用户名: 密码: 验证码:
几种钙钛矿型氧化物结构和磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Structural and Magnetic Properties on Several Perovskite-type Oxides
  • 作者:葛坚坚
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2011
  • 导师:吴小山 ; 杜军
  • 学科代码:070205
  • 学位授予单位:南京大学
  • 论文提交日期:2011-07-21
摘要
钙钛矿结构氧化物因其具有丰富的物理化学性质,如铁磁性、铁电性、压电性、和庞磁阻效应等,已成为当今凝聚态物理学研究的热点和前沿课题。
     本文研究了BiFe03, Bi09La0.1Fe03, Bi0.8La0.2-xPbxFeO3(x=0-0.20), Bio 8La0.2-xBaxFeO3(x=0-0.20),Lao 67Sr0.15口0.18MnO3-δ和Mn:LaAlO3等几种钙钛矿氧化物的溶胶—凝胶合成条件、结构、磁性质和电输运性质的影响,主要取得了以下结果:
     1.用溶胶—凝胶法制备了Bi0.8La0.2-xPbxFeO3(BLPFO,x=0-0.20)多晶样品并研究了其结构和性质的变化。X射线衍射研究表明随着x的增大样品的结构从赝四方(x=0)转变成赝立方(x=0.20)。当x=0.07时,BLPFO的Mr和Hc都减小到最小值(接近于零)。La和Pb共掺杂BLPFO多晶样品的剩余磁化强度随着x的变化表现出非单调变化而剩余极化强度表现出单调减小。
     为了验证共掺杂BiFeO3铁磁性变化规律的普适性,用溶胶—凝胶法制备了Bi0.8La0.2-xBaxFeO3(BLBFO,x=0-0.20)多晶样品并研究了其结构和性质的变化。X射线衍射研究表明随着x的增大样品的结构从赝四方(x=0)转变成赝立方(x=0.20)。类似的,当x=0.07时,BLBFO的Mr也减小到最小值(接近于零),而后随着x的增大必迅速增大。La和Ba共掺杂BLBFO多晶样品的剩余磁化强度随着x的变化也表现出非单调变化。与La和Pb共掺杂不同的是,Ba的掺杂量到达5%时样品的Mr就已经减小到最小值,另一方面Ba的掺杂量到达20%时比相同Pb掺杂量的Mr要大得多。
     2.研究了热处理条件对非化学配比La0.67Sr0.15口0.18MnO3-δ(LSMO)结构、磁性质和电输运性质的影响。虽然氧含量的改变并没有使结构发生改变,但其磁性质却发生了明显的变化。随着氧含量的增加,样品的居里温度从~280 K (空气中烧结)增加到~303 K(氧气中烧结)。我们合成的样品在居里温度附近磁化强度的突变致使该材料具有很好的磁热效应。最大磁熵变|⊿SM(T, H)|在居里温度Tc附近大于5 J/kg·K,表明该材料是一种很好的磁制冷材料。事实上,氧空位将直接影响LSMO的电输运特性,这样不但提升了LSMO的电阻值,而且降低了TMI值。
     采用渗流模型拟合了LSMO电阻率—温度曲线,结果表明在低温范围,样品电阻率的来源主要是电子与电子之间的散射,样品在高温范围符合非绝热近似下的小极化子导电行为,而在金属—绝缘体相变的临近温区是两种载流子共同参与导电的结果。
     3.用热扩散的方法在750℃(样品A)和1300℃(样品B)下分别制备了Mn离子掺杂单晶LaAlO3 (LAO),并对掺杂后样品的铁磁性进行了初步探索。样品A和样品B都表现出铁磁性,相同温度下,样品B的铁磁性比样品A要大得多。通过磁束缚子模型可知氧空位和锰离子对样品的铁磁性来源起主要作用。该研究成为钙钛矿型氧化物半导体磁掺杂的另一实例。
Perovskite oxides have been receiving special attentions in the community of condensed matter physics because of their fruitful physical properties, such as ferromagnetism, ferroelectricity, Piezoelectricity, colossal magnetoresistances, and so on. In this thesis we have performed extensive studies on several selected perovskite oxides, such as BiFeO, Bi0.9La0.1FeO3, Bi0.8La0.2-xPbxFeO3 (x= 0-0.20). Bi0.8Lao0.2-xBaxFeO3 (x= 0-0.20), La0.67Sr0.15□0.18MnO3-δand investigated the synthesized method, structure, magnetic and electrical properties by proper doping. The major interesting results can be summarized as follows.
     1. The crystalline structure, magnetic and ferroelectric properties have been studied for the polycrystalline Bi0.8La0.2-xPbxFeO3 (BLPFO, x= 0-0.20) ceramic samples, in which x changes from 0 to 0.2. Rietveld refinements with the X-ray diffraction (XRD) data show that the compound crystal structure changes gradually from pseudotetragonal (x= 0) to pseudocubic (x= 0.20) with increasing Pb concentration. Accompanied with the structural and compositional changes, magnetic ordering of the samples exhibits significantly non-monotonical variation corresponding to x. The compound remnant magnetization (Mr) and coercivity (He) both reach minimum values close to zero at x= 0.07. Unlike magnetic responses, the ferroelectric measurements show that the compounds have monotonical change in the remnant electric dipole polarization (Pr).
     In order to confirm these above results in co-dopped BiFeO3 ceramics, we prepared Bi0.8La0.2-xBaxFeO3 (BLBFO, x= 0-0.20) ceramics and made similar studies on the structural and magnetic properties of BLBFO ceramics. Similarly, X-ray diffraction (XRD) spectra show that the compound crystal structure changes gradually from pseudotetragonal (x= 0) to pseudocubic (x= 0.20) with increasing Ba concentration. Although it also shows clearly that the magnetization varies non-monotonically with the increase of x, the remnant magnetization (Mr) decreases fast and reaches minimum values close to zero at x= 0.07. In addition, compared with that of La and Pb co-doing, the value of Mr is much larger when the concentation of Ba is 20%.
     2. We have investigated the structural, magnetic and electrical properties in three representative nonstoichiometric La0.67Sr0.15□0.18Mn3-δ(LSMO) samples, initially prepared by a sol-gel method but sintered with varying treatment conditions. XRD analysis based on Rietveld refinements shows that all these samples have single perovskite phase with a rhombohedral symmetry. Although no distinct change can be observed in structural symmetry upon the treatments, the oxygen content shows significant influences on the magnetic properties of the samples. The corresponding value of TC increases systematically from~280 K (sintered in air) to~303 K (sintered in oxygen) with the increase of oxygen content. The obtained samples exhibit good magnetocaloric effect (MCE), which can be attributed to the high magnetization and its sharp drop near TC as well. A peak value of |⊿SM(T,H)| exceeding 5 J/kg·K near TC has been observed indicating promising application potentials in room temperature magnetic refrigeration.
     The electrical properties of LSMO vary with the increase of oxygen content in our samples, producing a decrease of resistance and high TMI·The transport results also show that every sample is metallic because of single magneton scattering in low temperature, on the other hand every sample is an insulator because of small polar hopping model in high temperature. The two transport properties of small polaron and single magneton scattering coexist at the temperature rang of phase transition.
     3. Mn ions were tried to dope into LaAlO3 single crystal by thermal diffusion method in order to investigate its magnetism. Two representative samples, i.e., LaAlO3 single crystals surrounding with MnO2 powders annealed at 750℃and 1300℃respectively, were examined by structural and magnetic characterizations. Ferromagnetism can be observed in both of them, while the magnetization of the latter is much stronger than that of the former at the same temperature. Oxygen vacancies and Mn cations play important roles in the origin of the ferromagnetism, which can be understood within the framework of a bound magnetic polaron model.
引文
1. R. E. Samad, S. L. Baldochi, S. P. Morato, N. O. Vieira, Solod State Communications 107,171 (1998).
    2. W. Kinase, K. Harada, Ferroelectrics 333,21 (2006).
    3. E. A. Wood, Acta. Cryst.4,353 (1951).
    4. V. M. Goldschmidt, S. N. V. Oslo, I. Mat. Nat. KI.8,1 (1926).
    5. J. M. Moreau, Mater. Res. Bull.3,427 (1968).
    6. R. D. Shannon, Inorg. Chem.6,1474 (1967).
    7. Z. Li, Q. Xue, H. S. Dangetal, Mater. Lett.60,1603 (2006).
    8. Q. D. Zhou, B. J. Kennedy, J. Solid State Chem.177,654 (2004).
    9. D. Z. Demetriou, C. R. A. Catlow, A. V. Chadwieketal, Solid State Ionics 176,1571 (2005).
    10. P. R. Gonzalez, C. Furetta, E. C. Zaragoza, Nucl. Instrum. Meth. B 243,349 (2006).
    11. F. S. Galasso, Perovskite and high Tc supereonduetors, Newyork:Gordonand Breaeh Seience Publishers,18 (1990).
    12. R. J. H. Voorhoeve, Advaneed materials in catalysis, Aeademic Press,129 (1977).
    13.王克锋,刘俊明,王雨,科学通报53,1098(2008)。
    14.王渊旭,山东大学博士学位论文,(2002)
    15.刘红日,华中科技大学博士论文,(2006)。
    16. G. H. Jonker, Physic 22,707 (1956).
    17. P. G. de Gennes, Phys. Rev.118,141 (1960).
    18. G. Matsmuoto, J. Phys. Soc. Jpn.29,606 (1970).
    19. G. Matsmuoto, J. Phys. Soc. Jpn.29,615 (1970).
    20. V. A. Bokov, N. A. Grigoryan, M. F. Bryzhina and V. V. Tikhonov, Phys. Stat, sol. 28,835(1968).
    21.钟维烈,铁电体物理学,北京科学出版社7,366(1998)。
    22. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B51,14103(1995).
    23. C. Zener, Phys. Rev.81,440 (1950).
    24. A. J. Millis, P. B. Littlewood, B. I. Shraiman, Phys. Rev. Lett.74,5144 (1995); A. J. Millis, B. I. Shraiman, and R. Mueller, Phys. Rev. Lett.77,175 (1996).
    25. G. M. Zhao, K. Conder, H. Keller, K. A. Muller, Nature 381,676 (1996).
    26. J. Zang, A. R. Bishop, H. Roder, Phys. Rev. B 53,8840 (1996).
    27. J. M. Coey, M. Uiret, L. Ranno, Phys. Rev. Lett.75,3910 (1995).
    28. B. Raveau, M. Hervieu and A. Maignan, Mater. Chem.11,29 (2001).
    29. A. J. Millis, P. B. Littlewood and B. I. Shraiman, Phys. Rev. Lett.74,5144 (1995).
    30. A. J. Millis, P. B. I. Shraiman and R. Mueller, Phys. Rev. Lett.77,175 (1996).
    31. Q. M. Li, J. Zang and A. R. Bishop, Phys. Rev. B 56,4541 (1997).
    32. A. J. Millis, Nature 392,147 (1998).
    33. H. Roder, J. Zang and A. R. Bishop, Phys. Rev. Lett.76,1356 (1996).
    34. H. Y. Hwang, S. W. Cheong and P. G. Radaelli, Phys. Rev. Lett.75,914 (1995).
    35. C. H. Booth, F. Bridges and G. H. Kwei, Phys. Rev. Lett.80,853 (1998).
    36. S. Yunoki, J. Hu and A. L. Malvezzi, Phys. Rev. Lett.80,845 (1998).
    37. E. Dagotto, S. Yunoki and A. L. Malvezzi, Phys. Rev. B 58,6414 (1998).
    38. A. Moreo, S. J. Yunoki and E. Dagotto, Science 283,2034 (1999).
    39. J. Wang et al Science 299,1720 (2003).
    40. H. Schmid, Ferroelectrics 162,317 (1994).
    41. N. A. Hill, J. Phys. Chem. B 104,6694 (2000).
    42. M. Fiebig, T. Lottermoser and D. Frohlich, Nature 419,818 (2002).
    43. J. X. Gao, X. R. Zhu and W. L. Liu, Appl. Phys. Lett.78,3869 (2001).
    44. R. Maier, J. L. Cohn and J. J. Neumeier, Appl. Phys. Lett.78,2536 (2001).
    45. W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442,759 (2006).
    46. M. Fiebig, T. Lottermoser, D. Frohlieh, A. V. Goltsev, and R. V. Pisarev, Nature 419,818(2002).
    47. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Sehlom, U. V. Waghmare, N. A. SPaldin, K. M. Rabe, M. Wuttig, and R. Rmaesh, Scienee 299,1719 (2003).
    48. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, andY. Tokura, Nature 426, 55 (2003).
    49. Proceeding of the 5th International Workshop on Magnetoelectric Interaction Phenomena in Crystals, edited by M. Fiebig, V. Eremenko, and I. E. ChuPis Kluwer, Dordreeht, (2004).
    50. F. Zavaliehe, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shaefr, E. Reilly, R. ChoPdekar, Y. Jia, P. Wright, D. G. Sehlonl, Y. Suzuki, And R. Ramesh, NanoLett.5,1793(2005).
    51. N. A. Hill, and K. M. Rabe, Phys. Rev. B 59,8759 (1999).
    52. A. Reyes, V. C. Dela, and M. E. Fuentes, J. Eur. Ceram. Soc.27,3709 (2007).
    53. I. Sosnowska, T. P. Neumaier, E. Steichele. J. Phys. C:Solid State Phys.15,4835 (1982).
    54. Y. P. Wang, G. L. Yuan, X. Y. Chen, J. M. Liu and Z. G. Liu, J. Phys. D:Appl. Phys. 39,2019(2006).
    55. G. L. Yuan, K. Z. Baba-Kishi, J. M. Liu, and S. Wing, J. Am. Ceram. Soc.89, 3136(2006).
    56. V. R. Palkar, K. Ganesh Kumara, and S. K. Malik, Appl. Phys. Lett.84,2856 (2004).
    57. Q. H. Jiang and C. W. Nan, J. Am. Ceram. Soc.89,2123 (2006).
    58. Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang, J. Appl. Phys.103,07E507 (2008).
    59. Y. H. Lin, Q. H. Jiang, Y. Wang, and C. W. Nan. Appl. Phys. Lett.90,172507 (2007).
    60. Q. H. Jiang and C. W. Nan, J. Am. Ceram. Soc.89.2123 (2006).
    61. S. B. Emery, C. J. Cheng, D. Kan, F. J. Rueckert, S. P. Alpay, V. Nagarajan, I. Takeuchi and B. O. Wells, Appl. Phys. Lett.97,152902 (2010).
    62. X. M. Chen, G. D. Hu, W. B. Wu, C. H. Yang, and X. Wang, J. Am. Ceram. Soc. 93,948(2010).
    63. D. Kothari, V. R. Reddy, A. Gupta, C. Meneghini and G. Aquilanti, J. Phys.: Condens. Matter 22,356001 (2010).
    64. V. A. Khomchenko, D. V. Karpinsky, A. L. Kholkin, N. A. Sobolev, G. N. Kakazei, J. P. Araujo, I. O. Troyanchuk, B. F. O. Costa, and J. A. Paixao, J. Appl. Phys.108,074109(2010).
    65. Z. Q. Hu, M. Li, J. Liu, L. Pei, J. Wang, B. F. Yu, and X. Z. Zhao, J. Am. Ceram. Soc.93,2743(2010).
    66. P. Uniyal and K. L. Yadav, J. Phys.:Condens. Matter 21,405901 (2009).
    67. N. Jeon, D. Rout, I. W. Kim, and S. Joong, L. Kang, Appl. Phys. Lett.98,072901 (2011).
    68. J. B. Li, G. H. Rao, Y. Xiao, J. K. Liang, J. Luo, G. Y. Liu, J. R. Chen, Acta Mater.58,3701 (2010)
    69. R. Mazumder, D. P. Sujatha, D. Bhattacharya, Appl. Phys. Lett.91,062510 (2007).
    70. F. Gao, X. Y. Chen, K. B. Yin, Adv. Mater.19,2889 (2007)
    71. V. P. D'yakonov, V. P. Pashchenko, E. E. Zubov, Phys. Solid. State.45,871 (2003).
    72. I. M. Fita, R. Szymcazk, M. Baran, V. Markovicn, R. Puzniak, A. Wisniewski, S. V. Shiryaev, V. N. Varyukhin, H. Szymczak, Phys. Rev. B 68,014436 (2003).
    73. G. Dezanneau, O. Isnard, H. Roussel, A. Sin, M. Audier, H. Vincent, Cryst. Eng.5, 347 (2002).
    74. M. Belemguenal, T. Devolder, T. C. Chapper J. Magne. Magne. Mater.307,325 (2006).
    75. Z. B. Guo, Y. W. Du, J. S. Zhang, H. Huang, W. P. Ding, D. Feng, Phys. Rev. Lett.78,1142(1978).
    76. ZHONG W, WU X L, TANG N J,LIU W, CHEN W, AU C T, DU Y W. Eur. Phys. J.B 41,213 (2004).
    77. XU QY, GU K M, LIANG X L, NI G, WANG Z M, SANG H, DU Y W. J. Appl. Phy.90,524(2001).
    78. T. J. Zhou, Z. Yu, W. Zhong, X. Z. Xu, H. H. Zhang, Y. W. Du, J. Appl. Phys.85, 7975 (1999).
    79. G. Gu, J. H. Cai, W. Yang, Y. W. Du, J. Appl. Phys.84,3798 (1998).
    80. W. Zhong, W. Chen, W. P. Ding, Y. W. Du, Eur. Phys. J. B,35,169 (1998). (?)
    81. W. Zhong, W. Chen, W. P. Ding, N. Zhang, A. Hu, Y. W. Du, Q. J. Yan, J. Magne. Magne. Mater.195,112 (1998).
    82. W. A. Sun, J. Q. Li, W. Q. Ao, J. N. Tang, X. Z. Gong, Powder Technol.166,77 (2006).
    83. K. Cherif, S. Zemni, J. Dhahri, M. Oumezzine, M. Ghedira, H. Vincent, J Alloy. Compd.396,29 (2005).
    84. M. Bejar, E. Dhahri, E. K. Hlil, S. Heniti, J Alloy. Compd.440,36 (2007).
    85. W. Zhong, W. Cheng, W. P. Ding, N. Zhang, Y. W. Du, J. Solid State Commun. 106,55(1998).
    86. J. Mira, J. Rivas, L. E. Hueso, J. Appl. Phys.91,90328 (2002).
    87. H. Y. Chen, C. Lin, D. S. Dai, J. Magn. Magn. Mater.257,2542257 (2003).
    88. N. H. Sinh, N. P. Thuy, J. Magn. Magn. Mater.262,502 (2003).
    89. A. N. Ulyanov, T. N. Huynh, P. H. Quang, N. H. Sinh, S. C. Yu, Physica B 355, 377 (2005).
    90. R. Shiozaki, K. Takenaka, Y. Sawaki, and S. Sugai, Phys. Rev. B 63,184419 (2001).
    91. Y. Takamura, R. V. Chopdekar, E. Arenholz, Y. Suzuki, Appl. Phys. Lett.92, 162504(2008).
    92. S. H. Seo, H. C. Kang, H. W. Jang, and D. Y. Noh, Phys. Rev. B 71,012412 (2005).
    93. J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks. J. D. Jorgensen, and S. D. Bader, Phys. Rev. B 54,6172 (1996).
    94. J. Sakai, N. Ito, and S. Imai, J. Appl. Phys.99,08Q3181 (2006).
    95. R. Bertacco, M. Riva, M. Cantoni, L. Signorini, and F. Ciccacci, Appl. Phys. Lett. 86,252502 (2005).
    96. S. Miyoshi, J. Hong et al, Solid State Ionics,154,257 (2002).
    97. J. K. Furdyna, J Appl. Phys.64, R294 (1988).
    98. H. Saito, S. Zayet, S. Yamagata et al, Phys. Rev. Lett.90,2072022 (2003).
    99. Y. Oka, N. Takahashi, K. Takabayashi et al, Phys. Stat. Sol. (b) 221,4952498 (2000).
    100. V. I. Sugakov, and A. V. Vertsimakha, Phys. Stat. Sol. (b) 217,8412846 (2000).
    101. Munekata H., Ohno H. et al, Phys. Rev. Lett.63,18492 (1989).
    102. H. Ohno, A. Shen, F. Matsukura et al, Appl. Phys. Lett.69,3632365 (1996).
    103. T. Schallenberg, and H. Munekata, Appl. Phys. Lett.89,425072 (2006).
    104. T. Jungwirth, J. Sinova, J. Malek et al, Rev. Mod. Phys.7,8092864 (2006).
    105. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science,294,1488 (2001).
    106. H. Ohno, Science 281,951 (1998).
    107. J. K. Furdyna, J. Appl. Phys.64, R29 (1988).
    108. K. H. Gao, Z. Q. Li, T. Du, E. Y. Jiang, Y. X. Li, Phys. Rev. B 75,174444 (2007).
    109. Y. X. Wang, H. Liu, Z. Q. Li, X. X. Zhang, R. K. Zheng, S. P. Ringer, Appl. Phys. Lett.89,042511(2006).
    110. G. L. Liu, Q. Cao, J. X. Deng, P. F. Xing, Y. F. Tian, Y. X. Chen, S. S. Yan, L. M. Mei, Appl. Phys. Lett.90,052504 (2007).
    111. T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, M. Kawasaki, Appl. Surf. Sci.62,223 (2004).
    112. R. Janisch, P. Gopal, N.A. Spaldin, J. Phys.:Condens. Mater.17, R657 (2005).
    113. J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nat. Mater.4,173 (2005).
    114. H. Nakayama and H. Katayama-Yoshida, Jpn. J. Appl. Phys.40, L1355 (2001).
    115.1. Hase, T. Saitoh, and T. Katsufuju, J. Mag. Mag. Mater.310, e281 (2007).
    116. Y. H. Lin, J. C. Yuan, S. Y. Zhang, Y. Zhang, J. Liu, Y. Wang, and C. W. Nan, Appl. Phys. Lett.95,033105 (2009); Y. H. Lin, S. Y. Zhang, C. Y. Deng, Y. Zhang, X. H. Wang, and C. W. Nan, Appl. Phys. Lett.92,112501 (2008).
    117. H. S. Kim, L. Bi, G. F. Dionne, and C. A. Ross, Appl. Phys. Lett.93,092506 (2008).
    118. Y. G Zhang, S. R. Shinde, S. B. Ogale, J. Higgins, R. J. Choudhary, V. N. Kulkani, R. L. Greene, T. Venkatesan, S. E. Lofland, C. Lanci, J. P Buban, N. D. Browning, S. D. Sarma, A. J. Millis, Appl. Phys. Lett.83,2199 (2003).
    119. J. S. Lee, Z. G. Khim, Y. D. Park, D. P. Norton, N. A. Theodoropoulou, A. F. Hebard, J. D. Budai, L. A. Boatner, S. J. Pearton, R. G. Wilson, Solid-State Elec. 47,2225 (2003).
    120. S. X. Zhang, S. B. Ogale and Darshan C. Kundaliya, Appl. Phys. Lett.89, 012501 (2006).
    1. C. J. Brinker, G. W. Scherer, Sol-Gel Science--The Physics and Chemistry of Sol-Gel Processing., San Diego:Academic Press,839 (1990).
    2.杨南如,余桂郁,硅酸盐通报,12,56(1993)。
    3.程春生,张子生,阎正,赵庆勋,刘世普,刘丽华,刘保亭,河北师范大学学报,02(2006)。
    4.任书霞,杨丹,中国粉体技术,01(2006)。
    5.王君龙,梁国正,祝保林,航空材料学报,01(2007)。
    6.刘洪,蒲朝辉,龚小刚,张振宁,肖定全,朱建国,真空科学与技术学报,01(2007)。
    7.聂越峰,尹荔松,林国淙,张进修,中国粉体技术,01(2005)。
    8.方瑜,肖定全,刘娟妮,朱建国,无机盐工业,06(2005)。
    9.朱从善,硅酸盐学报,26(1998)。
    10.尹荔松,周歧发,唐新桂,林光明,张进修,功能材料,30,407(1998)。
    11.王恩信主编,材料化学原理,东南大学出版社,南京,(1997)。
    12.陈宗淇,戴闽光,胶体化学,高等教育出版社,北京,(1984)。
    13.作花济夫Proceedings of The International Symposium on Fine Ceramics Arita, Arita,11,157(1987).
    14.丁子上,翁文剑,杨娟,硅酸盐学报,23,571(1995)。
    15.卞建江,赵梅瑜,殷之文,无机材料学报,131,43(1998)。
    16. D. R. Uhlmann, J. M. Doulton, G. Teowee, Spie 270,1328 (1990).
    17. D. K. Bowen, B. K. Tanner, High Resolution X-ray Diffractometry and Topography,2nd ed. London:Taylor & Francis Group,160 (2001).
    18. H. Dosch, Phys. Rev. B 35 2137 (1987).
    19.姜晓明,贾全杰,郑文莉,刘鹏,冼鼎昌,蒋最敏,王迅,高能物理与核物理,24,1185(2000)。
    20. W. C. Marra, P. Eisenberger and A.Y. Cho, J. Appl. Phys.50,6927 (1979).
    21. X. Jiang, W. Zheng, J. Wu, Y. Jing, and G. Liu, Rev. Sci. Instrum.66,1694 (1995); W. Zheng, X. Jiang, Y. Jing, H. Ma, and D. Xian, Nucl. Instr. Methods B 129,543 (1997).
    22. X. Jiang, T. H. Metzger, and J. Peisl, Appl. Phys. Lett.61,904 (1992).
    23. H. Kiessig, Ann. Phys.10,769 (1931).
    24. L.G. Parratt, Phys. Rev.95,359 (1954).
    25. L. Nevot and P. Croce, Rev. Phys. Appl.15,761 (1980).
    26. B. Vidal and P. Vincent, Appl. Optics.23,1794 (1984).
    27. M. Wormington, C. Panaccione, Kevin M. Matney, and D. Keith Bowen, Phil. Trans. R. Soc. Lond. A 357,2827 (1999)
    1. M. Fiebig, T. Lottermoser, D. Frohlieh, A. V. Goltsev, and R. V. Pisarev, Nature 419,818(2002).
    2. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Sehlom, U. V. Waghmare, N. A. SPaldin, K. M. Rabe, M. Wuttig, and R. Rmaesh, Scienee 299,1719 (2003).
    3. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, andY. Tokura, Nature 426, 55 (2003).
    4. Proceeding of the 5th International Workshop on Magnetoelectric Interaction Phenomena in Crystals, edited by M. Fiebig, V. Eremenko, and I. E. Chupis Kluwer, Dordreeht, (2004).
    5. F. Zavaliehe, H. Zheng, L. Mohaddes-Ardabili,5. Y. Yang, Q. Zhan, P. Shaefr, E. Reilly, R. ChoPdekar, Y. Jia, P. Wright, D. G. Sehlonl, Y. Suzuki, And R. Ramesh, Nano Lett.5,1793(2005).
    6. C. Michel, J. M. Moreau, G. D. Achenbach et al, Solid State Commun.7,701 (1969).
    7. V. G. Bhide and M. S. Multani, Solid State Commun.3,271 (1965).
    8. J. M. Morean, C. Miehel, R. Gerson, and. J. James, J. Phys. Chem. Solids 32,1315 (1971).
    9. D. Lee, M. G. Kim, S. Ryu, H. M. Jang, and S. G. Lee, Appl. Phys. Lett.86,222903 (2005).
    10. C. Ederer and N. A. SPaldin, Phys. Rev. B 71,060401 (2005).
    11. Y. Zhong, G. Hu, and T. A. Tang, JPn. J. Appl. Phys., Part 142,7424 (2003).
    12. Y. H. Lee, J. M. Wu, and C. H. Lai, Appl. Phys. Lett.88,042903 (2006).
    13. V. A. Khomchenko, V. V. Shvartsman, P. Borisov, W. Kleemann, D. A. Kiselev, I K. Bdikin, J. M. Vieira and A. L. Kholkin, J. Phys. D:Appl. Phys.42,045418 (2009).
    14. G. L. Yuan, S. W. Or and H. L. W. Chan, J. Phys. D:Appl. Phys.40,1196 (2009).
    15. Q. H. Jiang and C. W. Nan, J. Am. Ceram. Soc.89,2123 (2006).
    16. R. D. Shannon, Acta Cryst. A 32,751 (1976).
    17. X. Zhang, Y. Sui, X. Wang, J. Tang and W. Su, J. Appl. Phys.105,07D918 (2009).
    18. J. Chaigneau, R. Haumont and J. M. Kiat, Phys. Rev. B 80,184107 (2009).
    19. V. A. Khomchenko, D. A. Kiselev, E. K. Selezneva, J. M. Vieira, A. M. L. Lopes, Y. G. Pogorelov, J. P. Araujo and A. L. Kholkin, Mater. Lett.62,1927 (2008).
    20. N. Wang, J. Cheng, A. Pyatakov, A. K. Zvezdin, J. F. Li, L. E. Cross and D. Viehland, Phys. Rev. B 72,104434 (2005).
    21. D. H. Wang, W. C. Goh, M. Ning, and C. K. Ong, Appl. Phys. Lett.88,212907 (2006).
    22. R. D. Shannon, Acta Cryst. A32,751 (1976).
    23. V. A. Khomchenko, V. V. Shvartsman, P. Borisov, W. Kleemann, D. A. Kiselev, I. K. Bdikin, J. M. Vieira and A. L. Kholkin, Acta Mater.57,5137 (2009).
    24. V. A. Khomchenko, J. A. Paixao, V. V. Shvartsman, P. Borisov, W. Kleemann, D. V. Karpinsky and A.L. Kholkinc, Scr. Mater.62,238 (2010).
    25. M. Fiebig, J. Phys. D:Appl. Phys.38, R123 (2005).
    26. S. Mori, J. Tokunaga, Y. Horibe. Phys. Rev. B 72,224434 (2005).
    1. F. Bridges, L. Downward, J. J. Neumeier, T. A. Tyson, Phys. Rev. B 81,184401 (2010).
    2. A. Sadoc, B. Mercey, C. Simon, D. Grebille. W. Prellier. and M. B. Lepetit. Phys. Rev. Lett.104,046804 (2010).
    3. H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, and Y. Tokura, Phys. Rev. Lett.78,4253 (1997).
    4. E. Arenholz, A. Young, J. Guo, Y. Tomioka, and C. S. Fadley, Phys. Rev. B 77, 125134(2008).
    5. Y. Chen, B. G. Ueland, J. W. Lynn, G. L. Bychkov, S. N. Barilo, and Y. M. Mukovskii, Phys. Rev. B 78,212301 (2008).
    6. Y. Takamura, R. V. Chopdekar, E. Arenholz, Y. Suzuki, Appl. Phys. Lett.92, 162504(2008).
    7. S. H. Seo, H. C. Kang, H. W. Jang, and D. Y. Noh, Phys. Rev. B 71,012412 (2005).
    8. J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J. D. Jorgensen, and S. D. Bader, Phys. Rev. B 54,6172 (1996).
    9. J. Sakai, N. Ito, and S. Imai, J. Appl. Phys.99,08Q3181 (2006).
    10. R. Bertacco, M. Riva, M. Cantoni, L. Signorini, and F. Ciccacci, Appl. Phys. Lett. 86,252502 (2005).
    11. E. Assaridis, I. Panagiotopoulos, A. Moukarika, and T. Bakas, Phys. Rev. B 75, 224412(2007).
    12. I. Walha, H. Ehrenberg, H. Fuess, A. Cheikhrouhou, J. Alloys Compd.485,64 (2009).
    13. S. Zemni, A. Gasmi, M. Boudard, M. Oumezzine, Mater. Sci. Eng. B 144,117 (2007).
    14. J. Dhahri, S. Zemni, K. Cherif, J. Dhahri, M. Oumezzine, M. Ghedira, H.Vincent, J. Alloys Compd.394,51 (2005).
    15. H. M. Rietveld, Powder diffr.2,65 (1969).
    16. S. Das and T. K. Dey, J. Phys.:Condens. Matter.18,7629 (2006).
    17. Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding and D. Feng, Phys. Rev. Lett.78,1142(1997).
    18. P. G. Radaelli, D. E. Cox, M. Marezio, S.-W. Cheong, P. E. Schiffer, A. P. Ramirez, Phys. Rev. Lett.75,4488 (1995).
    19. K. H. Kim, J. H. Jung, T. W. Noh, Phys. Rev. Lett.81,1517 (1998).
    20. J. R. Sun, H. K. Wong, Phys. Rev. B 60,44 (1999).
    1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 294,1488 (2001).
    2. H. Ohno, Science 281,951 (1998).
    3. J. K. Furdyna, J. Appl. Phys.64, R29 (1988).
    4. K. H. Gao, Z. Q. Li, T. Du, E. Y. Jiang, Y. X. Li, Phys. Rev. B 75,174444 (2007).
    5. Y. X. Wang, H. Liu, Z. Q. Li, X. X. Zhang, R. K. Zheng, S. P. Ringer, Appl. Phys. Lett.89,042511 (2006).
    6. G. L. Liu, Q. Cao, J. X. Deng, P. F. Xing, Y. F. Tian, Y. X. Chen, S. S. Yan, L. M. Mei, Appl. Phys. Lett.90,052504 (2007).
    7. T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, M. Kawasaki, Appl. Surf. Sci.62,223 (2004).
    8. R. Janisch, P. Gopal, N.A. Spaldin, J. Phys.:Condens. Mater.17, R657 (2005).
    9. J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nat. Mater.4,173 (2005).
    10. H. Nakayama and H. Katayama-Yoshida, Jpn. J. Appl. Phys.40, L1355 (2001).
    11.I. Hase, T. Saitoh, and T. Katsufuju, J. Mag. Mag. Mater.310, e281 (2007).
    12. Y. H. Lin, J. C. Yuan, S. Y. Zhang. Y. Zhang, J. Liu, Y. Wang, and C. W. Nan, Appl. Phys. Lett.95,033105 (2009); Y. H. Lin, S. Y. Zhang, C. Y. Deng, Y. Zhang, X. H. Wang, and C. W. Nan, Appl. Phys. Lett.92,112501 (2008).
    13. H. S. Kim, L. Bi, G. F. Dionne, and C. A. Ross, Appl. Phys. Lett.93,092506 (2008).
    14. Y. G. Zhang, S. R. Shinde, S. B. Ogale, J. Higgins, R. J. Choudhary, V. N. Kulkani, R. L. Greene, T. Venkatesan, S. E. Lofland, C. Lanci, J. P Buban, N. D. Browning, S. D. Sarma, A. J. Millis, Appl. Phys. Lett.83,2199 (2003).
    15. J. S. Lee, Z. G. Khim. Y. D. Park, D. P. Norton, N. A. Theodoropoulou, A. F. Hebard, J. D. Budai, L. A. Boatner, S. J. Pearton, R. G. Wilson, Solid-State Elec. 47,2225 (2003).
    16. S. X. Zhang, S. B. Ogale and Darshan C. Kundaliya, Appl. Phys. Lett.89,012501 (2006).
    17. P. J. Deren, R. Mahiou, Opt. Mater.29,766 (2007).
    18. P. W. Peacock and J. Robertson, J. Appl. Phys.92,4712 (2002).
    19. S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, R. Uecher, P. Reiche, J. L. Freeouf, G. Lucovsky, J. Appl. Phys.91, 4500 (2002).
    20. Greenwood. N. Norman, A. Earnshaw, Chemistry of the Elements (2nd ed.), Oxford, Butterworth-Heinemann (1997).
    21. S. Thota, B. Prasad and J. Kumar, Mater. Sci. and Eng. B 167,153 (2010).
    22. Z. H. Wang, D. Y. Geng, Y. J. Zhang, Z. D. Zhang, J. Crys. Grow.310,4148 (2008).
    23. R. D. Shannon, Acta. Cryst. A32,751, (1976).
    24. J. B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York (1963).
    25. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Zener, Science 287, 1019(2000).
    26. J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nature Mater.4,173 (2005).
    27. R. L. Berney and D. L. Cowan, Phys. Rev. B 23,37 (1981).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700