用户名: 密码: 验证码:
轻小型折反式光学系统结构特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代光学工程技术的发展,轻小型折反式光学系统因其结构紧凑、重量轻、视场大、像差小等优点得到广泛应用。轻小型化限制了系统结构刚度及稳定性,为保证力热环境下光学系统的成像质量及视轴稳定性,开展了结构特性的综合研究。
     针对超紧凑光学布局,如筒长与焦距比小于0.5且主镜顶点到像面距离受限的情况,采用次镜支架作为安装基板、主镜和校正镜筒同环交错前向安装的方法,成功实现狭窄空间内的结构布局。为评估主镜在安装状态的变形,建立了螺钉连接预紧力有限元分析模型,分析选定了柔性环板参数及支撑结构加强方案。对反射镜保持面形稳定的措施进行了阐述,设计了与装配状态一致的安装方法,实证可削弱螺钉安装应力的影响。
     为提高校正透镜组在压圈装配力及热环境下的适应性,开展了镜筒结构件接触面的形状优化,并针对温度环境,在径向开展光机间隙校核;在轴向根据高温匹配性计算了压圈预紧力,并分析了低温下透镜的应力和变形情况。
     基于ANSYS优化理论及流程,对体积、重量、遮拦受限的一体式次镜支架开展参数化建模,用结构基频作为目标函数完成优化设计。进一步设计应用了新型螺旋撑筋桁架式次镜支架,具有优良的结构刚度及抗弯性能,利用搭建的试验平台测试了冲击条件下的视轴漂移情况。
     根据次镜相对主镜转角实现波面匹配的方法,设计了新型次镜调整安装结构,实现次镜倾斜角度的单调连续调节,在已有面形状态下可提高光学系统像质,适应光学精细装调以及力学环境工况需求。针对系统结构特点提出了单点金刚石切削加工结合平面干涉检测辅助次镜装调对准的方法,以简化装调过程。光学系统传函及视轴晃动实测结果表明本文的研究工作取得较好的应用效果。
With the technical development of the modern optical engineering, the small lightcatadioptric optical system was widely applied because it had compact structure, lightweight, relative large field of view, small aberration, etc. The miniaturization andlightweight limited the structural stiffness and stabilization. To assure the image qualityand of light-of-sight stability, this paper synthetically studied on structuralcharacteristics of the small light catadioptric optical system.
     For super compact optical layout such as the ratio of system length to focal lengthwas less than0.5and the distance between the optical vertex of primary mirror to theimage interface was limited, the support bracket of secondary mirror was designed asthe mounting base plate, thus the primary mirror and corrective lens tube werecrisscross mounted on it frontward in the same circumferential ring. This methodsuccessfully implemented total structural layout in thin spatial range. To evaluate thesurface figure of primary mirror under the mounting state, FEM analysis model of boltpretension was built. On the basis of analysis, flexural annular plate parameters andintensified supporting structural schemes were chosen and confirmed. Moreover,stability measures to keep reflective mirrors’ surface figure were discussed. Mountingway consistent with the actual assembling state gave the demonstration that it couldweaken mounting stress influence of bolts.
     To improve the adaptability of the corrective lens assembly under assembling forceof clamping ring and thermal environments, contact surface shape of drawtubestructures was optimized. On the other hand, considering the temperature influence,clearances of optomechanical structures in the radial direction were checked. In theaxial direction, pretension force of clamping ring was computed to match the hightemperature point and the lens’ stress and deformation at the low temperature point wasanalyzed.
     The system had an integrated support bracket of secondary mirror which wasrestricted by volume, weight and obscuration area. According to optimization theoryand flow of ANSYS, parametric model was built and optimized consideringfundamental frequency as the objective function. Moreover, new type of support bracket of secondary mirror with the truss of spiral surrounded supporting ribs which hadexcellent structure stiffness performance and bending resisting ability was designed andapplied in the system. Finally, line-of-sight drift of the system was tested on the shockcondition by established test-bed.
     Base on the wavefront match method that secondary mirror revolved about its axisrelative to primary mirror, a new type of adjustment and assembling structure ofsecondary mirror was created to achieve the effect, and it could improve system imagequality at the actual known figure state. Also the new structure could consecutivelyadjust tilt degree of secondary mirror monotonically to adapt to the need of optical fineassembling and mechanics environments. To associate with the structural character,single point diamond turning technology was adopted to machine datum to transferassembling reference, and the method of interference measure was combined to assistthe location adjustment of secondary mirror relative to primary mirror to simplify theassembling process. The actual system test of image quality and line-of-sight showedthat research work in this paper had acquired better application effect.
引文
[1] Alexay C C, Palrner T A. A new modular optical system for large format scene projection[C].SPIE,2006,6208:35-40.
    [2]吴清文.空间相机中主镜的轻量化技术及其应用[J].光学精密工程.1997,5(6):69-80.
    [3]张学军,李志来,张忠玉.基于SiC材料的空间相机非球面反射镜结构设计[J].红外与激光工程.2007,36(5):577-582.
    [4] Anees Ahmad. Low distortion mounting techniques for metal mirrors[C]. SPIE.1998,34(29):62-70.
    [5] Palmer T A. Infrared catadioptric lens design considerations[C]. SPIE.2005,5783:835-840.
    [6] Yoder, P.R., Jr.光机系统设计[M].北京:机械工业出版社,2007.
    [7] M. Attaba, M.M. Abdel Wahab. G. Richardson, et al. Finite element stress and vibrationanalyses for a space telescope[C]. ANSYS2002Coference, Pittsburg, Pennsylvania, USA.2002.
    [8] Gregory J. Michels, Victor L. Genberg, Keith B. Doyle. Integrating ANSYS mechanicalanalysis with optical performance analysis using sigfit[C]. ANSYS Conference&26thCADFEM Users’ Meeting, Darmstadt, Germany.2008.
    [9]王灵杰,张新,杨皓明.超紧凑型红外折反式光学系统设计[J].应用光学.2007,28(3):288-291.
    [10]马文礼,沈忙作.全金属反射光学系统结构的有限元分析[J].光电工程.1994,21(5):10-16.
    [11]杨秉新.星载遥感器轻型化设计技术途径[J].航天返回与遥感.1997,18(2):19-21.
    [12]沈忙作,马文礼,廖胜,等.低温光学系统的研制[J].光学学报.2001,21(2):202-205.
    [13]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001.
    [14]李威.空间相机主次镜间支撑结构技术研究[D].长春:中国科学院研究生院,2010.
    [15]李东旭.高等结构动力学[M].长沙:国防科技大学出版社,1997.
    [16]王勋成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [17]张洪武,关振群,李云鹏,等.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004.
    [18]许光明. ANSYS基础及其在工程上的应用[M].沈阳:东北大学出版社,2002.
    [19]宋立强,杨世模,陈志远.空间天文仪器反射镜材料优化与应用研究[J].材料导报.2008,22(12):5-9.
    [20] Hardesty R, Decker T. The design and producibility of precision Beryllium structures forspacecraft applications[C]. SPIE.1995,2543:104-107.
    [21]曹银花,李林,王智勇.非球面金属反射镜在红外热成像系统中的应用研究[J].红外技术.2006,28(7):373-377.
    [22] Jean P. Rozelot, Jean-M. Leblanc. Metallic alternative to glass mirrors(active mirrrors inaluminium). A review[C]. SPIE.1991,1494:481-490.
    [23] Lee Feinberg. Space telescope design considerations[J]. Optical Engineering.2012,51(1):0110041-0110049.
    [24] Nicolae Lobontiu, Jeffrey S.N. Paine, Edward O’Malley, et al. Parabolic and hyperbolicflexure hinges: flexibility, motion precision and stress characterization based on complianceclosed-form equations[J]. Precision Engineering.2002,26:183-192.
    [25]潘君骅.光学非球面的设计、加工、检验[M].北京:科学出版社,1994.
    [26]李会勋,胡迎春,张建中.利用ANSYS模拟螺栓预紧力的研究[J].山东科技大学学报(自然科学版).2006,25(1):57-59.
    [27] Daniel Vukobratovich. Flexture mounts for high-resolution optical elements[C]. SPIE.1988,0959:18-34.
    [28]林利明,吴清文,刘宏伟,等.空间相机反射镜支撑结构的设计与分析[J].长春理工大学学报(自然科学版).2008,31(1):45-48.
    [29]兰胜威,曾新吾.晶粒度对纯铝动态力学性能的影响[J].爆炸与冲击.2008,28(5):462-466.
    [30]马文礼,沈忙作,张晓宏.提高大口径金属主镜面形精度的方法[J].光电工程.1996,23(6):18-22.
    [31] Ohl,R.,Barthemy,M.,Zewari,S.,et al.Comparison of stress relief procedures for cryogenicaluminum mirrors[C]. SPIE.2002,4822:51-71.
    [32]郝静华.弹性夹头自动定心装置与夹紧力的计算分析[J].工具技术.2010,44(11):83-85.
    [33]陈俊云,罗健,赵清亮.超精密车削加工有限元仿真研究[J].机床与液压.2010,38(15):70-73.
    [34] Yoder, P.R., Jr. Advanced considerations of the lens-to-mount interface[J]. SPIE.1992, CR43:305-328.
    [35] Yoder, P.R., Jr. Estimation of mounting-induced axial contact stresses in multi-element lensassemblies[J]. SPIE.1994,2263:332-340.
    [36]任栖锋.低温光学系统的研究[D].成都:中国科学院研究生院,2009.
    [37]李华.被动无热光学系统技术研究[D].成都:中国科学院研究生院,2011.
    [38]单宝忠,武克用,卢锷.结合有限元法的空间相机优化设计[J].光学精密工程.2002,10(1):114-120.
    [39]美国ANSYS公司北京办事处. ANSYS高级技术分析指南.1998.
    [40]耿麒先,杨洪波,李延伟.大口径平背形主镜背部支撑位置优化计算方法.光学技术),2007,33(6):889~891.
    [41]杨利伟,李志来,鲍赫.基于静定桁架原理的相机结构设计[J].光电工程.2010,37(11):73-77.
    [42] Trent Newswander, Blake Crowther. Optical system materials selection using performanceindices in a simultaneous optimization approach[C]. SPIE.2009,7425:0201-0214.
    [43]葛志梁,朱能鸿.用ANSYS优化一米望远镜主镜18点底支承位置[J].中国科学院上海天文台年刊.2008,29:132-138.
    [44]张林波,任戈,陈洪斌.四翼十字形中心支撑结构的动力学分析[J].光学精密工程.2003,11(5):472-474.
    [45]陈荣利,张禹康,樊学武,等.空间高分辨率CCD相机次镜支架最佳结构设计[J].光子学报.2004,33(10):1251-1254.
    [46]丁福建,李英才.大口径相机主镜/次镜结构动力减振的研究[J].光子学报.1999,28(5):458-462.
    [47]樊翔,倪旭翔.光学传递函数测试仪的现状和发展趋势[J].光学仪器.2003,25(5):94-25.
    [48]程子清,罗劲峰,胡际先.光学传递函数仪在红外光学系统装调中的应用[J].光学仪器.2007,29(3):01-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700