用户名: 密码: 验证码:
潜艇透水耐压涂料失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,由于潜艇的特殊结构和使用特点,腐蚀问题始终比较突出,已成为影响潜艇使用性能正常发挥的主要因素之一。特别是在南海“三高”(高温、高盐、高湿)环境条件下,潜艇艇体非耐压结构、设备、管系连接部位等的腐蚀破坏速度远远高于水面舰艇。潜艇的腐蚀破损不仅降低它的在航率,而且影响其设备性能的正常发挥,加重维修保养工作量,甚至极大地缩短装备的使用寿命。
     由于近几年来消声瓦潜艇的出现和对潜艇使用强度要求的提高,对潜艇防腐蚀涂料提出了防护期效长、防护性能好、耐海水压力更大、施工和维修工艺简单等新的要求,迫切需要针对于潜艇特殊使用环境和工况条件在涂料的失效机理、配套选型设计、评价方法体系和指标体系、评价试验方法、施工和维修工艺等方面开展顶层设计和基础性研究工作,以对潜艇长效防腐蚀涂料的研制、设计、施工和维修等工作环节进行科学、正确地指导和规范,确保涂料在各阶段的质量,进而潜艇长效防腐蚀问题得到有效地解决。
     然而,国内对于深潜压力状态下长效防腐涂层的服役行为和耐蚀机理的研究较少。因此,本论文通过模拟潜艇深潜压力状态,应用先进的宏观测试技术和微观状态分析相结合的方法,紧紧围绕现用的涂层体系和国内外性能优异的长效防腐蚀涂层体系进行实验室内加速模拟试验和现有海洋环境服役涂层体系的服役性进行研究,特别是对在海水压差环境的涂层行为与失效机理进行深入分析,主要研究结果归纳如下
     (1)无机富锌涂层对基体的保护作用主要为浸泡初期的阴极保护作用和腐蚀产物在涂层表面和内部沉积产生的封闭阻挡作用。但上述两种作用在数月内将耗竭殆尽。同时,无机富锌涂层与封闭漆之间由于树脂主体官能团分子极性的差异,分子间作用成分较少,使得总体结合强度较小,尤其当侵蚀性介质进入涂层后将导致封闭层的加速剥离以及体系的失效。
     (2)无机富锌与有机富锌涂层配套体系的耐盐雾性能差异较小,但阴极剥离试验以及海水中的腐蚀防护性能差别较明显。在盐雾环境条件下,由于传输通道中液相介质不均匀甚至不连续,锌粉腐蚀产物在向涂层表面传输能力较在海水介质条件下的差,而无机富锌更为强烈的牺牲阳极作用,导致更大量的锌的腐蚀产物在传输通道中的“滞留”。这种作用实际上使得无机富锌与有机富锌体系的屏蔽阻挡作用趋于一致,因而它们之间的防护行为较接近。但在连续介质的试验条件下,则没有上述作用,所以腐蚀防护行为的差异较大。基于无机富锌涂层与有机富锌涂层配套体系的阻抗谱,就整个涂层体系的阻抗,有机富锌涂层配套体系的防腐蚀性能要远好于无机富锌涂层配套体系。通过系列试验表明,现役潜艇所选的无机富锌涂层与所选封闭漆的配套体系不是种十分合理的体系,无机富锌涂层配套体系不能用于实际装备中由于多种材料和阴极保护形成的复杂电位环境并受连续的流动海水介质浸泡的环境中。
     (3)电化学阻抗谱和红外光谱测试结果表明,与在常压海水中浸泡相比,涂层在3.5MPa压力海水条件下,海水在涂层中的渗透速度加快,渗透量增大,涂层防护性能下降速度加快,涂层发生失效的时间明显提前。从涂层失效形貌特征可以分析,涂层在常压海水和3.5MPa压力海水中具有不同的失效微观机理。静水压力对涂层失效的“作用”为:
     ①渗透到涂层中的水可以进入环氧的分子链段,并与其形成氢键或弱的化学键合,形成了所谓的“结合水”,加速了涂层性能的恶化;
     ②加快较常压条件下3.5%NaCl溶液向涂层内的扩散过程,使涂层电阻减小,涂层的保护作用降低;
     ⑧加快涂层/金属界面的电化学反应界面的形成,促进电化学反应的发生,使涂层/金属界面的腐蚀反应更易进行;
     ④加快涂层的剥离,且增大剥离面积;即加速了涂层的失效,使涂层的防护性能变差。
     (4)利用EIS研究了环氧防腐涂料在交变压力影响下的失效行为,结果表明交变压力作用下:
     ①涂层的阻抗行为表现出了周期性的变化规律;
     ②高压作用时涂层的阻挡作用明显下降,更有利于电解质溶液向涂层内部的渗透,从而恶化了涂层的防护性能;
     ③较高交变压力使3.5%NaCl溶液向涂层内的扩散过程加快,涂层电阻减小,涂层的保护作用降低;
     ④电解质溶液更容易渗入到涂层/基底金属界面,从而促进了界面电化学腐蚀反应的进行;
     ⑤由于高压条件下更有利于电解质溶液渗入到涂层内部,因而涂层具有更高的吸水率
     ⑥涂层的附着力随浸泡时间延长而逐渐降低,涂层粘着性能变差,交变压力增大环氧防锈涂层的粘着性能变化较小;
     (5)研究分析并提出潜艇透水部位耐压涂层这个特殊使用环境对防腐蚀涂料性能的要求:在高压海水渗透、海水干湿交替和海水压力交变条件下,具有良好的抗海水渗透性能、耐海水腐蚀性能和耐盐雾腐蚀性能和良好的机械性能;同时具有良好的耐阴极剥离性能和施工性能。提出并构建了以涂料基本性能、常压下耐腐蚀性能、压力海水条件下性能、实海环境性能、施工和维修性能为基础的潜艇长效防腐蚀涂料性能评价方法。
     (6)研究分析了潜艇透水部位耐压涂层失效研究的主要研究方向,提出了下步工作方向。通过较为系统的试验和对涂料性能、类型、品种发展方向研究,提出了潜艇透水部位耐压涂层应朝着高固体份环氧树脂涂料这个主要方向发展。
Because of the special environment and structures, corrosion is always a severe problem for submarines and is one of the main factors impeding normal performance of submarines, especially in Southern Sea where the environment is very harsh with high temperature, high salt content and high humidity. Corrosion rates of the body structures, equipments, tubes and joints for submarines are much higher than surface ships. The severe corrosion increases the maintaining work, influences normal performance and decreases the lifetime of the vehicles.
     In recent years due to the ocurrence of the submarines with noise elimenation tiles and the increase of training strength, new requirements are proposed for anti-corrosion coatings on submarines such as longer performance life, better protection property, more resistant to pressured sea water and simple coating and maintenance technology. Therefore, based on the special application environments and operation conditions, it is necessary to develop the studies on failure mechanism of coatings, coating system design, evaluation methods and standards, testing methods and coating and maintenance technologies, in order to direct the development, design, coating and maintenance of submarine coatings, and resolve the long time corrosion protection for submarines.
     Currently, there are few studies on the performance and protection mechanism of anti-corrosion coatings under pressured deep sea. In this paper, by simulating the pressured state for submarine in deep sea, the performances of several coatings which are currently applied in navy were studied with the methods of simulating testing, electrochemical impedance spectroscopy, X-rays photoelectron spectroscopy, infrared spectroscopy and scanning electron microscope. The performance behaviors and failure mechanisms of the coatings under different environments such as different sea water pressure were analyzed. The main results are summarized below.
     (1) The protection of inorganic zinc-rich coating to the substance mainly come from the cathodic protection in the early stage and the barrier effect by the depositions of corrosion products in the coating. As immersion time prolonged, the corrosion reaction of zinc powders in coating is controlled by the diffusion process of corrosive species or corrosion products. However, above protection effects gradually dissappear in a few monthes. Meanwhile, because the polarity difference of the functional groups between the resins in the sealing coating and zinc-rich coating, the applied force between molecules is small, leading to decreased adhesion strength. When the corrosive species enter in the coatings, the sealing layer will strip off and the system may failure quickly.
     (2) The salt spray testing resistances of inorganic and organic zinc-rich coating systems are very close, but obvious differences exist in the cathodic stripping resistance and corrosion resistance in sea water. Under the salt spray condition, because the liquid mediums in the transmission channels are not uniform and even non-continuous, the transmission of corrosion products of zinc powders to the surface is more difficult than in sea water immersion. In addition, the stronger effect of zinc powders as cathodic anodes in zinc-rich inorganic coating results in more corrosion products if zinc to remain in the transmission channels. This effect leads to similar barrier effects for inorganic and organic zinc-rich coatings. However, under the condition of continuous testing medium, the above effect is not exist and the corrosion resistances of the two coatings are different. According to the EIS results, the corrosion resistance of organic zinc-rich coating system is obviously higher than that of inorganic-zinc-rich coating system.
     The experimental results show that the inorganic zinc-rich coating and the mating sealing coating system which are currently applied on submarines are not very reasonable. Inorganic zinc-rich coating system is not suitable for flowing sea water environment and complicated potential environment due to multi-materials and cathodic protection.
     (3) EIS and FTIR measurements showed that, compared with immersion in sea water under constant pressure, in sea water under3.5MPa the permeation rate and quantity of water in coating increases. As the result, the protection property of coating decreases more quickly and the performance life of coating shortens. According to the failure morphologies, in sea water under ordinary pressure and higher pressure the failure mechanisms of coating are different. The influences of hydrostatic pressure on coating failure:
     ①Water permeated into coating may enter the molecular chains of epoxy resin and form hydrogen bond or weak chemical bonds, forming so called "bond water" which will accelerate deterioration of the coatings.
     ②Hydrostatic pressure promotes diffusion of NaCl solution into the coating, leading to decreased coating resistance and protection.
     ③Hydrostatic pressure results in early electrochemical reactions at coating/metal boundary and facilitates the corrosion reactions.
     ④Under higher pressure the coating is more easily to be stripped and the stripped area increases in contrast to the situation under constant pressure, which accelerates failure of the coatings.
     (4) Failure behavior of epoxy anti-corrosion coating under alternate pressures was studied with EIS. The results show:
     ①The impedance of coating shows periodic variations;
     ②Higher pressure is beneficial for diffusion of electrolyte into the coating, hence the barrier effect of coating decreases more quickly.
     ③Higher alternate pressure promotes diffusion of NaCl solution into the coating, leading to decreased coating resistance and protection.
     ④The electrolyte solution is more easy to permeate to the metal/coating boundary and the boundary corrosion reactions are promoted.
     ⑤Water absorption of coating is increased under higher pressure condition.
     ⑥The coating adherence gradually decreases with immersion time extends. As the alternate pressure increases, the variation in the adherence property of epoxy anti-corrosion coating is relatively small.
     (5) The requirements for submarine coatings in pressured sea water are proposed:Under the conditions of higher pressure sea water, alternate dry/wet environments and alternate pressures, coatings must have good resistances to sea water permeation, sea water corrosion, salt spray corrosion and good mechanical properties, as well as good property to resist cathodic stripping and are convenient to be applied. Based on basic coating properties, anti-corrosion properties under ordinary pressure and high pressure sea water, practical sea environment conditions and the applying and maintaining natures, a system of methods to evaluate anti-corrosion coatings for submarines is established.
     (6) The main research directions for further study on performance of coatings for submarines in sea water under high pressure are suggested. By systematic testing and the studies on the developing tends of properties, types and varieties of coatings, it is proposed that high solid epoxy resin coatings should be developed as main submarine coatings in pressured sea water.
引文
[1]谢德明,胡吉明,童少平.富锌漆研究进展[J].材料研究学报,2004,24(5):314-320.
    [2]张显程,巩建鸣,涂善东.涂层缺陷对涂层失效与基体腐蚀行为的影响研究[J].材料科学与工程学报,2003,21(6):922-926.
    [3]Funck W. Experimental evidences of lattice distortion in nanocrystalline materials [J]. Progress in Organic Coatings,1981,9:29-34.
    [4]Yang X F, Vang. C, Tallman D E. Weathering Degradation of a Polyurethane Coating [J]. Polymer Degradation and Stability,2001,74(2):341-351.
    [5]Senkevich, J J. Degradation of an alkyd polymer coating characterized by AC impedance [J]. Journal of Materials Science,2000,35(6):1359-1364.
    [6]Kweon Y G, Coddet C. Blistering mechanisms of thermally sprayed Zinc and Zinc based Coatings in Sea Water [J]. Corrosion Science,1992,48(8):660-656.
    [7]Leidheiser H, Funck W J. Turning the electronic structure of solids with nanometer-sized microstructures [J]. Oil and Colour Chemistry Association,1987,5:121-127.
    [8]Funck W J. Microstructure and tribological properties of sulphide coating produced by ion sulphuration [J]. Oil and Colour Chemistry Association,1985,9:229-338.
    [9]Funke W. Towards Environmentally Acceptable Corrosion Protection through Organic Coatings Problems and Relization [J]. JCT,1983,55:705-708.
    [10]Rastkar A R, Kiani A, Alvand F, et al. Effect of pulsed plasma nitriding on mechanical and tribological performance of Ck45 steel[J]. Journal of Nanoscience and Nanotechnology,2001,11(6)5365-5373.
    [11]Deflorian F, Fedrizzi L. Characterization of protective organic coatings by electrochemical impedance spectroscopy [J]. Journal of Adhesion Science and Technology, 1999,13(5):629-645.
    [12]潘肇基.有机涂层湿附着力的研究[J].材料保护,1994,27(2):912.
    [13]高立新,张大全,周国定.改性环氧涂层吸水性及耐蚀性研究[J].中国腐蚀与防护学报,2002,22(1):41-43.
    [14]刘登良.涂层失效分析的方法和工作程序[M].北京:化学工业出版社.2003.
    [15]Orcillo M. Soluble Salts Their effects on premature degradation of anticorrosive paints [J]. Progress in Organic Coatings,1999,36:137-147.
    [16]徐永祥,严川伟,高延敏.基体金属上可溶盐污染对涂层下金属腐蚀和涂层失效的影响[J].材料保护,2002,23(11):469-473.
    [17]Kitowski C J, Wheat H C. Effect of chlorides on rein forcing steel exposed to simulated concrete solutions [J]. Corrosion,1997,53(3):216-226.
    [18]Skoulikidis T, Ragoussis A. Studies on the gas permeabilties and surface properties of PDMS/PTMO mixed soft segment polyurethane membranes [J]. Corrosion,1992,48 (8):666-689.
    [19]Fialkiewicz A, Szandorowski M J. Chemical and electro chemical processes of cathodic disbonding of pipeline coating [J]. Oil and Colour Chemistry Association,1974, 57:259-272.
    [20]吴志英,李国来,李法科.用电化学阻抗谱(EIS)研究环氧树脂涂层的防腐蚀性能[J].中国腐蚀与防护学报,1988,8(3):253-257.
    [21]王周成,苏方腾,辜志俊.氯磺化聚乙烯弹性体在涂料领域的应用[J].腐蚀科学与防护技术,1994,6(1):1-8.
    [22]王周成,张瀛洲,周绍民,等.丙烯酸树脂防腐蚀涂料及其应用[J].材料保护,1998,31(3):1-3.
    [23]Leidheiser H J, Wang W, Igetoft L. The mechanism for the cathodic delamination of organic coatings from a metal surface [J]. Progress in Organic Coatings,1983,11 (1):19-40.
    [24]Nemeth Z, Erdei L, Kolics A. A new approach to studying ion transport in corrosion protective coatings using an in situ radiotracer method [J]. Corrosion Science,1995, 37(7):1163-1166.
    [25]Lambrev V G, Rodin N N, Koftyuk V A. Application of the method of neutron activation for studying corrosion processes and protective abi lity of paint coatings [J]. Progress in Organic Coatings,1997,30:1-8.
    [26]胡吉明,张鉴清,张金涛.LY12铝合金环氧涂层在NaCl溶液中的吸水与失效[J].金属学报,2003,39(9):955-961.
    [27]严川伟,何刚,刘宏伟.用显微红外方法研究涂层中物质传输规律[J].腐蚀科学与防护技术,2000(1):45-51.
    [28]王周成,张瀛洲,周绍民.离子选抒性酚醛涂层对碳钢防腐蚀性能的研究[J].材料保护,1998,31(1):1-3.
    [29]张金涛,胡吉明,张鉴清.有机涂层的现代研究方法[J].材料科学与工程学报,2003,21(5):763-768.
    [30]刘登良.涂层失效分析的方法和工作程序[M].北京:化学工业出版社,2003,129-222.
    [31]周立新,程江,杨卓如.有机涂层防腐性能的研究与评价方法[J].腐蚀科学与防护技术,2004,16(6):375-378.
    [32]Skerry B S, Alavi A. Lindgren K. I. Environmental and electrochemical test methods for the evaluation of protective organic coatings[J]. Journal of Coatings Technology, 1988,60(765):97-101.
    [33]国家标准GB/T 1766-1995.色漆和清漆涂层老化评级方法[S].化学工业标准汇编,2003,109-112.
    [34]国家标准GB/T 1865-1997.色漆和清漆人工气候老化和人工辐暴露[S].化学工业标准汇编,2003,122-130.
    [35]罗振华,蔡键平,张晓云.耐候性有机涂层加速老化试验研究进展[J].合成材料老化与应用,2003,32(3),31-35.
    [36]罗振华,蔡健平,张晓云.有机涂层性能评价技术研究进展[J].腐蚀科学与防护技术,2004、16(5):313-317.
    [37]Bauer D R, Gerlock J L, Dickie R A. Rapid reliable tests of clear coat weather ability: a proposed protocol [J]. Progress in Organic Coatings,1987,15:209.
    [38]Almeida E, Balmayore M, Santos T. Some relevant aspects of the use of FTIR associated techniques in the study of surfaces and coatings[J]. Progress in Organic Coatings, 2002,44 (3):233-242.
    [39]Han J S, Park J H. Detection of corrosion steel under an organic coating by infrared photography[J]. Corrosion Science,2004,46(4):787-793.
    [40]Bemard M C. Some relevant aspects of the use of Raman ssociated techniques in the study of surfaces and coatings[J]. Progress in Organic Coatings,2002,45:399.
    [41]Marchebois H, Touzain S, Joiret S. Zinc-rich powder coatings corrosion in sea water: influence of conductive pigments[J]. Progress in Organic Coatings,2002,45:415-421.
    [42]朱良漪,孙亦梁,陈耕燕.分析仪器手册[M].北京:化学工业出版社,1997.
    [43]Sommer A, Zirngiebl E, Kahl L. Studies on the gas permeabilties and surface properties of PDMS/PTMO mixed soft segment polyurethane membranes. Polym. Mat. Sci. Engin. 1998,14(3):115-119.
    [44]Guillaumin V, Landolt D. Synthesis of poly (dimethylsiloxane) oligomers with pendant amine groups via coequilibrat ion anionic polymerization reactions[J]. Corrosion Science,2002,44:179-183.
    [45]Galliano F, Landolt D. Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steel [J]. Progress in Organic Coatings,2002,44:217-221.
    [46]Guillaumin V, Landolt D. Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and imperdance[J]. Corrosion Science,2002,44:179-187.
    [47]Johnson B W. Studies on the gas permeabilties and surface properties of PDMS/PTMO mixed soft segment polyurethane membranes[J]. Polym. Mat. Sci. Engin.,1998,14(3):115-117.
    [48]刘斌,孟繁强,尚永春.原子力显微镜在涂层分析中的应用[J].涂料工业,2000,(2):38-40.
    [49]杨玫,王立华.表面涂层的制备工艺与测试技术[J].武汉科技大学学报,2003,26(3):241-245.
    [50]Mansfeld F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings[J]. Journal of Applied Electrochemical, 1995,25(3):187-196.
    [51]Pistorus P C. Design aspects of electrochemical noise measurements for uncoated metals: electrode size and sampling rate[J]. Corrosiong Science.1997,53(4):273-279.
    [52]Bonora P L, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investingating under paint corrosion[J]. Electrochimica Acta,1996,41:1073-1079.
    [53]张鉴清,孙国庆,曹楚南.评价有机涂层防护性能的EIS数据处理[J].腐蚀科学与防护技术,1994,6(4):318-324.
    [54]谢德明,胡吉明,童少平.Zn粉含量及表面沾污对环氧富Zn漆电化学行为的影响[J].金属学报,2004,40(1):103-108.
    [55]Reynolds L B, Twite R, Khobaib M. Preliminary evaluation of the anticorrosive properties of aircraft coatings by electrochemical methods[J]. Progress in Organic Coatings,1997,32:31-35.
    [56]吴丽蓉,胡学文,许崇武.用 EIS快速评估有机涂层防护性能的方法[J].腐蚀科学与防护技术,2000,12(3):182-184.
    [57]张鉴清,张昭,王建明,等.电化学噪声的分析与应用-Ⅰ电化学噪声的分析原理[J].中国腐蚀与防护学报,2001,21(5):310-314.
    [58]Bierwagen G P. Synthesis and characterization of poly(dimethyl siloxane) modified polyurethane[J]. Progress in Organic Coatings,1997,32:25-28.
    [59]Le T Q, Bierwagen G P, Touzain S. EIS and ENM measurements for three different organic coatings on aluminum[J]. Progress in Organic Coatings,2001, (42):179-187.
    [60]Mill D J, Mabbutt S. Investigation of defects in organic anticorrosive coatings using electrochemical noise measurement[J]. Progress in Organic Coatings,2000,39:41-46.
    [61]Mojica J, Garcia E, Rodriguez F J, et al. Evaluation of the protection against corrosion of a thick polyurethane film by electrochemical noise [J]. Progress in Organic Coatings, 2001,42:218-225.
    [62]Stratmann M, Leng A, Furbeth W, et al. The scanning Kelvin probe:a new technique for the in situ analysis of the delamination of organic coatings[J]. Progress in Organic Coatings,1996,27:261-279.
    [63]Khobaib M, Rensi A, Matakis T. Ultimate tensile properties of segmented polyurethane elastomers:factors leading to reduced properties for polyurethane based on nonpolar soft segments[J]. Progress in Organic Coatings,2001,41:266-73.
    [64]Vogelsang J, Strum W. Polydimethylsioxane-polyurethane elastomer:Synthesis and properties of segmented copolymers and related zwitterionomers[J]. Materials and Corrosion,2001,52:462-469.
    [65]Strunz W. Dielectric relaxation in barrier coatings:A square root of time process[J]. Progress in Organic Coatings,2000,39:49-56.
    [66]Schiller C. A., Strunz W. Molecular design of alkoxide precursors for the synthesis of hubrid organic-inorganic Gels[J]. Electrochimca Acta,2001,46:3619-3627.
    [67]Vogelsang J, Strunz W. New interpretation of electrochemical data obtained from organic barrier coatings[J]. Electrochimica Acta,2001,46:3817-3826.
    [68]Le P C. Effects of Sol-Gel coatings on the Localized corrosion behavior of 304 stainless steel[J]. Progress in Organic Coatings,2000,39:167-174.
    [69]Corfias C. Surface modification of segmented polyurethaneureas via oligomeric end groups incorporated during synthesis[J]. Corrosion Science,2000,42:1337-1342.
    [70]Senkevich J. J. Degradation of an alkyd polymer coating characterized by AC impedance [J]. Journal of Materials Science,2000,35(6):1359-1364.
    [71]Kweon Y G, Coddet C. Blistering mechanisms of thermally sprayed Zinc and Zinc based coatings in sea water[J]. Corrosion Science,1992,48(8):656-660.
    [72]Funke W. Towards Environmentally Acceptable Corrosion Protection through Organic Coatings Problems and Relization[J]. Appl. Polym. Sci.,1993,47:220-225.
    [73]Deflorian F, Fedrizzi L. Characterization of protective organic coatings by electrochemical impedance spectroscopy [J]. Journal of Adhesion Science and Technology, 1999,13(5):629-645.
    [74]Guillaumin V, Landolt D. Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and imperdance[J]. Corrosion Science,2002,44:179-183.
    [75]金晓鸿,胡雪娇,叶美琪.船体水上防锈漆体系加速试验方法研究[J].材料开发与应用,1996,11(3):16-21.
    [76]Leidheiser H J, Wang W, Igetoft L. The mechanism for the cathodic delamination of organic coatings from a metal surface [J]. Progress in Organic Coatings,1983,11:19-40.
    [77]Nemeth Z, Erdei L, Kolics A. A new approach to studying ion transport in corrosion protective coatings using an in situ radiotracer method[J]. Corrosion Science,1995, 37(7):1163-1166.
    [78]Lambrev V G, Rodin N N, Koftyuk V A. Application of the method of neutron activation for studying corrosion processes and protective ability of paint coatings [J]. Progress in Organic Coatings,1997,30:1-8.
    [79]Perrin L, Nguyen Q T, Sacco D, et al. Experimental Studies and Modeling of Sorption and Diffusion of Water and Alchohols in Cellulose Acetate[J]. Poluym. Int,1997, 42(1):9-16.
    [80]胡吉明.水在有机涂层中的传输-Ⅱ复杂的实际传输过程[J].中国腐蚀与防护学报,2002,22(6):371-384.
    [81]胡吉明.水在有机涂层中的传输—I Fick扩散过程[J].中国腐蚀与防护学报,2002,22(5):311-314.
    [82]Miskovic-Stankovic V B, Drazic D M, Teodorovic M J. Eletrolyte penetration through epoxy coating electrodeposited on steel[J]. Corrosion Science,1995,37:241-253.
    [83]Bellycci F, Nicosemo L, Monetta T, et al. A study of corrosion initiation on polyimide coatings[J]. Corrosion Science,1992,33:1203-1211.
    [84]Def lorian F, Fedrizzi L, Rossi S. Organic coating capacitance measurement by EIS:ideal and actual trends [J]. Electrochim. Acta,1999,44:4243-4246.
    [85]张云,王崇武,陈金爱.涂料的耐老化性及其试验方法[J].涂料工业,2003,33(11):51-53.
    [86]Deflorian F, Rossi S. Some relevant aspects of the use of FTIR associated techniques in the study of surfaces and coatings [J]. Corrosion Science,1997,54(8):605-609.
    [87]朱良漪,孙亦梁,陈耕燕.分析仪器手册[M].北京:化学工业出版社,1997.
    [88]张余平,杨生荣.原子力显微镜在纳米摩擦学研究中的应用[J].现代仪器,2000,(6):17-19.
    [89]Guillaumin V, Landolt D. Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and impedance[J]. Corrosion Science,2002,44:179-184.
    [90]汪新文,白春礼,朱传凤.原子力显微镜针尖和变性DNA链间的相互作用[J].化学通报,1997,3:48-51.
    [91]Trezona R T, Hutchings I M. Progress in Organic Coatings,2001,41-45.
    [92]Feliu S, Barajas R, Bastidas J M, et al. Polydimethylsioxane-polyurethane elastomer: Synthesis and properties of segmented copolymers and related zwitterionomers[J]. Coat Technol,1989,61 (775):63-67.
    [93]Chen J F, Bogaerts W F. Electrochemical emission spectroscopy for monitoring uniform and localized corrosion[J]. Corrosion,1996,52(10):753.
    [94]Pistorus P C. Design aspects of electrochemical noise measurements for uncoated metals: electrode size and sampling rate[J]. Corrosion,1997,53 (4):273.
    [95]Potvin E, Larochelle L. Corrosion protective performances of commercial low-VOC epoxy/urethane coatings on hot-rolled 1010 mild steel [J]. Progress in Organic Coatings, 1997,31:363.
    [96]Mansfeld F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings[J]. Journal of Applied Electrochemical,'1995, 25(3):187.
    [97]Bonora P L, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion[J]. Electrochemical Acta,1996,41:1073.
    [98]李忠东.EIS技术在涂膜防腐蚀测试中的应用[J].材料保护,1996(6):20.
    [99]Lota C A, Cottis R A. Electrochemical noise generation during stress corrosion cracking of the high-strength aluminum AA7075-T6 alloy [J]. Corrosion Science,1989,45(2):136.
    [100]Leoal A, Doleoek V. Corrosion monitoring system based on measurement and analysis of electrochemical noise[J]. Corrosion,1995,51(4):295.
    [101]黄宁.红外光谱法在涂料剖析中应用[J].涂料工业,1999(1):37.
    [102]吴瑾光.近代傅立叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994:51.
    [103]严川伟,余家康,林海潮,等.激光拉曼光谱在金属腐蚀研究中的应用[J].腐蚀科学与防护技术,1998(3):163.
    [104]朱月香,段连运,钱民协.固体表面结构和常用表面分析技术[J].大学化学,2000(6):21.
    [105]Galliano F, Landolt D. Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steel[J]. Progress in Organic Coatings,2002,44:217.
    [106]Guillaumin V, Landolt D. Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and impedance[J]. Corrosion Science,2002,44:179.
    [107]李忠东.涂料防腐蚀机理研究进展[J].化工新型材料,1995(8):6.
    [108]王光雍,王海江,李兴濂,等.自然环境的腐蚀与防护[M].北京:化学工业出版社,1997:91-100.
    [109]梁成浩.现代腐蚀科学与防护技术[M].上海:华东理工大学出版社,2007.
    [110]林玉珍,杨德钧.腐蚀与腐蚀控制原理[M].北京:中国石化出版社,2007.
    [111]徐永祥,严川伟,高延敏等.大气环境中涂层下金属的腐蚀和涂层的失效[J].中国腐蚀与防护学报,2002(4):249.
    [112]林海潮,李谋成.涂层下金属的腐蚀过程[J].腐蚀科学与防护技术,2002(3):180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700