用户名: 密码: 验证码:
软弱夹层顶板巷道围岩稳定与安全控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软弱夹层是巷道掘进经常遇到且十分不利的地质条件,导致在施工安全及长期维护中极易出现顶板离层垮冒等失稳现象,是困扰煤矿顶板安全的重大隐患之一。
     本文以典型软弱夹层顶板巷道施工与支护为工程背景,采用实验室岩块实验、平面应变相似材料模拟实验、数值计算、理论分析、计算机编程和工业性试验相结合的方法,系统研究了软弱夹层的基本性能、软弱夹层顶板巷道围岩稳定性规律,提出了软弱夹层顶板巷道施工安全与围岩稳定控制对策。
     论文分析了软弱夹层的物理化学特性、工程力学特性,研究了软弱夹层各物理力学参数,特别是层位对该类顶板巷道稳定性的影响机理,在实验室典型岩样力学性能测试基础上,重点研究了水作用下泥化泥岩巷道和动压作用下软弱夹层顶板巷道的失稳特征与破坏机理,详细分析了该类顶板巷道围岩稳定的影响因素权重,提出了软弱夹层顶板巷道安全因子的概念,对顶板安全状况进行了等级划分,并利用计算机编程软件判定后给出加强支护方案,建立了软弱夹层顶板巷道安全控制技术体系,最后通过现场典型工程实例进行了实践检验。得到的主要结论如下:
     (1)现场钻孔窥视试验表明,顶板软弱夹层主要由厚度不超过300 mm的薄层泥岩、煤线、裂隙带或节理等岩体构成;通过X衍射实验对泥化泥岩组分分析,发现其粘土成分含量很高,超过70%,亲水性极强,易发生泥化现象,在物理、化学、力学等因素作用下,该类岩体极易风化,力学性质和强度显著降低,巷道危险性大大增加。
     (2)通过实验室破碎岩块水泥浆固结体实验,得出了砂岩、泥岩水泥浆固结体在不同支护方式下内聚力C与内摩擦角φ的变化规律,随支护强度加大,最初岩性较强的破碎岩块固结体C值不断增大,φ值不断减小,而岩性较弱的破碎岩块固结体C值不断减小,φ值不断增大,为现场支护方式选择及效果评价提供有力依据。
     (3)在实验室无水条件岩块力学性质测试基础上,利用FLAC数值计算和理论分析,研究了软弱夹层物理力学性质特别是层位对顶板离层的影响规律,软弱夹层在巷道开挖瞬间失稳,不能继续承载,且其位于锚杆锚固区边缘时顶板离层值最大;结合实验室有水条件下岩块力学性能测试,分析了泥化岩体的泥化特性,并利用FLAC数值计算研究了水作用下泥化泥岩巷道位移场、应力场及渗流场演化规律,巷道位移场受到较大扰动,围岩变形量急剧增加,且变形速度不断加快,水长期作用后锚杆失去锚固作用,围岩承载能力丧失,巷道整体失稳垮冒。
     (4)采用实验室平面应变相似材料模拟试验和理论分析,研究了软弱夹层处于不同层位动压作用下顶板离层垮冒的失稳过程和破坏机理,原岩应力作用下巷道基本保持稳定,但受高应力或动压影响(2~3倍原岩应力)时软弱夹层处明显离层,应力不断增高时巷道很快垮冒;水平应力的增大,加快了软弱夹层处的离层,促使巷道失稳垮冒,验证了数值计算得到的结论。
     (5)针对软弱夹层顶板巷道失稳破坏的特征,详细分析了各影响因素权重并进行了合理分配,提出了软弱夹层顶板巷道安全因子AQ的概念,反映该类顶板巷道的安全等级,共分五级(非常危险、危险、相对安全、较安全、安全),同时利用计算机VB程序编制了软弱夹层顶板巷道安全状况等级的判定软件,在选取加强控制技术时更具针对性,确保巷道安全和围岩稳定。
     (6)建立了软弱夹层顶板巷道安全控制技术体系,主要包括由岩性探测技术、支护监测技术和信息反馈技术组成的软弱夹层顶板巷道安全评判技术体系,以及无水条件下高性能锚杆支护技术和水及动压作用下组合控制技术构成的组合控制技术体系。分别在淮北矿区芦岭矿软弱夹层位于锚杆锚固区边缘无水、许疃矿有水及动压影响典型顶板条件下应用该技术取得良好效果。
Weak intercalated seam is a very disadvantage geologic condition for roadway digging. It makes roadway easy to become separation in roof even falling in safety construction and long maintenance, it is one of the biggest hidden trouble to mining roof safeties.
     Based on the background of roadway construction and support, the paper systemically studies on the basic capability and the stability rule of roadway surrounding rock embedded weak intercalated seam by using the techniques of lab rock block experiment, plane strain similar material simulation experiment, numerical simulation analysis, theory analysis, calculator program and industrial experiment, resulting in bringing forward the countermeasure of the roadway safety construction and surrounding rock stability.
     The thesis analyzes the physical and chemical characteristic of weak intercalated seam, and studies its physical and mechanics parameters, especially the location which influences on roadway roof stability. On the basis of lab testing mechanical character, put emphasis on studying stability-lost character and failure mechanism for mud-rock roadway in the effect of water and weak intercalated seam roof roadway in the effect of dynamic pressure.
     Particularly analyze the weighing of each influence factor on stability of weak intercalated seam roof roadway. Bring forward the new concept of safety factor for weak intercalated seam roof roadway, and measure off the rank of safety status. Via computer VB program the safety rank is evaluated before making some strength support scheme. Establish safety control technique system aimed at weak intercalated seam roof roadway. At last, make checkout by typical project examples. The main conclusions are as follows:
     (1)By means of locale drill hole observation, it can be found that weak intercalated seam of the roof are mainly made of thin muddy rock, coal line, crack belt or cleat and so on, which is less than 300 mm; Through X-Ray diffraction experiment to analyze the component of mudded muddy rock , it can be found that the composition of the clay is high, more than 70 percent, it is apt to combined with water and easy to be mudded; Under the effect of chemistry, physics, mechanics and other factors, this kind muddy rock is quite easy to be weathered, resulting in its mechanics character and strength decreased seriously, the danger of roadway increases greatly.
     (2)By experiment of fractured rock mass’s cement mortar in lab, it obtains the changing rules of cohesion C and friction angleφfor cemented concretion of sandstone and mud-rock in the circumstance of different supports. With support strengthened, the stronger rock’s cemented concretion C is increasing, andφis decreasing. But the weaker rock is contrary. It provides strong conduction for support selection and value in the locale engineering practice.
     (3)On the basis of testing mechanical character of rock blocks without water in the lab, by ways of FLAC numerical simulation and the theory analysis, the physical and mechanical characters have been researched, especially influence rule on separation of weak intercalated seam location. Weak intercalated seam losses stability instantly and could not load while digging the roadway. The biggest separation occurred when weak intercalated seam is at the edge of bolt support region. By the rock test with water, analyze mudded character of the mudded rock, and research displacement field, stress field and seepage field of mudded roadway in the effect of water by FLAC numerical simulation. The displacement field has been largely disturbed by the water effect. The displacement of surrounding rock has been sharply increasing while the deformation velocity is accelerating continually. After the long-term effect, the support doesn’t have any function more, the surrounding rock lost bearing capacity and then the whole roadway is unstable and collapse.
     (4)By means of the similar material simulation experiment of plane strain in the lab, the unstable process that the weak intercalated seam under different places and dynamic pressure has bed-separation and collapse has been researched. It is can be acknowledged that this kind roadway under the initial stress can keep stability after bolt support, but weak intercalated seam presents the obvious separation in the circumstance of high stress or dynamic pressure (double or treble initial stress). As the stress increased, the roadway will soon fall; with the horizontal stress increased continuously, its separation becomes larger, leading to accelerating stability-lost and fall. It also proves the conclusion of numerical simulation.
     (5)Aiming at stability-lost character and failure mechanism of weak intercalated seam, detailedly analyzes the weighing of each influence factor and assign the weighing reasonable, and put forward the conception of safety factor AQ which stands for the safety rank, five ranks in all (more dangerous, dangerous, safe, safer, safest). At the same time achieve the safety rank evaluation of roadway roof of this kind by the computer VB program. So it can have more pertinence in adopting various strength control technology for the roadway safety.
     (6)Establish safety control technique system of weak intercalated seam roof roadway. It mainly includes roof safety evaluation technique and combination control technique system. The former is made up of lithology Exploration technology, support monitor technology and data processing and feedback technology; the latter consists of support technology of pretensioned force and high-powered bolt without water and combined control technology under dynamic pressure and water action. It is applied in the locale project’s practice in the typical conditions of Huaibei diggings like weak intercalated seam at the edge of bolting-support region, where is under the circumstance of no water (Luling Coal Mine), water and even the dynamic pressure (Xutuan Coal Mine), making good achievement.
引文
[1] 杨起.我国煤炭资源开发利用应重视的几个问题[J].中国科学院院刊,1996(2):125-126.
    [2] 徐 剑 . 2006 年 世 界 能 源 消 费 结 构 统 计 [EB/OL] . 环 球 能 源 网 . [2007-06-19]. http://www.worldenergy.com.cn/StatisticsData/2007/0619/content16906.htm.
    [3] 国家发展改革委员会.中华人民共和国能源发展“十一五”规划.2007 年 4 月.
    [4] 温家宝.中华人民共和国政府工作报告(2007 年).第十届全国人民代表大会第五次会议.2007年 3 月 5 日.
    [5] 百度知道.哲学·分析矿难频发的原因及启示[EB/OL].[2007-12-31]http://zhidao.baidu.com/ question/ 42787970.html.
    [6] 王矩谷,张伟才等著.不同沉积类型泥炭的研究[M].西安:陕西人民出版社,1987.
    [7] 彭格林,张则有,伍大茂等著.厚层泥炭的形成与现代聚煤作用[M].长沙:中南工业大学出版社,1994.
    [8] 刘听成主编.岩石力学有关名词解释[M].北京:煤炭工业出版社,1986.
    [9] Л.П.涅菲捷耶娃著[苏联],王在霞译,赵福宁校.煤岩成分与煤层形成环境[M].北京:煤炭工业出版社,1959.
    [10] I.W.法默著,田家裕等译.煤矿地下结构[M].北京:煤炭工业出版社,1990.
    [11] S.S.彭著[美国],高博彦,韩特译.煤矿地层控制[M].北京:煤炭工业出版社,1984.
    [12] A.Salvador 主编[美国],金玉玕等译.国际地层指南:地层分类、术语和程序[M].北京:地质出版社,2005.
    [13] 谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [14] 李刚.层状结构顶板破坏机理及其规律研究[D].阜新:辽宁工程技术大学,2005.
    [15] 钱鸣高,缪协兴,许家林等著.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [16] 钱鸣高,刘听成主编.矿山压力及其控制[M].北京:煤炭工业出版社,1989.
    [17] 钱鸣高,石平五主编.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [18] 孙广忠著.岩体结构力学[M].北京:科学出版社,1988.
    [19] 沈明荣主编.岩体力学[M].上海:同济大学出版社,1999.
    [20] 孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [21] 周维垣.高等岩石力学[M].北京:水利电力出版社,1993.
    [22] 朱子良.淮北矿区煤巷高性能预拉力锚杆支护安全可靠性研究[D].徐州:中国矿业大学,2007.
    [23] 倪建明,李桂臣,王成.淮北矿区煤巷锚杆支护技术安全管理浅谈[J/OL].中国科技论文在线,http://www.paper.edu.cn,文章编号:200710-49,发表日期:2007 年 10 月 9 日.
    [24] 陈炎光,陆士良主编.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [25] 贾明魁.锚杆支护煤巷冒顶成因分类新方法[J].煤炭学报,2005,30(5):568-570.
    [26] 官山月,贾明魁.锚杆支护巷道软弱夹层位置与顶板稳定性关系研究[J].中国煤炭,32(11):34-36.
    [27] 张鹏飞,彭苏萍等编著.含煤岩系沉积环境分析[M].北京:煤炭工业出版社,1993.
    [28] 窦林名,邹喜正,曹胜根等编著.煤矿围岩控制与监测[M].徐州:中国矿业大学出版社,2007.
    [29] 岑传鸿.巷道顶板事故的类型及预防[J].矿山压力与顶板管理,1990,2:39-41.
    [30] 何国光.巷道顶板事故的分类与防治[J].矿山压力与顶板管理,1990,4:38-40.
    [31] 高宇,高正国.巷道顶板事故防治的探讨[J].煤矿安全,2003,8:29-30.
    [32] 李建森,唐智勇,朱钊兴.常见巷道顶板事故的防治[J].现代职业安全,2004,12:51.
    [33] 熊晓英,李俊斌.地质构造引发采面冒顶事故原因分析与防治技术[J].煤炭技术,2003,22(10):94-95.
    [34] 唐朝华.复合型顶板冒顶机理分析及预防措施[J].煤矿开采,2004,9(3):74-75.
    [35] 石印宗.煤巷锚杆支护冒顶事故的类型及预防[J].煤矿开采,2005,10(5):39-40.
    [36] 李必传.煤巷锚杆支护巷道冒顶原因浅析[J].矿业快报,2003,5:17-18.
    [37] 漆泰岳著.锚杆与围岩相互作用的数值模拟[M].徐州:中国矿业大学出版社,2002.
    [38] 陆士良,汤雷,杨新安著.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [39] R.施查克[挪威]等著,张卫国,吴红译.锚杆支护实用手册[M].北京:煤炭工业出版社,1990.
    [40] 马其华,樊克恭,郭忠平等.锚杆支护技术发展前景与制约因素[J].中国煤炭,24(5):21-24,59.
    [41] 侯朝炯,郭励生,勾攀峰等著.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [42] 康红普,王金华等著.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
    [43] 张农,袁亮.离层破碎型煤巷顶板的控制原理[J].采矿与安全工程学报,2006,23(1):34-38.
    [44] 候朝炯等编著.巷道金属支架[M].北京:煤炭工业出版社,1989.
    [45] 陆士良,王悦汉.软岩巷道支架壁后充填与围岩关系的研究[J].岩石力学与工程学报,1998,(2):180-183.
    [46] 王悦汉,王彩根,周华强著.巷道支架壁后充填技术[M].北京:煤炭工业出版社,l 995.
    [47] 冯豫著.新奥法与中国煤矿软岩巷道支护[M].徐州:中国矿业大学出版社,1996.
    [48] 冯豫.我国软岩巷道支护的研究[J].矿山压力与顶板管理,1990(2):42~44,67,72.
    [49] 陆家梁.软岩巷道支护技术[M].吉林:吉林科学技术出版社,1995.
    [50] 郑雨天.关于软岩巷道地压与支护的基本观点[C].软岩巷道掘进与支护论文集.1985.
    [51] 刘特洪.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [52] 何满潮,邹正盛,邹友峰.软岩工程概论[M].北京:中国矿业大学出版社,1993.
    [53] 何满潮,景海河,孙晓明著.软岩工程力学[M].北京:科学出版社,2002.
    [54] 何满潮,孙晓明著.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004.
    [55] HE Manchao, Xu Nengxiong, Yao Aijun. Theory of SCSTKP in Soft Rock Roadway [J]. Journal ofChina University of Mining & Technology, Dec.2000, Vol.10 No.2 P107-111.
    [56] HE Manchao, New Theory in Tunnel Stability Control of Soft Rock—Mechanics of Soft Rock Engineering [J]. Journal of Coal Science & Engineering, June 1996, Vol.2, No.1 P39-44.
    [57] Matthews S. M. et al. Horizontal stress control in underground coal mines[C]. 11th International Conference on Ground Control in Mining the University of Wollongong N.S.W. July 1992.
    [58] LI Xibing, Zhou Zilong, LI Qiyue. Parameter Analysis of Anchor Bolt Support for Large Span and Jointed Rock mass [J]. J. CENT. SOUTH UNIV. TECHNOL. Aug.2005, Vol.12 No.4 P483-487.
    [59] 郑雨天.论我国软岩巷道支护的基本框架和几个误区[M].徐州:中国矿业大学出版社,1996.
    [60] 侯朝炯.煤巷锚杆支护的关键理论与技术[J].矿山压力与顶板管理,2002,(1):2-5.
    [61] 侯朝炯,何亚男.加固巷道帮、角控制底臌的研究[J].煤炭学报,1995,20(3):1-5.
    [62] 侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19 (3):342-345.
    [63] 侯朝炯,柏建彪,张农等.困难复杂条件下的煤巷锚杆支护[J].岩土工程学报,2001,23(1):84-88.
    [64] HOU CHaojiong, Review of Roadway Control in Soft Surrounding Rock under Dynamic Pressure[J], Journal of Coal Science & Engineering, June 2003, Vol.9, No.1 P1-7.
    [65] WANG Weijun, HOU CHaojiong, Study of Mechanical principle of Floor Heave of roadway driving along next goaf in fully mechanized sub level caving face[J], Journal of Coal Science & Engineering, June 2001, Vol.7, No.1 P13-17.
    [66] ZOU Xizheng, HOU CHaojiong, LI Huaxiang, The Classification of the Surrounding of Coal Mining Roadways[J], Journal of Coal Science & Engineering, Dec. 1996, Vol.2, No.2 P55-57.
    [67] GUO Yuguang, BAI Jianbiao, HOU CHaojiong, Study on the Main Parameters of Side Packing in the Roadways Maintained along god-edge[J], Journal of China University of Mining & Technology, Jun.1994, Vol.4 No.1 P1-14.
    [68] LI Xue hua, Deformation mechanism of surrounding rock and key control technology for roadway driven along goaf in fully mechanized top coal caving face[J], Journal of Coal Science & Engineering, June 2003, Vol.9, No.1 P 28-32.
    [69] 董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [70] 董方庭等.松动圈软岩锚喷支护理论和技术[J],见何满潮主编,中国煤矿软岩巷道支护理论与实践[M],徐州:中国矿业大学出版社,1996,50-60.
    [71] 董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [72] 宋宏伟,郭志宏,周荣章等.围岩松动圈巷道支护理论的基本观点[J].建井技术,1994,(4、5):3-9,95.
    [73] 彭苏萍,孟召平著.矿井工程地质理论与实践[M].北京:地质出版社,2002.
    [74] 郑雨天,朱浮声.预应力锚杆体系—锚杆支护技术发展的新阶段.矿山压力与顶板管理,1995,1:2-7,56.
    [75] 陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法.矿山压力与顶板管理,2002(1):12-15.
    [76] 陈庆敏,郭颂,金太.锚杆支护的“刚性”理论及其应用.矿山压力与顶板管理,2000,17(1):1-4.
    [77] 郭颂.水平应力—对采准巷道围岩稳定性的新认识[J].煤矿开采,1998(4):14-17.
    [78] Song Guo, J. Stankus 1997 Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress[C]. 16th Int. Conf. on Ground Control in Mining Morgantown West Virginia.
    [79] 樊克恭,翟德元著.巷道围岩弱结构破坏失稳分析与非均称控制机理[M].北京:煤炭工业出版社,2004.
    [80] 樊克恭.巷道围岩弱结构损伤破坏效应与非均称控制机理研究[D].泰安:山东科技大学,2003.
    [81] 康红普.煤巷锚杆支护成套技术研究与实践[J].岩石力学与工程学报,2005,24(21):3959-3964.
    [82] 张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004,33(5):524-527.
    [83] 张农.煤巷顶板离层控制理论及实践[J].煤矿支护,2006,2:1-9.
    [84] 淮南矿业集团,中国矿业大学,淮北矿业集团等.煤矿极易离层破碎型顶板预应力控制理论研究及工程应用[R].国家自然科技进步二等奖,2005.
    [85] 孔恒,马念杰,王梦恕等.基于顶板离层监测的锚固巷道稳定性控制[J].中国安全科学学报,2002,12(3):55-58.
    [86] 孔恒,马念杰,王梦恕等.基于围岩动态监测与反馈的锚固巷道稳定控制[J].岩土工程学报,2002,24(4):475-478.
    [87] 孔恒,王梦恕,高海宏.岩体锚固承载结构的构成分析[J].西部探矿工程,2003,(2):97-99.
    [88] 鞠文君,刘东才.锚杆支护巷道顶板离层界限确定方法[J].煤炭科学技术,2001,29(4):27-29.
    [89] 鞠文君,周寅生.锚杆支护巷道安全监测技术[J].中国安全科学学报,2004,14(10):105-108.
    [90] 鞠文君.锚杆支护巷道顶板离层机理与监测[J].煤炭学报,2000(25 增刊):58-61.
    [91] 刘长武,郭永峰.锚网(索)支护煤巷顶板离层临界值分析[J].岩土力学,2003,(24):231-234.
    [92] 陆庭侃,刘玉洲,许福胜.大埋深煤巷顶板离层研究[J].矿山压力与顶板管理,2005(3):110-112.
    [93] 陆庭侃,刘玉洲,许福胜.煤矿采区巷道顶板离层的现场观测[J].煤炭工程,2005(11):62-65.
    [94] 张项立,王悦汉,曲天智.夹层对层状岩体稳定性的影响分析[J].岩石力学与工程学报,2000,19(2):140-142.
    [95] 杨建辉.锚杆支护煤巷层状结构顶板稳定性研究与应用[D].北京:北京科技大学,2002.
    [96] 张志强.软弱夹层对地下洞室稳定性影响的数值试验研究[D],西安:西安理工大学,2003.
    [97] 张志强,李宁,陈方方.不同分布距离的软弱夹层对洞室稳定性的影响研究[J]. 岩土力学,2007,28(7):1363-1368.
    [98] 张志强,李宁.软弱夹层分布部位对洞室稳定性影响研究[J].岩石力学与工程学报,2005,24(18):3252-3257.
    [99] 杨为民,周治安.煤矿井巷软弱夹层的变形机理初探[J].安徽地质,1999,9(1):65-68.
    [100] 秦昊,茅献彪,徐金海.软弱顶板煤巷围岩变形破坏特征数值分析[J].采矿与安全工程学报,2006,23(3):289-292.
    [101] 黄达,康天合,段康廉.水平应力对巷道软弱互层顶板岩体破坏的数值模拟研究[J]. 太原理工大学学报,2004,35(3):299-303.
    [102] 刘传孝,蒋金泉,王春秋等.准备巷道围岩结构稳定性分析[J].矿山压力与顶板管理,1997,3(4):101-102.
    [103] 刘生龙.煤巷层状软岩顶板破坏规律及支护研究[D].西安:西安科技大学,2005.
    [104] Gerald L. A Methodology for Determining the Character of Mine Roof Rocks [D]. Department of Mining Engineering Morgantown, West Virginia. 2003.
    [105] Man-chu Ronald Yeung. Application of Shi’s Discontinuous Deformation Analysis to the Study of Rock Behavior [D]. Department of Civil Engineering College of Engineering University of California Berkeley. 1991.
    [106] Malek Bouteldja. Design of Cable Bolts Using Numerical Modeling [D]. Department of Mining and Metallurgical Engineering. McGill University, Montreal, Canada. April 2000.
    [107] Asmaa Mohamed Yassien. 2-D numerical Simulation and Design of Fully Grouted Bolts for Underground Coal Mines [D]. College of Engineering and Mineral Resources West Virginia University. 2003.
    [108] 刘波,韩彦辉.FLAC 原理、实例及工程应用[M].北京:人们交通出版社,2005.
    [109] 谢文兵,陈晓祥,郑百生著.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [110] 李鸿昌编著.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [111] 顾大钊著.相似材料和相似模型[M].徐州:中国矿业大学出版社,1995.
    [112] 中 国 大 百 科 全 书 地 质 学 卷 . 中 国 大 百 科 全 书 网 络 版 [EB/OL] , [2008-2-2] http://202.112.118.40:918/web/index.htm.
    [113] 李先炜编著.岩体力学性质[M].北京:煤炭工业出版社,1990.
    [114] 海外传真.台湾地工小百科之一—软弱夹层的工程特性[J].岩土工程界,2005,11:24-25.
    [115] 冯波,章永化,龚克成.蒙脱石一有机化合物的相互作用[J].化学通报,2002,7:440~444.
    [116] 谭罗荣,关于粘土岩崩解、泥化机理的讨论[[J].岩土力学,1997,19(5):20-27.
    [117] 王明华,白云,张电吉.软弱夹层岩体质量评价研究[J].岩土工程,2007,28(1):185-187.
    [118] 胡涛,任光明,聂德新等.沉积型软弱夹层成因分类及强度特征[J].中国地质灾害与防治学报,2004,15(1):124-128.
    [119] 唐良琴.软弱夹层粒度成分与强度参数的关系研究[J].重庆交通学院学报,2005,24(2):94-97,114.
    [120] 唐良琴,聂德新,任光明.软弱结构面粒度成分与抗剪强度参数的关系探讨[J].工程地质学报,2003,11(2):143-147.
    [121] 李洪志.中国煤矿膨胀型软岩力学化学行为及支护对策研究[D].北京:中国矿业大学北京研究生部,1995.
    [122] 梁大川.泥页岩水化机理研究现状[J].钻井液与完井液,1997,14(6):29-31.
    [123] 奥尔芬 H 范著.许冀泉等译.粘土胶体化学导论[M].北京:农业出版社,1982.
    [124] 百度百科.风化[EB/OL].百度网,[2007-12-12]http://baike.baidu.com/view/473994.htm..
    [125] 高富强.FLAC 用于煤巷锚杆支护综合设计系统的研究[D].徐州:中国矿业大学,2006.
    [126] 王学滨.断层--围岩系统的形成过程及快速回跳数值模拟[J],北京科技大学学报,2006,28(3):211-214.
    [127] 谢洪学编.混凝土强度等级配比手册[M].成都:四川科学技术出版社,1992.
    [128] 谭学术,鲜学福,郑道访等编著.复合岩体力学理论及其应用[M].北京:煤炭工业出版社,1994.
    [129] 许兴亮.泥质巷道围岩遇水弱化机理及动态过程控制研究[D].徐州:中国矿业大学,2007.
    [130] 杨庆编著.膨胀岩与巷道稳定[M].北京:冶金工业出版社,1995.
    [131] 梁冰,章梦涛.对煤矿岩体中固流耦合效应问题研究的探讨[J].阜新矿业学院学报(自然科学版),1993,2:1-5.
    [132] 李桂臣,张农,阚甲广等.两起煤巷冒顶事故机理分析与控制对策[J].能源技术与管理,2006,2:4-5,51.
    [133] 陈智纯,王泉祥,王晋平主编.材料力学[M].徐州:中国矿业大学出版社,1994.
    [134] 邓广涛,贾明魁,马念杰.煤巷顶板岩层结构的探测与确定[J].煤炭工程,2006,(2):58-50.
    [135] IDS 公司.地质雷达说明书[R],意大利 IDS 公司,2005.
    [136] 张农,侯朝炯,杨米加等.巷道围岩强度弱化规律及其应用[J].中国矿业大学学报,1999,28(2):133-135.
    [137] ZHANG Nong, Study on Strata Control by Delay Grouting in Soft Rock Roadway [J]. Journal of Coal Science & Engineering, June 2003, Vol.9, No.1 P 51-56.
    [138] 王国际.注浆技术理论与实践[M].徐州:中国矿业大学出版社,2000.
    [139] 张农著.巷道滞后注浆围岩控制理论与实践[M].徐州:中国矿业大学出版社,2004.
    [140] 何满潮,袁和生,靖洪文等著.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004.
    [141] 靖洪文著.深部巷道大松动圈围岩位移分析及应用[M].徐州:中国矿业大学出版社,2001.
    [142] 李英明,石建军,贾安立等.影响煤巷锚杆支护初锚力的主要技术因素分析[J].煤矿开采,2005,10(4):45-48.
    [143] 秦爱新.全长锚固锚杆支护力学分析[J].河北煤炭,2001,1:3-4,40.
    [144] 邹喜正编著.煤矿巷道围岩稳定性分类[J].徐州:中国矿业大学出版社,1995.
    [145] 王凡.模糊数学与工程科学[M].哈尔滨:哈尔滨船舶工程学院出版社,1988.
    [146] 黄越岭,张小真,廖剑.网络化学习模糊综合评价模型的构建[J].教育技术通讯,2002,5.
    [147] 林在康,左秀峰,涂兴子编著.矿业信息及计算机应用[M].徐州:中国矿业大学出版社,2002.
    [148] 马念杰,候朝炯著.采准巷道矿压理论与应用[J].北京:煤炭工业出版社,1995.
    [149] 李世平编.岩石力学简明教程[M].徐州:中国矿业学院出版社,1986.
    [150] 李桂臣,张农,刘召辉等.煤巷预应力桁架锚杆支护技术[J].采矿与安全工程学报,2007,2:150-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700