用户名: 密码: 验证码:
锥结构光纤传感器的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电子技术的飞速发展以及1550nm波长的低损耗单模光纤的诞生,光纤通信和光纤传感技术已经成为通信及传感领域的最热门研究技术,特别是光纤传感技术已广泛应用于航空航天、石油勘探开采和生物医学等领域。这类器件不仅具有高探测灵敏度而且可实现高温、高湿及高电磁辐射等苛刻环境条件长期工作。光纤传感器相对于电类传感的另一优势是可用于分布式传感,这种技术是物联网技术的重要组成部分。
     锥形光纤尺寸小、制备工艺简单,对温度、压力、折射率等具有超高的灵敏度,不仅广泛应用于医学、近场光学显微镜以及光孤子通信,而且还可以作为高效传感元件,其特性及其应用愈来愈受到重视。本论文对锥结构光纤传感器的制备、传感特性以及应用做了深入系统的研究,工作主要有以下几方面:
     1.利用电弧放电熔融拉锥技术,制作了一种紧凑新颖的光纤模式干涉仪传感探头。干涉仪的尺寸可以通过电弧放电电流的大小、熔融拉锥时间,以及熔接机电机的移动速度来控制,实验制作出最小有效传感区域长度仅为约310微米,并证实这种反射型干涉仪的反射光谱依赖于光纤探头的尺寸和形貌。
     反射型光纤锥模式干涉仪还具有优良的高温性能和机械稳定性,我们利用不同干涉衰减峰对环境微扰的不同响应,实现了在温度高达1000℃的苛刻环境中横向负载和高温的同时测量。
     2.采用偏芯熔接法制备了基于双J型细纤芯锥结构的光纤马赫增德尔干涉仪(DJTC),测试了其对温度和环境折射率反映特性,并利用这种结构实现了温度和折射率同时传感。
     同时,对于此种结构,理论上详细的分析了其工作机制以及双参数传感的可行性,并在实验上获得了和理论一致的实验数据,给出了温度和折射率同时传感的传输矩阵。
     3.理论上,详细阐述和分析了电光探测技术和逆压电效应增强电压灵敏度的原理。实验上,摸索了ZnO多晶薄膜的磁控溅射生长条件,并采用磁控溅射方法,制备出基于ZnO薄膜的锥形光纤电场传感器。利用其较大的压电性能,提高了其在电光探测中的电压灵敏度,特别是在逆压电共振频率附近,提高电压灵敏度两个量级以上。
With the rapid development of Optoelectronic Technology and theemergence of1550nm low loss single-mode optical fiber, technology ofoptical fiber communication and optical fiber sensing has become themost popular research technical communication and sensing fields.
     And especially, optical fiber sensing technology has been Widely usedin aerospace, oil exploration and exploitation and biomedical fields.
     It not only has high detection sensitivity, but also can realize tolong-term work at High temperature, high humidity and highelectromagnetic radiation and other harsh environmental conditions.
     Relative to the Electrical sensing technology, another advantage ofoptical fiber sensing technology is that it can be used to the distributedsensor system. This distributed sensor system is an important part of theInternet of things technology.
     Tapered fiber has small size and simple preparation process. It hasultra high sensitivity to temperature, pressure, refractive index, and notonly was widely used in medicine, near field optical microscopy andoptical soliton communication, but also was used as efficient sensingelement. The characteristic and application of tapered fiber have gotmore and more attention.
     This paper dose an in-depth study in the constructure of optical fibersensor preparation, sensor characteristics and application. The workmainly in the following aspects:
     A compact fiber tip modal interferometer (FTMI) based ontwo-wave interference has been demonstrated.
     Its fabrication process is very simple, just involving fiber taperingby a fusion splicer. The effective sensing area of the FTMI has a smalllength of~310μm.
     The interference spectra of the fiber tips depend on the size andprofile of the fiber sensor.
     The FTMI has a good mechanical strength and high-temperaturestability. And different attenuation peaks have different response to theenvironment changes.
     It can be used for high-temperature and transverse load sensingsimultaneously in a harsh environment when two different attenuationpeaks are chosen to be monitored.
     An single-mode-fiber Mach–Zehnder interferometer (MZI) bycascading two “double-J” shape thinned core structures forsimultaneous measurement of temperature and surroundingrefractive index (SRI) has been achieved.
     The “double-J” shape thinned core structure is fabricated by fusionsplicing two sections of single-mode fibers with large lateral offset.
     At the same time, we analyses the work mechanism and thefeasibility in detail to sensor to double parameters. The experimentalresults and the theoretical results are accordant. The relationshipbetween these variables is expressed in the form of matrix.
     Zinc oxide films prepared by magnetron sputtering are introducedto the electro-optical detection to improve the voltage sensitivity. Withthe help of large piezoelectric effect, ZnO films make up for thedeficiency of the low electro-optical coeffcient.
     In this paper, we preparated tiper fiber electric field sensor based onZinc oxide films. We illustrated the mechanism of piezo-inducedenhancements, and measured the electric signals on the line of coplanarwaveguides.
     This method breaks through the limit of material species foropto-electronically responsive sensing, and shows promisingapplications in optical detection.
引文
[1]王少辉,严英占,姜国庆等。锥形光纤的制备和理论分析,纳米科技,2009.211~13.
    [2]薛春荣,侯海红。锥形光纤的结构与特性,激光与红外,2007.9:882~884.
    [3]张瑞峰,葛春风等。熔锥型全波耦合器,物理学报,2003,2(52).
    [4] Lou Q H,Zhou J,Wang Zh J. Analysis of high-power fiber laserweapons. Laser Technology,2003,27(3):16~165.
    [5] Lei J Sh, Huang Zh M, Guo Zh H. Application of optical fiberamplifier for satellite laser communication. Laser Technology,2001,25(5):378~381.
    [6] Qian J R, Liu F, Su J. Investigation of frequency null-drift inpolarimetric fiber laser current sensors. Chinese Journal ofLasers,2006,33(6):791~794.
    [7] Govmd P.Agrawa1.Applications of Nonlinear Fiber Opties. SanDiego: Academic Press, Ineoworated,2001.
    [8] Meng H Y, Liao J H, Guan B G, etc. Fiber laser cutting technologyon coronary artery stent. Chinese Journal of Laser,2007,34(5):733~736.
    [9]黄祝明,张国平,光纤锥探针传输特性的研究,物理与工程[J],2000,2(12):45-47.
    [10]薛春荣,祝生祥,肖志刚,张玉香,直锥形光纤传输性质的研究,应用光学[J],2004,25(3):45-49.
    [11]陆颖,王吉有,徐晓轩等,微球与锥形光纤耦合系统的光学特性,南开大学学报(自然科学)[J],2000,4(33):6-10.
    [12]薛春荣,祝生祥,肖志刚,锥形光纤间的耦合特性,光子学报[J],2004,7(33):803-805.
    [13] Yang H M, Anoptimum approach for fabrication of taperedhemispherical-end fiber for laser module packaging[J], ElectronicMaterials,2001,30(3):271-274.
    [14]刘雪峰,孙军强,黄德修,光纤放大器泵浦光高效率注入方式的研[J],光通信技术,1994,18(1):35-38.
    [15]薛春荣,汪洁,吴文娟,光纤型光可变衰减器的探索,激光与红外[J],2005,35(4)期:35-37.
    [16] H.Y.Meng, W.Shen, G.B.Zhang, X.W.Wu, W.Wang, C.H.Tan, andX.G.Huang, Michelson interferometer-based fiber-optic sensing ofliquid refractive index. Sensors and Actuators B-Chemical.2011,160(1),720-723.
    [17] A.zhou, G.P.Li, Y.H.Zhang, Y.Z.Wang, C.Y.Guan, J.Yang, andL.B.Yuan, Asymmetrical twin-core fiber based Michelsoninterferometer for refractive index sensing. Journal of LightwaveTechnology,2011,29(19),2985-2991.
    [18] L.M.N.Amaral, O.Frazao, J.L.Santos, and A.B.L.Ribeiro,Fober-optic inclinometer based on taper michelson interferometer.IEEE Sensors Journal,2011,11(9),1811-1814.
    [19] D.W.Kim,Y.Zhang,K.L.Cooper,and A.B.Wang,In-fiberreflection mode interferometer based on a long-period grating forextermal refractive-index measurement. Applied Optics,2005,44(26),5368-5373.
    [20] T.Wei,X.W.Lan,and H.Xiao,Fiber inline core-cladding-modeMach-Zehnder interferometer fabricated by two-point CO2laserirradiations,IEEE Photonics Technology Letters,2009,21(9-12),669-671.
    [21] Z.B.Tian,S.S.H.Yam,J.Barnes,W.Bock,P.Greig,J.M.Fraser,H.P.Loock,and R.D.Oleschuk, Refractive index sensing with Mach-Zehnderinterferometer based on concatenating two single-mode fibertapers.IEEE Photonics Technology Letters,2008,20(5-8),626-628.
    [22] J.H.Lim, H.S.Jang, K.S.Lee, J.C.Kim, and B.H.Lee,Mach-Zehnder interferometer formed in a photonic crystal fiberbased on a pair of long-period fiber gratings. Optics Letters,2004,29(4),346-348.
    [23] J.Zhang,X.G.Qiao,T.A.Guo,Y.Y.Weng,R.H.Wang,Y.Ma,Q.Z.Rong,M.L.Hu,and Z.Y.Feng, Highly sensitive temperature sensor usingPANDA fiber Sagnac interferometer. Journal of LightwaveTechnology,2011,29(24),3640-3644.
    [24] K.Wada, H.Narui, D.Yamamoto, T.Matsuyama, and H.Horinaka,Balanced polarization maintaining fiber Sagnac interferometervibration sensor. Optics Express,2011,19(22),21467-21474.
    [25] H.P.Gong, C.C.Chan, L.H.Chen, and X.Y.Dong, Strain sensorrealized by using low-birefringence photonic-crystal-fiber-basedSagnac loop, IEEE Photonics Technology Letters,2010,22(16),1238-1240.
    [26] O.Frazao, J.M.Baptista, J.L.Santos, and P.Roy, Curvature sensorusing a highly birefringent photonic crystal fiber with two asymmetric hole regions in a sagnac interferometer. applied optics,2008,47(13),2520-2523.
    [27] K.MZhou, Z.J.Yan, L.Zhang, and I.Bennion, refractometer basedon fiber bragg grating fabry-perot cavity embedded with a narrow microchannel. Optical Express,2011,19(12),11769-11779.
    [28] J.Liu, Y.Z.Sun, D.J.Howard, G.Frye-mason, A.K.Thompson,S.J.Ja,S.K.Wang, M.Bai, H.Taub, M.Almasri, and X.D.Fan, Fabry-perot cavity sensors for multipoint on-column micro gas chromatography detection. Analytical chemistry,2010,82(11),4370-4375.
    [29] W.Yuan, F.Wang, A.Savenko, D.H.Petersen, andO,Bang, optical fiber milled by focused ion beam and its application for fabry-perot refractive index sensors. Review of scientific instruments,2011,82(7).
    [1] Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity on opticalfibre waveguides: application to reflection filter fabrication [J]. Appl.Phys. Lett,1978,32(10):647-649.
    [2] Malo B, Hill K O, Bilodeau F, et al. Point-by-point fabrication ofmicro-Bragg gratings in photosensitive fiber using single excimerpulse refractive index modification techniques [J]. Electron. Lett,1993,29(18):1668-1669.
    [3] Lemaire P J, et al. High-pressure H2load as a technique for achievingUV photosensitivity and thermal sensitivity in GeO2doped opticalfibres [J]. Electron. Lett.,1993,29:1191-11193.
    [4] Rao Y J, Recent progress in fiber-optic extrinsic Fabry–Perotinterferometric sensors [J], Opt. Fiber Technol.,2006,12:227–237.
    [5] James S W and Tatam R P, Optical fibre long-period grating sensors:characteristics and application [J]. Meas. Sci. Technol.,2003,14:R49–R61.
    [6] López-Higuera J M, Member S, et al. Fiber Optic Sensors inStructural Health Monitoring [J]. J. Lightwave Technol,2011,29(4):587-608.
    [7] Majumder M, Gangopadhyay T K, et al. Fibre Bragg gratings instructural health monitoring-Present status and applications [J].Sensor. Actuat. A: Phys,2008,147:150-164.
    [8] Leblanc M, Vohra S T, et al. Transverse load sensing by use ofpi-phase-shifted fiber Bragg gratings [J]. Opt. Lett.,1999,24(16):1091-1093.
    [9] Chi H, Tao X M, et al. Simultaneous measurement of axial strain,temperature, and transverse load by a superstructure fiber grating [J].Opt. Lett.,2001,26(24):1949-1951.
    [10] Rao Y J, Wang Y P, et al. Novel fiber-optic sensors based onlong-period fiber gratings written by high-frequency CO2laser pulses,[J]. J. Lightwave Technol,2003,21(5):1320-1327.
    [11] Wang Y P, Wang D N, et al. Asymmetric transverse-loadcharacteristics and polarization dependence of long-period fibergratings written by a focused CO2laser [J]. Appl. Opt.,2007,46(15):3079-3095.
    [12] Mihailov S J, Smelser C W, et al. Fibre Bragg gratings made with aphase mask and800-nm femtosecond radiation [J]. Opt. Lett,2003,28(12):995-997.
    [13] Smelser C W, Mihailov S J, Grobnic D, et al. Formation of type I-IRand type II-IR gratings with an ultrafast IR laser and a phase mask [J].Opt. Express.2006,13(14):5377-5386.
    [14] Yuhua L, D. N. Wang, Long Jin. Single-mode grating reflection inall-solid photonic bandgap fibers inscribed by use of femtosecondlaser pulse irradiation through a phase mask [J]. Opt. Lett,2009,34(8):1264-1266.
    [15] Chen C, Yu Y S, et al. Reflective optical fiber sensors based ontilted fiber Bragg gratings fabricated with femtosecond laser [J], J.Lightw. Technol.,2013,31(3):455-460.
    [16] Chen C, Yu Y S, et al. Monitoring thermal effect in femtosecondlaser interaction with glass by fiber Bragg grating [J], J. Lightw.Technol.,2011,29(14):2126-2130.
    [17] Jewart C M, Wang Q Q, et al. Ultrafast femtosecond-laser-inducedfiber Bragg gratings in air-hole microstructured fibers forhigh-temperature pressure sensing [J], Opt. Lett.,2010,35(9):1443-1445.
    [18]陈超. Bragg光纤光栅飞秒激光微纳制备及其应用研究[D].长春:吉林大学电子科学与工程学院.2010.
    [19] Chen T, Chen R Z, et al. Regenerated gratings in air-holemicrostructured fibers for high-temperature pressure sensing [J], Opt.Lett.,2011,36(18):3542-3544.
    [20] Kim H M, Kim T H, et al. Enhanced transverse load sensitivity byusing a highly birefringent photonic crystal fiber with largerair holeson one axis [J], Appl. Opt.,2010,49(20):3841-3845.
    [21] Geernaert T, Luyckx G, et al. Transversal load sensing with fiberBragg gratings in microstructured optical fibers [J], IEEE Photon.Technol. Lett.,2009,21(1):6-8.
    [22] Wu C, Fu H Y, et al. High-pressure and high-temperaturecharacteristics of a Fabry–Perot interferometer based on photoniccrystal fiber [J], Opt. Lett.,2011,36(3):412-414.
    [23] Ma J, Ju J, Jin L, et al. Fiber-tip micro-cavity for temperature andtransverse load sensing [J], Opt. Express.2011,19(13):12418-12426.
    [24] Ferreira M S, Coelho L, et al. Fabry–Perot cavity based on adiaphragm-free hollow-core silica tube [J], Opt. Lett.,2011,36(20):4029-4031.
    [25] Chen C, Yu Y S, et al. Compact fiber tip modal interferometer forhigh-temperature and transverse load measurements [J], Opt. Lett.,2013,38(17):3202-3204.
    [26] Yang R, Yu Y S, et al. Single S-tapered fiber Mach–Zehnderinterferometers [J], Opt. Lett.,2011,36(23):4482-4484.
    [27]石顺祥,王学恩,刘劲松.物理光学与应用光学.西安[M].西安电子科技大学出版社,2008.
    [28] Choi H Y, Kim M J, et al. All-fiber Mach-Zehnder typeinterferometers formed in photonic crystal fiber [J], Opt. Express.2007,15(9):5711-5720.
    [29] Ding M, Wang P F, et al. A microfiber coupler tip thermometer [J],Opt. Express.2012,20(5):5402-5408.
    [30] Vengsarkar A M, Michie W C, et al. Fiber-optic dual-techniquesensor for simultaneous measurement of strain and temperature [J], J.Lightw. Technol.,1994,12(1):170-177.
    [31] Shi J, Xiao S L, et al. Discrimination between strain andtemperature by cascading single-mode thin-core diameter fibers [J].Appl. Opt.,2012,51(14):2733-2738.
    1. C. Chen, Y. S. Yu, R. Yang, L. Wang, J. C. Guo, Q. D. Chen, and H. B. Sun,Monitoring thermal effect in femtosecond laser interaction with glass byfiber Bragg grating, IEEE J Lightwave Technol29(2011),2126-2130.
    2. C. Chen, Y. S. Yu, R. Yang, C. Wang, J. C. Guo, Y. Xue, Q. D. Chen, and H.B. Sun, Reflective Optical Fiber Sensors Based on Tilted Fiber BraggGratings Fabricated With Femtosecond Laser, IEEE J Lightwave Technol31(2013),455-460.
    3. J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q.D. Chen, and H. B. Sun, Compact Long-Period Fiber Gratings WithResonance at Second-Order Diffraction, IEEE Photon Technol Lett24(2012),1393-1395.
    4. J. C. Guo, Y. S. Yu, Y. Xue, C. Chen, R. Yang, C. Wang, Q. D. Chen, and H.B. Sun, Compact Long-Period Fiber Gratings Based on PeriodicMicrochannels, IEEE Photon Technol Lett25(2013),111-114.
    5. Z. Tian, S. S. H. Yam, and H. P. Loock, Refractive index sensor based on anabrupt taper Michelson interferometer in a single-mode fiber, Opt Lett33(2008),1105-1107.
    6. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, Microbubble basedfiber-optic Fabry–Perot interferometer formed by fusion splicingsingle-mode fibers for strain measurement, Appl Opt51(2012),1033-1036.
    7. D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu,In-line all-fibre Fabry–Perot interferometer high temperature sensor formedby large lateral offset splicing, Electron Lett47(2011),1702-1703.
    8. O. Duhem, J. F. Henninot, M. Douay, Study of in fiber Mach–Zehnderinterferometer based on two spaced3-dB long period gratings surroundedby a refractive index higher than that of silica, Opt Commun.180(2000),255-262.
    9. Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P.Loock, and R. D. Oleschuk, Refractive Index Sensing With Mach–ZehnderInterferometer Based on Concatenating Two Single-Mode Fiber Tapers,IEEE Photon Technol Lett20(2008),626-628.
    10.L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, Fiber Mach–Zehnderinterferometer based on microcavities for high-temperature sensing withhigh sensitivity, Opt Lett36(2011),3753-3755.
    11.Y. F. Geng, X. J. Li, X. L. Tan, Y.L. Deng, and Y.Q. Yu, High-SensitivityMach–Zehnder Interferometric Temperature Fiber Sensor Based on aWaist-Enlarged Fusion Bitaper, IEEE Sens J11(2011),2891-2894.
    12.R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, SingleS-tapered fiber Mach–Zehnder interferometers, Opt Lett36(2011),4482-4484.
    13.D. Wu, T. Zhu, K. S. Chiang, and M. Deng, All Single-Mode FiberMach–Zehnder Interferometer Based on Two Peanut-Shape Structures,IEEE J Lightwave Technol30(2012),805-810.
    14.Z. B. Tian, S. S.H. Yam, and H. P. Loock, Single-Mode Fiber RefractiveIndex Sensor Based on Core-Offset Attenuators, IEEE Photon Technol Lett20(2008),1387-1389.
    15.D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, In-fiberMach–Zehnder interferometer formed by large lateral offsetfusion splicing for gases refractive index measurementwith high sensitivity, Sen Actuators B160(2011),1198-1202.
    [1] VALDMANIS J A.1THz-bandwidth prober for high-speed deviceand integrated circuits[J]. Electron. Lett.,1987,23(24):1308-1310.
    [2] SCHNEIDER A, GüNTER P. Measurement of the terahertz-inducedphase shift in electro-optic sampling for an arbitrary biasing phase[J].Applied Optics,2006,45:6598-6601.
    [3] CHEN Z, JIA Gang, YI M. External electro-optic measuring systemwith high spatial resolution and high voltage sensitivity by using anelectro-optic solid immersion probe[J]. Journal of Physics D: AppliedPhysics,2001,34:3078–3082.
    [4] HEUTMAKER M S, HARVEY G T, BECHTOLD P F. Electro-opticsampling of high-speed silicon integrated circuits using a GaAs probetip[J]. Appl. Phys. Lett.,1991,59(2):146-148.
    [5]石顺祥,陈国夫,赵卫,刘继芳.非线性光学[M].西安:西安电子科技大学出版社,2003.
    [6] JIN R L, YANG H, ZHAO D, et al. Optical probing of electric fieldswith an electro-acoustic effect towards integrated circuit diagnosis,Opt. Lett.35,580(2010).
    [7] JIN R L, YANG H, ZHAO D, et al. Tapered and tip-groundedwaveguide electro-optical micro-sensors, IEEE Photon. J.3,57(2011).
    [8] JIN R L, YANG H, YU Y H, et al. Ultrahigh sensitivity electric fielddetection with a liquid electrooptical film, Opt. Lett.36,1158(2011).
    [9] ASHIDA A, NAGATA T, FUJIMURA N. Electro-optical effect inZnO: Mn thin films prepared by Xe sputtering[J]. J Appl Phys,2006,99:013509.
    [10] WACOGNE B, ROE M P, PATTINSON T J, et al.Effective piezoelectric activity of zinc oxide films grown byradio-frequency planar magnetron sputtering[J]. Appl. Phys. Lett.,1995,67(12):1674-1676.
    [11] YANG Y C, SONG C, WANG X H, et al. Giant piezoelectric d(33)coefficient in ferroelectric vanadium doped ZnO films[J]. Appl PhysLett,2008,92:012907.
    [12] SHI W, DING Y J J, MU X D, et al. Electro-optic andelectromechanical properties of poled polymer thin films[J]. ApplPhys Lett,2001,79:3749-3751.
    [13] WINKELHAHN H, WINTER H, NEHER D. Piezoelectricity andelectrostriction of dye-doped polymer electrets[J]. Appl. Phys. Lett.,1994,65(11):1347-1349.
    [14]孙慷,张福学.压电学[M].北京:国防工业出版社,1984.
    [15] BOTTOM V E. Measurement of the piezoelectric coefficient ofquartz Using the Fabry-Perot dilatometer[J]. J. Appl. Phys.,1970,41(10):3941-3944.
    [16] BERTRAM R P, SOERGEL E, BLANK H, et al. Strongelectro-optic effect in electrically poled photoaddressable polymers[J].J. Appl. Phys.,2003,94:6208-6211.
    [17] KHANARIAN G,SOUNIK J, WALTON C, et al. Electro-opticcharacterization of nonlinear-optical guest-host films and polymers[J].J. Opt. Soc. Am. B,1996,13(9):1927-1934.
    [18] AKELAITIS A J P, OLBRICHT B C, SULLIVAN P A, et al.Synthesis and electro-optic properties of amino-phenyl-thienyl donorchromophores[J]. Opt. Mater.,2008,30:1504-1513.
    [19]刘少林.分散红基有机电光薄膜特征及其在电光探测技术中的应用研究[D].吉林:吉林大学电子科学与工程学院,2010.
    [20] CARCIA P F, MCLEAN R S, REILLY M H, et al. Transparent ZnOthin-film transistor fabricated by rf magnetron sputtering[J]. Appl.Phys. Lett.,2003,82:1117-1119.
    [21] JOHNSON M A L, FUJITA S, ROWLAND W H, et al. MBEgrowth and properties of ZnO on sapphire and SiC substrates[J].Journal of Electronic Materials,1996,25(5):855-862.
    [22] MYOUNG J M, YOON W H, LEE D H, et al. Effects of thicknessvariation on properties of ZnO thin films grown by pulsed laserdeposition[J]. Jpn J. Appl. Phys.,2002,41:28-31.
    [23] VALLE G G,HAMMER P,PULCINELLI S H,et a1.Transparentand conductive ZnO:A1thin films prepared by sol-gel dip coating[J].Eur. Cera. Soc,2004,24:1009-1013.
    [24] LIU Y, GORLA C R, LIANG S, et al. Ultraviolet detectors based onepitaxial ZnO films grown by MOCVD[J]. J. Electron. Mater.,2000,29:69-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700