding and Processing,TMS,Warrendale,PA,2001,43-54.
    [47]C.M.Chen,R.Kovacevic.Finite element modeling of friction stir welding thermal and thermomechanical analysis[J].International Journal of Machine Tools&Manufacture.2003,43(13):1319-1326.
    [48]Ulysse P.Three-dimensional modeling of the friction stir-welding process[J]. International Journal of Machine Tools&Manufacture.2002,42(14):1549-1557.
    [49]Chen C,Kavacevic R.Thermomechanical modeling and force analysis of friction stir welding by the finite element method[J].Journal of Mechanical Engineering sience.2004,218(5):509-518.
    [50]Schmidt H,Hattel J.A local model for the thermomechanical renditions in friction stir welding[J].Modeling and simulation in materials science and engineering,2005,13(1):77-93.
    [51]汪建华,姚舜,魏良武等.搅拌摩擦焊接的传热和力学计算模型[J].焊接学报,2000,21(4):61-64.
    [52]王大勇,冯吉才,王攀峰.搅拌摩擦焊接热输入数值模型[J].焊接学报,2005(3):15-17.
    [53]王希靖,郭瑞杰,阿荣,韩晓辉.铝合金薄板搅拌擦焊温度场模型[J].电焊机2004(5):116-119.
    [54]陈影.铝合金5083/镁合金AZ31异种金属搅拌摩擦搭接焊及连接机理研究[D].大’连交通大学博士学位论文,2012,1.
    [55]张忠科.搅拌摩擦焊接过程的多场检测及耦合关键问题研究[D].兰州理工大学博士学位论文,2009,10.
    [56]王非凡,李文亚,陈亮.轴向压力对惯性摩擦焊的影响数值分析[J].焊接学报,2012,33(2):41-44.
    [57]王高见,凌泽民,康丹丹.径向摩擦焊热输入数值模型的研究[J].热加工工艺,2010,39(11):158-160
    [58]张斌,韩佳玲.涡轮增压器转子轴摩擦焊焊接区强度的有限元分析[J].机械工程师, 2008(11):142-143.
    [59]王揩.GH4169合金惯性摩擦焊工艺及有限元数值模拟研究[D].西北工业大学,2007.
    [60]鄢东洋.铝合金薄壁结构搅拌摩擦焊热-力学过程的研究及模拟[D].清华大学博士学位论文,2010,4
    [61]李兵.6063铝合金薄板搅拌摩擦焊接工艺及机理的研究[D].东北大学博士学位论文,2009,1
    [62]陈亮,李文亚,马铁军等.基于ABAQUS二次开发TC4线性摩擦焊过程的数值模拟[J].中国有色金属学报,2010(10):348-351.
    [63]黄厚诚,王秋良.热传导问题的有限元分析[M].北京:科学出版社,2011.
    [64]苏航,杨才福.热力学、动力学计算机在钢铁材料研究中的应用[M].北京:科学出版社2012.
    [65]陈明祥.弹塑性力学[M],北京:科学出版社.2010.
    [66]王广春.金属体积成形工艺及数值模拟技术[M].北京:机械工业出版社,2010.
    [67]曹红奋,梅国梁.传热学[M].北京:人民交通出版社,2004.
    [68]杨世铭,陶文铨等.传热学[M].北京:高等教育出版社,2003.
    [69]刘劲松,肖寒,段小亮.Simufact在材料成型与控制工程中的应用[M].北京:中国水利水电出版社,2012.
    [70]张强,马永,李四超.基于Python的ABAQUS二次开发方法与应用[J].舰船电子工程,2011(2):131-134.
    [71]中国航空材料手册编辑委员会.中国航空材料手册(第二版)[M].北京:中国标准出版社.2002.
    [72]杜随更,段立宇,吴诗悼等.摩擦焊接初始阶段的摩擦机制及摩擦系数[J].机械科学与技术,1997,16(4):703-707.
    [73]程元义,柯黎明,陈玉华.工艺参数对碳钢摩擦焊接头塑形金属流动的影响[J].热加工工艺,2011,40(13):123-1125.
    [74]朱海,郭艳玲,许明等.刹车减速度对摩擦焊接头韧性的影响[J].热加工工艺,2008,37(9):75-77.
    [75]章争荣,肖小亭等.轴对称体扭压成形过程的热力耦合有限元分析[J].金属成形工艺,1998,(3):37-40.
    [76]才荫先.摩擦焊加热过程中变形层和高温区的扩展过程[J].焊接学报,1984,15(2):60-68.
    [77]陈中奎,施法中.板料冲压成形过程中起皱的数值模拟[J].机械工程学报,2001,37(1):24-26.
    [78]谭立军,姚泽坤,秦春.变形温度对摩擦焊件显微组织与拉伸性能的影响[J].塑性工程学报,2010,17(3):158-161.
    [79]姬书得,刘建光,张利国等.焊接工艺参数对FGH96合金惯性摩擦焊过程材料塑性流动行为的影响[J].机械工程学报,2012.48(12):69-73.
    [80]陈大军,徐晓菱,徐元泽等.K418涡轮盘与42CrMo轴异种材料惯性摩擦焊研究[J].焊接,2008,6:58-60.
    [81]张屹林,高占雨.锻钢活塞摩擦焊工艺研究[J].焊接,2008,12:43-46.
    [82]沈洋,何晓梅,吕爽等.搅拌摩擦焊数值模拟的现状[J].材料导报,2007,21(5): 223-225.
    [83]林松毅,王晓丽,刘静波等.多元线性回归正交设计优化啤酒酵母蛋白酶解工艺[J].吉林大学学报(工学版),2007,39(5):1229-1233
    [84]赵尧军,周岱,李磊.基于显式时间离散CBS有限元法的流场数值模拟[J].上海交通大学学报,2010,44(1):68-73.
    [85]李文亚,陈亮,余敏.GH4169合金惯性摩擦焊接头温度场显式有限元数值模拟[J].焊接学报,2011,32(6):61-63
    [86]金华,戴金海,陈琪锋.基于回归正交试验设计的弹翼结构优化设计[J].计算机仿真,2007,24(10):42-44
    [87]李金民,周东.双金属气门连续驱动摩擦焊焊接工艺分析[J].内燃机配件,2009,3:25-27.
    [88]姚青虎,杜茂华,贾瑞灵.1Cr18Ni9Ti连续驱动摩擦焊摩擦行为初步研究[J].热加工工艺,2012,49(19):173-175.
    [89]殷鹏飞,张蓉,熊江涛等.搅拌摩擦焊准稳态温度场数值模拟[J].西北工业大学学报,2012,30(4):622-626.
    [90]刘磊超,董湘怀,李从心.基于耦合无网格-有限元法的金属成形过程数值模拟[J].塑性工程学报,2008,15(5):32-36.
    [91]赵柏森,王怀建,李海峰.金属塑性成形工艺有限元数值模拟技术[J].热加工工艺,2010,39(7):86-90.
    [92]李勇,陈一胜,朱应禄.金属塑性变形过程的刚(粘)塑性有限元数值模拟[J].上海有色金属,2007,28(1):1-4.
    [93]Moal, A., Massoni, E. and Chenot, J.-L. A finite element modelling for the inertia welding process, in Proc. of Int. Conf. on Computational Plasticity (Eds. D. R. J. Owen, E. Onate and E. Hinton), Vol.1, Pineridge Press, Barcelona,1992,289-300.
    [94]V. Balasubramanian, L.Youlin, T.Stotler, J. Crompton, N. Katsube,W. Soboyejo, An energy balance method for the numerical simulation of inertia welding, Mater. Manuf. Process 369 (5)(1999) 755-773.
    [95]马彩霞,李文亚,陈亮等.工艺参数对线性摩擦焊接45#钢温度场及轴向缩短量影响的数值模拟分析[J].航空制造技术,2011,1/2:127-131.
    [96]李长生,刘相华,王国栋等..棒线材连轧过程轧件温度场的有限元解析[J].塑性工程学报,1998,5(2):80-84.
    [97]张玉峰,朱以文,丁宇明.有限元分析系统ABAQUS中的特征技术[J].工程图学学报,2006,5:142-148.
    [98]杨桂芳,罗会信,林刚.基于ABAQUS的自由辊温度场及热应力场分析[J].机械工程师,2009,9:82-83.
    [99]司马俊华,张世联.非稳态导热温度场及热应力的有限元计算[J].船舶力学,2006,10(4):98-104.
    [100]黄鹏,魏兴钊.用三维有限元求解金属淬火过程的换热系数[J].材料科学与工艺,2008,16(2):204-207.
    [101]向勇,谭建平.棒材热轧过程的三维温度场有限元分析[J].中南大学学报(自然科学版),2008,39(6):1232-1266.
    [102]高建红,黄传清,王敏等.基于ANSYS的热轧工作辊温度场的有限元分析[J].塑性工程学报.2009,16(03):218-221.
    [103]谭险峰,张华.焊接温度场和应力场的热弹塑性有限元分析[J].塑性工程学报.2004,11(05):71-74.
    [104]陈建波,罗宇,龙哲.大型复杂结构焊接变形热弹塑性有限元分析[J].焊接学报,2008,29(4):69-72.
    [105]徐小帆,刘利,关志科.钢轨闪光对焊温度场分布的有限元分析[J].上海交通大学学报.2008,42(05):778-781.
    [106]张根元,陈洪莲,徐迈里.轴对称件闪光对焊温度场有限元分析[J].热加工工艺,2007,36(15):85-87.
    [107]张晓敏,彭向和.热力耦合问题的本构方程[J].重庆大学学报(自然科学版),2006,26(6):111-114.
    [108]邓华,段建辉,黄平等.非稳态轧制过程的热力耦合刚塑性有限元模拟[J].中国机械工程,2008,19(15):1875-1878.
    [109]鄢东洋,史清宇,吴爱萍等.搅拌摩擦焊接的热力耦合分析模型[J].机械工程学报,2010,46(16):106-112.
    [110]王磊,朱建军.摩擦搅拌焊接过程热力耦合数值模拟[J].系统仿真学报,2011,23(5):881-885.
    [111]李勇,许方,朱应禄.金属塑性变形过程的刚(粘)塑性有限元数值模拟[J].南方金属,2007,2:21-24.
    [112]曾伟,邓子玉,张立平.热力耦合刚粘塑性有限元模拟技术的研究[J].沈阳工业学院学报.2003,22(3):69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700